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3 configurations:

1.  Quantum point contact

2.  Andreev bound states

3.  Quantum dot (weakly coupled to both sides)
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InSb nanowires from Lund

Nilsson et al. Nano Lett. (2009)

Figure 1. Sample description and conductance spectroscopy. (a)
SEM image of InAs/InSb heterostructure nanowires grown on an
InAs(111)B substrate using aerosol gold particles with a diameter
of 40 nm as initial seeds. The image is recorded with a 30° tilt of
the substrate from the horizontal position and the scale bar is
uncompensated for the tilt. In the heterostructure nanowires, the
base segments with a small diameter are InAs, crystallizing in the
wurtzite phase, and the upper segments with a large diameter are
InSb, crystallizing in the zinc blende phase. Note that the InSb
segments do not show any tapering at the sidewalls. (b) TEM image
of a top part of an InSb nanowire, after detachment from the growth
substrate, with the single crystalline AuIn2 seed particle on top and
the pure zinc blende InSb nanowire segment below. This InSb
nanowire segment has a diameter of 79 nm. (c) SEM-picture of an
InSb quantum dot device. The device is made by electrically
contacting the InSb segment of an InAs/InSb heterostructure
nanowire on a SiO2 capped, highly doped Si substrate using electron
beam lithography. (d) Differential conductance on a color scale as
a function of the source-drain voltage Vsd and the back-gate voltage
applied to the Si substrate Vbg (charge stability diagram), measured
for an InSb nanowire quantum dot device with a nanowire diameter
of 70 nm and a contact spacing of 70 nm. The conventional spin-
1/2 Kondo effect (a Kondo enhanced conductance ridge) at zero
bias is observed in the N ) 9 Coulomb blockade diamond region.
(e) Addition energy versus electron number in the InSb nanowire
quantum dot measured in (d) (addition energy spectrum), revealing
a typical shell structure of a few-electron quantum dot system.

Figure 2. Evolutions of the ground states and quantum level
dependent g factors in an InSb quantum dot. (a) Gray scale plot of
the linear conductance G as a function of the back gate voltage Vg
and magnetic field B measured for the quantum dot device as in
Figure 1d. Spin filling configurations are indicated with arrows
under the assumption of negative values of the g factors. The charge
state in a Coulomb blockade region is marked with an integer N.
(b) Evolution of the addition energy for different electron charge
configuration on the dot. (c) Differential conductance as a function
of Vsd and B measured for the quantum dot at the back gate voltage
Vbg ) 0.025 V, i.e., along cut A in Figure 1d. The differential
conductance peaks are labeled with v and V according to spin filling
under the assumption of a negative g factor. (d) Differential
conductance as a function of Vsd and B measured for the quantum
dot at the back gate voltage Vbg ) 0.205 V, i.e., along cut B in
Figure 1d. (e) Electron g factor versus quantum level index n for
the dot, determined from several magnetic field dependent measure-
ments. The values represented by a dark blue diamond are
determined from the addition energy evolution measurements shown
in (b). The values represented by green up triangles and red down
triangles are determined from the differential conductance peak
splitting measurements shown in (c) and (d), respectively. The value
represented by a black dot is determined from the spin-1/2 Kondo
peak splitting, measured at magnetic field B ) 0.3 T, shown in
parts b and c of Figure 3. Finally, the values represented by light
blue squares are determined from a charge stability diagram of
the quantum dot measured at magnetic field B ) 1 T. Note that the
values enclosed in the dashed circle in (e) are slightly offset in the
quantum level index n for clarity.
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Wires deposited on 
bottom-gate substrates:

HfO2
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2 devices measured

Device #2:  one-sided (N-wire-S)

                 100 nm wide uncovered region 

                 400 nm wide superconducting contact

Device #1:  two-sided (N-wire-S-wire-N) 

                 150 nm wide uncovered regions

                 300 nm wide superconducting contacts

HfO2

SiO2

Ti/NbTiN

Ti/Au

Ti/Au
InSb

N S N
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3 configurations:

1.  Quantum point contact

2.  Andreev bound states

3.  Quantum dot (weakly coupled to both sides)
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QPC, second device
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Field-angle dependence
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Field-angle dependence
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Transport spectroscopy of N S nanowire junctions with Majorana fermions

Elsa Prada,1 Pablo San-Jose,2 and Ramón Aguado1

1Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
2Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid, Spain

(Received 29 March 2012; revised manuscript received 26 October 2012; published 12 November 2012)

We investigate transport through normal-superconductor nanowire junctions in the presence of spin-orbit
coupling and magnetic field. As the Zeeman field crosses the critical bulk value Bc of the topological transition,
a Majorana bound state (MBS) is formed, giving rise to a sharp zero-bias anomaly (ZBA) in the tunneling
differential conductance. We identify novel features beyond this picture in wires with inhomogeneous depletion,
such as the appearance of two MBSs inside a long depleted region for B < Bc. The resulting ZBA is in most
cases weakly split and may coexist with Andreev bound states near zero energy. The ZBA may appear without
evidence of a topological gap closing. This latter aspect is more evident in the multiband case and stems from a
smooth pinch-off barrier. Most of these features are in qualitative agreement with recent experiments [V. Mourik
et al., Science 336, 1003 (2012)]. We also discuss the rich phenomenology of the problem in other regimes which
remain experimentally unexplored.

