ARPES study of many-body effects and electronic reconstructions in misfit cobaltates ### Véronique Brouet, Alessandro Nicolaou Laboratoire de Physique des Solides d'Orsay M. Zacchigna (Elettra), A. Tejeda (Nancy) A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran (SOLEIL) Samples: S. Hébert, W. Kobayashi, H. Muguerra, D. Grebille (CRISMAT Caen, France) ### **Experiments carried out at:** #### **Swiss Light Source** #### **Elettra** #### **SOLEIL** SIS: L. Patthey M. Shi APE: I. Vobornik BACH: M. Zacchigna **CASSIOPEE:** A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran #### **Outline** #### Na_xCoO₂ and misfit cobaltates Counter-intutive evolution of the correlation strength with doping #### Nature of low energy excitations in cobaltates? Study of ARPES lineshapes - => Consistent with strong correlations (Z = 0.15 at x=0.7). - => Increasing correlations near x=1, towards the band insulator. ### Influence of the 3D environment on electronic orderings in CoO₂ planes? - => Deviation from the rigid band filling picture at high x - => Consistent with partial electronic localization induced by the Na or misfit potentials # Cobaltates: triangular planes of Co filled by a variable number of electrons Metallic phases with charge, spin, orbital degrees of freedom... How do they interact? Does Na plays a role? ### From Mott insulator to band insulator... Magnetic correlations seem to appear near the band insulator! ## **Competing degrees of freedom** Triply degenerate band, hybridization with oxygen, triangular geometry may frustrate AF correlations... #### Possibility of coupled spin-orbital-lattice excitations => spin-orbital-polarons? « The low-lying magnetic states of Co³⁺, accessible for electrons via the intersite hopping, provide an extra dimension in physics of Na_xCoO₂. » Khaliullin and Chaloupka PRB 77, 104532 (2008) # An additional degree of freedom: role of Na? #### Na induced correlations? Marianetti and Kotliar PRL 98, 176405 (2007) NMR detects inequivalent Co sites at high x I.R. Mukhamedshin et al., PRL 2005 The charge order is induced by Na order H. Alloul et al., EPL 2009 #### Two families of cobaltates: Na and misfits ### $[Bi_2A_2O_4][CoO_2]_{b1/b2}$ - Charge transfer from Rock-Salt planes to CoO₂ planes - Doping equivalent to x=0.7-0.9 - Different 3D environment (better surface quality for ARPES) ### Electronic properties of misfit cobaltates J. Bobroff et al. PRB 2007 Same magnetic interactions & different charge order / disorder ? # Band structure of a CoO₂ plane (from LDA) $Co^{4+} + x$ electrons on a triangular lattice Surface de Fermi Singh et al., PRB 2000; Lee et al., PRB 2004 # Same low energy electronic structure in Na and misfit cobaltates (BiBaCo) ARPES in Na_xCoO₂ : M.Z. Hasan *et al.*, PRL2004, D. Qian *et al.*, PRL2006 H.B. Yang *et al.*, PRL 2004, 2005 Hexagonal FS from Co a_{1g} band - No e'g pockets High effective mass - Narrow band near the Fermi level $$V_F = 0.3 eV.Å$$ Peculiar lineshape - Two dispersing components V. Brouet et al., PRB2007 # How to interpret the lineshape in BiBaCo? - Strongly renormalized a_{1g} band # How to interpret the lineshape in BiBaCo? - Strongly renormalized a_{1g} band - Or kink? (of what origin?) - Or interactions between a_{1g} and e'_g bands ? (hybridization gap) - => Depending on the interpretation: 1.5<m*/m<6 # Using light polarization to observe different orbitals ARPES intensity proportional to: $$\langle \phi_f^{\mathbf{k}} | \mathbf{A} \cdot \mathbf{p} | \phi_i^{\mathbf{k}} \rangle \begin{cases} \phi_i^{\mathbf{k}} & \text{even } \langle +|+|+\rangle \Rightarrow \mathbf{A} & \text{even} \\ \phi_i^{\mathbf{k}} & \text{odd} & \langle +|-|-\rangle \Rightarrow \mathbf{A} & \text{odd.} \end{cases}$$ # The structure of a_{1g} is not due to interaction with e'_{g} Horizontal polarization: even bands $a_{1g} + e'_{g2}$ #### LDA bands #### Experimental dispersion # Intrinsic peak-dip-hump structure of a_{1g} Binding energy (eV) Binding energy (eV) # Intrinsic peak-dip-hump structure of a_{1g} #### BiBaCo Manganites La_{1.2}Sr_{1.8}Mn₂O₇ N. Mannella *et al.*, Nature **438**, 474 (2005) « Waterfall » in cuprates $Ca_2CuO_2Cl_2$ F. Ronning et al. PRB 2005 # The distribution of spectral weight imply strong many-body effects # In this case, spectral weight information is more direct than self-energy fits Typical fits of width increase and dispersion renormalization fail to reproduce the HP weight at E_F A. Nicolaou *et al.*, PRL 2010 ### The QP « disappears » at high temperature Typical behavior of a strongly correlated system ## The QP « disappears » when doping increases - The correlations seem to increase near the band insulator. - Why are there strong correlations in this limit? - => Polaronic lineshape? - => Electronic orderings ? x increases towards band insulator # Electronic orderings at high dopings? H. Alloul et al., EPL 2009 # Misfit cobaltates: Evidence for coupling between Rock-Salt and CoO₂ planes #### **Rock-Salt structure** Inequivalent Co sites with respect to Ba²⁺ positions. => Situation may be analogous to Na_xCoO₂ => Co³⁺ may form directly below a Ba²⁺ # The number of metallic holes in the band can be deduced from the FS area # The number of metallic holes in the band can be deduced from the FS area #### BiBaCo x=0.71, m=2 #### CaCoO x=0.75, m=1.6 BiSrCo, Pb doped #### BiSrCo x=0.77, m=1.82 #### BiCaCo x=0.85, m=1.7 #### Fermi Surface of CaCoO ... larger than in BiBaCo $k_F=0.75$ instead of $k_F=0.6$ => x=0.5 ### **Deviation from Luttinger theorem in cobaltates** - Deviation from the rigid band filling at high x. - More holes than expected = consistent with presence of Co^{3+} . # Localization with structure depending on the potential inprinted by neighboring planes Na_{2/3}CoO₂ => Kagomé Misfits => « striped » structures Oxygen Barium Cobalt BiBaCo-O (b1/b2=2) BiSrCo-O (b1/b2=1.82) Different metallic structure may explain different evolution of metallicity A. Nicolaou et al., EPL 2010 # New electronic orderings? #### **Conclusions** - Misfit cobaltates offer an alternative opportunity to study CoO₂ slabs. Na_{0.7}CoO₂ and BiBaCo show a very similar electronic structure. - Excitations have a strong many-body character (« peak-dip-hump » structure). - => The QP energy scale is 0.2eV. - There is a systematic deviation from Luttinger theorem, suggesting inhomogeneous charge order in CoO₂ plane. Its periodicity might depend on the intercalated structure. - => Role on CW susceptibilities and high TEP?