DOI: 10.1103/PhysRevB.86.180503 PACS number(s): 74.45.+c, 03.65.Vf, 71.10.Pm, 73.21.Hb

Following early ideas based on exotic p-wave
superconductors,1,2 it has been recently predicted that Ma-
jorana quasiparticles should appear in topological insulators3

and semiconductors with strong spin-orbit (SO) coupling.4–8

In proximity to s-wave superconductors, these systems behave
as topological superconductors (TSs) when the excitation
gap is closed and reopened again: as the gap crosses zero,
Majorana bound states (MBSs) appear wherever the system
interfaces with a nontopological insulator (see Refs. 9 and 10
for reviews).

The TS transition occurs when an external Zeeman field
B exceeds a critical value Bc ≡

√
µ2 + !2 defined in terms

of the Fermi energy µ and the induced s-wave pairing !.7,8

This prediction has spurred a great deal of experimental
activity towards detecting MBSs in hybrid superconductor-
semiconductor systems. Indeed, signatures of Majorana detec-
tion have been recently reported in Ref. 11. These experiments
(and subsequently Refs. 12 and 13) clearly show the emergence
of a zero-bias anomaly (ZBA) in differential conductance
dI/dV measurements as B increases. It has been predicted that
such a ZBA reflects tunneling into the MBS.14–16 Crucially,
the emerging ZBA, which signals the TS transition, should
be accompanied by a closing and reopening of the excitation
gap.17,18 something which is, however, not observed. Other
experimental findings, such as ZBA splitting and coexistence
of Andreev bound states (ABSs) and MBSs,11 also need further
analysis.

Motivated by this, we present here a detailed study
of transport through normal-superconductor (NS) junctions
containing topological wires. As in the experiment, the wires
are tunnel-coupled to the normal reservoir by a pinch-off gate
Vp (to allow for transport spectroscopy using dI/dV ), and are
depleted by an additional gate Vd in order to bring Bc down
to accessible fields (since the induced potential Ud lowers the
Fermi energy µ → µ − Ud ). The depletion profile, however,
is necessarily inhomogeneous, since it cannot extend deep into
the superconducting side due to efficient screening, see Fig. 1
and Ref. 11. We find that for this class of devices, a number of
distinct transport regimes arise as the various sections of the

wire transition to different electronic phases. We characterize
these regimes and the rich phenomenology that results beyond
the simplest picture.14–16 In particular, we address the question
of whether the ZBAs are related to Majorana physics, and
confirm that this is indeed the case for long depletion regions.
We also analyze the development of ABSs close to zero energy
when the pinch-off gate lies at a finite distance from the NS
junction. Our main results are summarized in Fig. 4(e) where
we demonstrate that the dI/dV of realistic junctions with
inhomogeneous depletion and multisubband filling may not
show a distinct closing of the gap and yet exhibit ZBAs of
Majorana origin. In most cases, these ZBAs show a residual
splitting and may coexist with ABSs, features also observed
in Ref. 11.

Model. We first consider a one-dimensional NS junction
[see Fig. 1(a)], with a BCS-type Hamiltonian H = H0 +
Hpairing, where

H0 =
∫

dxψ†(x)
[−∂2

x

2m
+ iασy∂x + Bσz + U (x) − µ

]
ψ(x)

and Hpairing =
∫

dxψ†(x)i!(x)σyψ
†(x) + H.c.

Here α is the SO coupling and B is the Zeeman splitting
(given by B = gµBB/2, where B is an in-plane magnetic
field, µB is the Bohr magneton, and g is the nanowire g
factor). We assume a position-dependent pairing !(x) induced
by the superconducting electrode such that !(x → ∞) = !
and !(x → −∞) = 0. The term U (x) = Ud (x) + Up(x) is
composed of two parts: Up(x) comes from the pinch-off
gate Vp in the normal region at a distance LN from the
NS interface, and Ud (x) models the potential induced by the
depletion gate Vd .19 Gate Vd may extend all the way into
the normal side of the NS interface [case NdSdS, with a
depleted length Ld = LNd + LSd , Fig. 1(a)], or be limited to
the end of the superconducting side [case NSdS, Ld = LSd ,
Fig. 1(b)]. We will consider the former case first, where we
cover different parametric regimes, and then turn to the second
one, which is closer to the experimental setup.11 Realistic
experimental parameters are ! = 250 µeV is the induced gap
that, for an InSb effective mass m = 0.015me, corresponds to

180503-11098-0121/2012/86(18)/180503(5) ©2012 American Physical Society
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FIG. 1. (Color online) Schematics of the nanowire junction in
the NdSdS (a) and NSdS (b) setups, and spatial variation of
superconducting gap and potential profiles (c). Gate Vd depletes the
wire, while Vp creates a tunnel contact (I) to the left (normal) reservoir.
One (red) or two (red and yellow spheres) Majorana bound states may
appear at the edges of the depleted region depending on the Zeeman
field and gate voltage Vd . (d) Transport regimes for a transparent NS

junction (Vd,p = 0, µ = 4!) in the Zeeman-field–bias plane.

a length scale L! ≡ h̄/
√

m! ≡ 142 nm. Strong SO coupling,
representative of InSb wires,20 is α = 20 meV nm, with SO
length LSO = h̄2/(mα) = 200 nm = 1.4L!.21

Scales. A localized MBS is formed at the boundary of a
trivially gapped and a TS portion of the wire. At a point x the
wire will be in the TS phase if !(x) > 0 and

B >
√

[µ − U (x)]2 + !(x)2. (1)

The asymptotic value of the critical field is the proper (bulk)
critical field Bc. Apart from Bc, several other Zeeman scales
dictate the junction’s transport properties. The first one is the
TS critical field in the depleted part of the superconducting
wire, Bd

c ≡
√

(µ − Ud )2 + !2, which is smaller than Bc, as is
the purpose of the depletion gate. It should be noted, however,
that the depleted Sd region has a finite length, which crucially
affects Majorana modes for Bd

c < B < Bc, as discussed later,
while the S portion is assumed infinite. Second, there is the
field above which the normal side of the wire becomes a
helical liquid (momentum and spin become correlated). In the
NSdS case (normal side not depleted), this is Bh ≡ µ, which is
typically slightly smaller than Bc, but bigger than both Bd

c and
the corresponding helical field in the NdSdS case, namely,
Bd

h ≡ |µ − Ud | < Bd
c . Finally, there is the superconducting

gap itself, B! ≡ !, whose significance will become clear later.
All these scales (B! plus Bd

c < Bh < Bc in the NSdS case, or
Bd

h < Bd
c < Bc in the NdSdS), control different aspects of the

junction’s differential conductance in the B-V plane.
Differential conductance. The dI/dV of a NS junction may

be related to the intrinsic conductance at zero temperature by
the expression22

dI (V )
dV

= e2

h

[
N − Tr(r†eeree) + Tr(r†ehreh)

]
ε=V

.

FIG. 2. (Color online) Density plots of the dI/dV in the NdSdS

junction (µ = 4!, Ud = 3.25!, Up = 25!, δ = 0) for LSO = 1.4L!

as a function of bias voltage V and Zeeman field B with a
tunnel pinch-off barrier and a depletion region of length LNd + LSd ,
Fig. 1(a). Different columns feature increasing values of LSd from
left to right, whereas different rows feature increasing length LNd

from top to bottom.

Here, N is the number of propagating channels in the normal
side at energy ε = V , and ree and reh are their normal and
Andreev reflection matrices. These matrices can be computed
in a number of ways. The most flexible is the recursive Nambu
Green’s function approach, employed here (for full details, see
Ref. 23).

Before considering the effect of U (x), we show the transport
phase diagram [see Fig. 1(c)] in the simple NS transparent
limit, i.e., in a regime where the concepts of MBSs and ZBAs
no longer hold. We observe different transport regions in
the B-V plane characterized by an integer dI/dV ≈ ne2/h,
with n = 0,1,2,3,4. Such is the case of Cooper pair transport
(region I, n = 4) or single quasiparticle transport (region III,
n = 2). The latter is a TS regime, whose topology becomes
evident in the dI/dV despite the fact that the associated
Majorana fermion is completely smeared out due to the
gapless spectrum for x < 0.24–27 Between these two regions,
the helical regime is characterized by a fully suppressed
zero-bias conductance (region II, n = 0). These results extend
the concept of half-integer conductance quantization24 beyond
linear response.

We now consider the NdSdS junction with the full U (x).
Its dI/dV response (with LSO = 1.4L!) is plotted in Fig. 2.
Different panels cover different ratios LNd /L! and LSd /L!.
The tunnel barrier Up is tuned in each case to yield spectro-
scopic resolution in the transport response. A wide range of
behaviors becomes apparent, which reflects the local density of
states (DOS) at the pinch-off gate. The most paradigmatic one
is probably the one in the top-left panel. It reflects the closing
of the effective superconducting gap (marked by the gap-edge

180503-2

Realistic transport modeling for a superconducting nanowire with Majorana fermions

Diego Rainis, Luka Trifunovic, Jelena Klinovaja, and Daniel Loss
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

(Dated: July 26, 2012)

Motivated by recent experiments searching for Majorana fermions (MFs) in hybrid

semiconducting-superconducting nanostructures and by subsequent theoretical interpretations, we

consider the so far most realistic model (including disorder) and analyze its transport behavior nu-

merically. In particular, we include in the model superconducting contacts used in the experiments

to extract the current. We show that important new features emerge that are absent in simpler

models, such as the enhanced visibility of the topological gap for increased spin-orbit interaction.

We find oscillations of the zero bias peak as function of magnetic field and explain their origin. Even

taking into account all the possible (known) ingredients of the experiments and exploring many pa-

rameter regimes for MFs, we are not able to reach a satisfactory agreement with the reported data.

Thus, a different physical origin for the observed zero-bias peak cannot be excluded.

PACS numbers: 74.45.+c, 73.63.Nm, 74.78.Na

The experimental search [1–3] of Majorana fermions
(MFs) predicted to occur in condensed matter sys-
tems [4–10] is very challenging due to the fact that these
exotic quasiparticles are characterized by zero effective
coupling to electromagnetic fields. Only an indirect iden-
tification is possible via induced signatures. For instance,
the presence of a MF is expected to induce a zero-bias
conductance peak (ZBP) in a tunnel-spectroscopy trans-
port experiment [11, 12]. However, such features while
being easily observable, are not an unambiguous demon-
stration of MF physics. The same ZBPs can indeed be
induced by various different mechanisms, including the
Kondo effect [13], Andreev bound states [14], weak an-
tilocalization and reflectionless tunneling [15]. Ruling out
these alternative scenarios has been made difficult by the
fact that the measured conductance has a rather unex-
pected behavior, so that also the explanation in terms of
MFs is not entirely satisfactory.

A typical experimental setup [1–3] (see Fig. 1) con-
sists of a spin-orbit-coupled semiconducting nanowire de-
posited on or coated with a bulk s-wave superconductor
on one end and contacted through a tunnel barrier by a
normal lead, on the other end. Part of the nanowire it-
self is assumed to be in a superconducting state, induced
through proximity effect by the bulk superconducting
lead.

The magnetic-field-induced transition to the topolog-
ical phase in the nanowire is accompanied by a closing
and reopening of the excitation gap [5–10]. The topo-
logical phase formally persists for all values of magnetic
field above a critical Bc in a one-band model, while it
could have a finite upper critical field in a multi-band
model, where bands are crossing at large Zeeman split-
tings and hybridization of MFs can take place. How-
ever, in experiments one typically explores magnetic field
regimes where only one band undergoes a topological
transition [1–3]. Since the bulk superconductor always
remains in a non-topological state, the topological sec-

FIG. 1. The schematics of the NSS
�
geometry setup we con-

sider in this work– (top panel). The sample under investiga-

tion is connected on the left to a semi-infinite normal lead (N,

orange) and on the right to a semi-infinite bulk s-wave super-

conducting lead (S, green). It consists of a normal nanowire

section (NW, gray), where a potential barrier U(x) (black) is
created, and a proximity-induced superconducting nanowire

section (SW, gray). We allow for static disorder w(x, y) (red

crosses) in the nanowire. The spatial dependence of all the pa-

rameters entering the Hamiltonian in Eq. (1) is qualitatively

depicted in the bottom panel.

tion has a finite length L�, and MFs localized at its ends
can overlap, depending on their localization length ξM.
Given that the latter depends also on the value of mag-
netic field, one expects to observe a ZBP that splits for
large enough B-fields.

The experiments conducted so far [1–3] reported fea-
tures which are partially consistent with the existence
of Majorana end-states in the nanowire, namely a (non-
quantized) ZBP when a magnetic field of sufficient
strength is applied along the nanowire. However, quan-
titative agreement with the theory is still missing, and in
particular the following points have to be clarified:

a) The most evident discrepancy between experiment
and theory is the absence of any experimental signa-
ture related to the closing of the excitation gap in the
nanowire. Recently, this fact has been ascribed to the
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physically identical to the nanowire, with a single pairing
amplitude ∆�. In such a configuration, the second Majo-
rana end-state is always moved to infinity, and the ZBP
is locked to zero for all values of magnetic field B > Bc,
whereby the topological transition occurs at the critical
field (gµB/2)Bc =

�
∆2

� + µ2 [5–10]. We will sometimes
switch to this NS configuration in order to make contact
to previous theoretical studies [16, 17, 23–27] and to
understand the effect of the bulk superconductor.
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FIG. 2. Effect of larger SOI strength. We plot here the dif-

ferential conductance dI/dV evaluated as a function of bias

voltage V and Zeeman energy VZ. Panels a) and b) refer to the

NS configuration, while c) and d) refer to the NSS
�
setup. The

parameters used here are ∆� = 250 µeV, ∆0 = 2.1 meV (only

NSS
�
), U0 = 45 meV, λ = 1 nm (narrow barrier), LN = 0,

L� = 6 µm (only NSS
�
) and µ = 0, which corresponds to a

critical V c
Z = ∆�. For the case of InSb, the plotted range

VZ = 0 − 6∆� corresponds to B = 0 − 1 T. Temperature is

set to T = 75 mK. (Left column) Eso = 50 µeV. (Right col-

umn) Eso = 200 µeV. Larger SOI yields a slower closing of

the kF-gap ∆kF(B), in both configurations, where kF is the

Fermi momentum. Notice that in the NSS
�
case the kF-gap

signal decreases in intensity as the magnetic field grows.

Let us first note that the actual value of the SOI α in
the experiments is not known, as also noticed in Ref. [28],
since the only available measurements have been per-
formed in a different setup, where the effective Rashba
SOI could be largely modified. Similarly, the value of
the proximity-induced pairing amplitude is not directly
accessible, and one can only infer its value from the con-
ductance peaks. Having said that, it becomes interest-
ing and even necessary to consider regimes with different
SOI, or different proximity-induced gap magnitudes.

The first important point we want to make is that by
assuming that the actual SOI is larger than the reported
one (e.g. Eso = 50 µeV in Ref. [1]), one can get a sub-

stantial improvement in the calculated dI/dV behavior,
with features resembling closer the ones observed in ex-
periments [1–3]. In other words, the data gives hints of a
stronger SOI. In particular, we note the following facts.
1) Under the assumption that the ZBP observed in

Refs. [1–3] arises from MFs, one must conclude that
the chemical potential in the topological region is low,
µ � 0, since the ZBP emerges at low magnetic field,
1
2gµBB � ∆� for g = 50, which implies a low µ in view
of the relation between Bc, µ, and ∆�. However, such a
low µ, together with the reported SOI values [1], would
generate a rapid closing of the kF-gap ∆kF as a func-
tion of magnetic field. This is indeed what we observe in
our numerical calculations when we work in the regime
µ � 0, Eso = 50 µeV, both in the NS and NSS� setup, see
Fig. 2a) and c), respectively. Note that in the NS case
the ZBP stays at zero bias for all magnetic fields, whereas
in the NSS� case the finite length of the topological re-
gion induces an oscillating splitting, analyzed below. In
the same figure we show that a stronger SOI gives better
agreement with the measured ∆kF(B), both in the NS
setup [24], see panel b), and in the NSS� setup, shown in
panel d). Note that this latter SOI effect is independent
of the nature of the observed ZBP.
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FIG. 3. Effect of larger SOI strength on disorder, NSS
�
case.

The parameter values are the same as in Fig. 2. In addition,

a realistic disorder wm ∈ [−2.4, 2.4] meV (corresponding to

a mean free-path �mfp � 2.5 µm [28]) is included over the

entire nanowire length L � 2.5 µm. We do not average over

disorder configurations. a) Eso = 50 µeV. b) Eso = 200 µeV.

In the weak SOI regime, the disorder lowers or destroys the

gap from other sub-bands, bringing many supra-gap states

down close to the Fermi level, where they cluster in some cases

into a finite-extension ZBP, like in panel a). Such clustering

is, however, removed for stronger SOI [28], see panel b).

2) When realistic Anderson disorder is included in the
model, the closing of the gap becomes visible again even
in the µ � 0 regime [17, 26, 28], re-introducing a discrep-
ancy with the experimental observations [1–3]. Disorder
in a weakly spin-orbit-coupled nanowire causes a number
of sub-gap states to appear, some of which cluster around
zero-energy and possibly give rise to a non-topological
ZBP, more markedly in the case of finite µ [28]. Such
states are coming from other sub-bands, for which the

2

outside the range in chemical potential where Majorana

end states are expected in the clean limit, and are pro-

duced by ordinary fermion states localized to the wire

ends and clustered near the Fermi-energy. These states

are in some sense, remnants of Majoranas, and appear

and disappear with magnetic field in the same way as

true Majorana end-states. Therefore, we argue, that the

only way to definitely rule out a non-topological origin

to the ZBP is to lower temperature below the thermally

broadened regime and observe a truly quantized zero-bias

conductance peak, well isolated from other background

states.

Model – We consider a three-dimensional rectangular

wire of length Lx along the x̂ direction and cross sectional

area Ly×Lz in the yz-plane. The continuum Hamiltonian

for the spin-orbit coupled wire without proximity induced

superconductivity is:

H = (1)

�

r

c
†
r,α

�
−∇2

2m
− µ− iαRẑ · (σ ×∇)− µ0B · σ

�

αβ

cr,β

Here αR is the Rashba velocity, related to the spin or-

bit coupling by Eso =
1
2mα2

R, µ0 = gµB is the Zeeman

coupling to the magnetic field B taken throughout to

point along the wire (in the x̂ direction), and ∆0 is the

proximity–induced pairing amplitude.

To model this system, we approximate the contin-

uum Hamiltonian by the following discrete tight binding

Hamiltonian, defined on a Nx ×Ny ×Nz site prism:

Htb =

�

r,d

c
†
r+d,α

�
−tδαβ − iURẑ ·

�
σαβ × d̂

��
cr,β−

−
�

r

c
†
r,α [µδαβ + µ0B · σαβ ] cr,β+

+ Vimp(r)
�

r

c
†
r,αcr,α (2)

Here, we have included a random impurity potential

Vimp(r), which is chosen independently for each site, iden-

tically distributed according to a Gaussian with variance

V (r)V (r�) = W
2δr,r� , where (· · · ) indicates averaging

with respect to disorder configuration.

Table I relates the tight-binding parameters to the

continuum model and gives estimated values for InSb

nanowires. There is considerable uncertainty in the esti-

mated spin-orbit strength, which was measured without

the superconducting layer[24]. Since Eso derives solely

from the inversion symmetry breaking potential of the

substrate-wire and superconductor-wire interfaces, the

actual value could be rather different than 50µeV, and

one should consider the possibility that Eso is much

smaller (or larger). The mean-free path from disor-

der is � = vF τ where τ−1 ≈ 2π W 2a
LyLz

N(µ) is the elas-

tic scattering rate due to impurities. Here N(µ) is the

FIG. 2. Conductance traces as a function of µ0B, correspond-
ing to the color plot in Fig. 1. From bottom to top µ0B
ranges from 0 to 3∆0 in steps of 0.2∆0 (curves are offset for
clarity). µ = −172 corresponding to cut A in Fig. 3, and
to 6 occupied sub-bands (including spin). ZBPs appear for
µ0B ≈ ∆0 just as for a Majorana end-state, despite having
an even number of occupied sub-bands. Wire dimensions are
Ny × Nz × Nx = 6 × 5 × 180. Tight-binding parameters:
W = 12, t = 36.5, UR = 2.7, γSC = 2.5, and γLW = 0.3.

FIG. 3. (Left) Color plot of conductance for same parameters
as Fig. 2, but with fixed µ0B = 1.5∆0. µ is varied so that
between 5-6 sub-bands are occupied, and is measured with
respect to the center of the 3rd topological region located at
µ3 = −175.2. Stable ZBPs occur for a wide-range of µ, but
have no topological origin. Detailed µ0B dependence is shown
for µ corresponding to the dashed line A (see Figs. 1 and 2)
and line B (see Fig. 5). The topological region in the absence
of disorder, indicated by “Top. Region”, does not exhibit
ZBPs for this disorder configuration.

1D density of states at the chemical potential: N(µ) =�
n

1

2πa
√

t(µ−εn)
, where the sum is over occupied sub-

bands labeled by n and having band-bottoms located at

energy εn. Transport experiments estimate � ≈ 3µm

(again without a superconducting layer)[25]. Since these

measurements were done at large source-drain bias, this

value reflects a sort of average over the lowest 3-4 sub-

bands, and should be taken as a rough guide.

Since only the outer-boundary of the wire is in contact

with the superconductor, there will in general be different
proximity induced gaps for different sub-bands. These

multi-band effects can be important for reproducing the

observed data for InSb wires. There, coherence peaks are

Zero-bias peaks in spin-orbit coupled superconducting wires with and without
Majorana end-states

Jie Liu1,∗ Andrew C. Potter2,∗ K.T. Law1, and Patrick A. Lee2

1
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China and

2
Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge, MA 02139

One of the simplest proposed experimental probes of a Majorana bound-state is a quantized

(2e2/h) value of zero-bias tunneling conductance. When temperature is somewhat larger than the

intrinsic width of the Majorana peak, conductance is no longer quantized, but a zero-bias peak

can remain. Such a non-quantized zero-bias peak has been recently reported for semiconducting

nanowires with proximity induced superconductivity. In this paper we analyze the relation of the

zero-bias peak to the presence of Majorana end-states, by simulating the tunneling conductance

for multi-band wires with realistic amounts of disorder. We show that this system generically

exhibits a (non-quantized) zero-bias peak even when the wire is topologically trivial and does not

possess Majorana end-states. We make comparisons to recent experiments, and discuss the necessary

requirements for confirming the existence of a Majorana state.

Recent proposals[1–7] to build topological supercon-

ductors from conventional spin-orbit coupled systems

have sparked an active experimental effort to realize Ma-

jorana fermions and probe their predicted non-Abelian

exchange statistics. Tunneling from a normal wire into a

topological superconducting wire with a Majorana end-

state yields a quantized G(0) =
2e2

h conductance peak

at zero-bias[8–10]. This quantized zero-bias peak (ZBP)

constitutes one of the simplest and most direct experi-

mental probes for a Majorana fermion, and is likely to

be the first test conducted on any putative topological su-

perconducting wire. The observation of quantized zero-

bias conductance with G(0) =
2e2

h ZBP requires tem-

perature, T to be sufficiently smaller than the intrinsic

width, γ, of the Majorana peak, due to hybridization

with the normal lead. For T comparable to or somewhat

larger than γ a ZBP may still occur, but its no longer

quantized and can take any value less than
2e2

h [8–10].

A recent set of experiments on InSb nanowires coated

with a superconducting NbTiN layer report the obser-

vation of non-quantized ZBP’s when a magnetic field of

sufficient strength is applied along the wire[11]. Similar

results have since been reported by other groups[12, 13].

These experimental observations are qualitatively con-

sistent with the existence of Majorana end-states, and

constitute an important first step towards the realiza-

tion of Majorana fermions in solid-state systems. Given

the potential significance of these findings, it is impor-

tant to build a more quantitative understanding of the

experimental system. In particular, we would like to es-

tablish whether observed non-quantized ZBP’s definitely

correspond to thermally broadened peaks from Majorana

end-states, or whether they could be produced by some

other mechanism?

To this end, we have conducted numerical simula-

tions of tunneling conductance for spin-orbit coupled

wires with proximity-induced superconductivity. Our

simulations use realistic energy scales appropriate for

FIG. 1. (Top) Schematic of tunneling geometry. (Lower Left)

Dispersion of sub-bands in multi-band wire. Each sub-band

is split by µ0B due to the magnetic field. Majorana fermions

appear only when an odd number of sub-bands is occupied.

(Lower Right) Color plot of tunneling conductance, G, at fi-

nite temperature as a function of applied field µ0B and lead-

wire voltage, V , for a multi-band wire with realistic amounts

of disorder (see Fig. 2 for detailed parameters). A stable zero-

bias peak appears despite the fact that there is no Majorana

end-state. At lower temperature, the peak is revealed to come

from a cluster of low-energy states (see Fig. 2).

InSb wires, and consider the various experimentally rel-

evant non-idealities including: multiple occupied sub-

bands[14–17], modest amounts of disorder[15, 18–20],

and non-zero temperature. Our study reveals impor-

tant features absent in previous studies of clean- or very

weakly disordered wires[21–23].

We find that, at non-zero temperature and in the pres-

ence of multiple sub-bands and weak disorder, zero-bias

peaks generically occur even when the wire is in the topo-

logically trivial regime and does not have Majorana end-

states. Furthermore, we find that the ZBP’s persist even

when disorder is sufficiently strong to destroy the topo-

logical phase and fuse the Majorana fermions on each

side of the wire[15, 18–20]. Such ZBP’s are also found

ar
X

iv
:1

20
6.

12
76

v1
  [

co
nd

-m
at

.m
es

-h
al

l] 
 6

 Ju
n 

20
12

4

FIG. 3: (Color online) Comparison between the energy split-
ting of the Majorana mode at constant chemical potential
(orange lines) and constant density (blue lines). The quasi–
periodicity of the oscillations at constant µ is absent in a wire
with fixed number of particles. The difference is particularly
striking in the single–band case (top panels). Under the con-
stant density condition, small variations of the initial occu-
pancy result in qualitative changes of the dependence of ∆E
on VZ . In contrast, the constant chemical potential condition
is characterized by a generic oscillatory splitting.

the magnetic field.

The basis of our mechanism is that the Coulomb re-
pulsion among the carriers in the nanowire, even after
screening by the superconductor, renormalizes the elec-
trostatic potential profile in the nanowire as a result of
a self-consistent change in the density of electrons. Be-
cause of the repulsive sign of the Coulomb interaction,
this extra electrostatic potential will oppose any change
of the electron density that might result from variations
of the Zeeman potential VZ . Considering, for simplic-
ity, the extreme limit of strong Coulomb interaction, we
obtain the condition that the total number of electrons
in the wire mjust be fixed, i.e. the nanowire behaves
as a ’constant density’ rather than a ’constant chemi-
cal potential’ system. In the numerical calculations we
impose this condition by self–consistently adjusting the
chemical potential so that the total number of electrons
be the same as the particle number at the TQPT for a
nominal non–interacting chemical potential ∆µ0. The
results are shown in Fig. 3. The striking difference be-
tween the dependence of the splitting on VZ at constant
chemical potential versus constant density is particularly
evident in the single–band case (top panels). To under-
stand the suppression of the oscillations in the constant
density case, we note that a single–band system in the
topological phase has one occupied spin-channel. Con-
sequently, the electron–density in this regime is tied to
the Fermi wave—vector kF,eff ≈ n. Since kF,eff dom-
inates the rapidly oscillating part of ∆E in Eq. 3, if µ
self-consistently adjusts to VZ in a way to keep kF,eff

constant, then ∆E becomes slowly varying in VZ as well.

In the more realistic (and necessarily more complex)
multi–band case, the particle density is not tied to the
effective Fermi wave—vector of the top band, so one
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FIG. 4: (Color online) Left panels: MF splitting as a function
of chemical potential µ and Zeeman field VZ for single–band
system (top) and for a wire with ntop = 3 (bottom). The
dark blue regions correspond to the minima of the energy
splitting. The parallel bands represent the source of the oscil-
latory splitting and a hallmark for Majorana physics. Right
panel: Density as a function of chemical potential µ and Zee-
man splitting VZ . Note that, in the single–band case, the con-
stant density contours are nearly parallel with the structures
in the left panel, which may results in a strongly suppressed
splitting or in a monotonic dependence of the splitting on VZ .

expects the oscillatory behavior to be partly restored.
Nonetheless, the quasi–periodicity of the oscillatory split-
ting is not a generic feature in a wire with constant par-
ticle density. Specific examples are shown in the lower
panels of Fig. 3 corresponding to a system with ntop = 3
(i.e., five occupied spin sub–bands). In systems with
more occupied bands, the dependence of the splitting
on Vz approaches the quasi–periodic oscillatory behav-
ior characteristic of the constant chemical potential case.
To gain a deeper understanding of the manifestations of
the Majorana oscillatory splitting in different conditions,
we show in Fig. 4 (left panels) the dependence of ∆E
on both the Zeeman field VZ and the chemical potential
∆µ, together with contour plots of the electron number as
function of the same variables (right panels). Examining
Fig. 4 we note that both the constant density contours
and the characteristic parallel structures characterizing
the MF splitting slope in a similar direction. Therefore,
the MF splitting as a function of the Zeeman field at con-
stant density will show far slower oscillations, than the
constant chemical potential situation. Moreover, a con-
stant density path may lie within either a low–splitting
or a high–splitting band for a significant range of Zeeman
fields, thus explaining the types of behavior illustrated in
Fig. 3.

A Majorana smoking gun for the superconductor-semiconductor hybrid topological
system
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2
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Recent observations of a zero bias conductance peak in tunneling transport measurements in

superconductor–semiconductor nanowire devices provide evidence for the predicted zero–energy

Majorana modes, but not the conclusive proof for their existence. We establish that direct ob-

servation of a splitting of the zero bias conductance peak can serve as the smoking gun evidence

for the existence of the Majorana mode. We show that the splitting has an oscillatory dependence

on the Zeeman field (chemical potential) at fixed chemical potential (Zeeman field). By contrast,

when the density is constant rather than the chemical potential – the likely situation in the current

experimental set-ups – the splitting oscillations are generically suppressed. Our theory predicts the

conditions under which the splitting oscillations can serve as the smoking gun for the experimental

confirmation of the elusive Majorana mode.

PACS numbers:

The recent experimental report [1] providing direct
observational evidence for the possible existence of the
predicted [2–5] zero–energy Majorana quasiparticle in
superconductor–semiconductor nanowire hybrid struc-
tures in the presence of spin-orbit coupling and Zee-
man splitting has tremendously excited the whole physics
community [6–9]. Yet, in spite of several subsequent re-
ports [10–12] having validated the original data of Ref.
1, this experiment has also raised many questions. Most
of these questions arise from a critical comparison be-
tween the experimental data [1] and the original theoret-
ical predictions [2–5], leading to the inevitable conclusion
that there are some significant discrepancies between ex-
periment and theory. For example, the key experimental
observation is the development of a robust subgap zero
bias conductance peak (ZBCP) in the tunneling differen-
tial conductance of the nanowire in the presence of an ex-
ternal magnetic field applied along the wire, as predicted
theoretically [3] and as expected for a Majorana zero en-
ergy mode in a topological superconductor [13, 14]. How-
ever, the actual magnitude of the ZBCP (∼ 0.1e2/h) is
more than an order of magnitude smaller than the pre-
dicted ideal quantized value (2e2/h). In addition, the
Majorana–induced ZBCP should only appear beyond a
magnetic field–driven topological quantum phase transi-
tion (TQPT) characterized by the closing of the super-
conducting (SC) gap, yet there is no apparent signature
of gap closing in the measured tunneling current. Al-
though recent theoretical works [15–17] provide reason-
able explanations for some of these discrepancies, other
recent papers emphasize that a ZBCP could arise in the
system in the absence of Majorana bound states, due
to more mundane mechanisms involving strong disorder
[18–20], smooth end confinement [21], or Kondo physics
[22].

Given this fluid and confusing nature of the subject
matter, with publications arguing in favor of or against
the Majorana interpretation of the experimental observa-
tion in Ref. 1 appearing almost weekly, it is of paramount
importance to conceive of hallmark experimental signa-
tures for the Majorana quasiparticle. It was already em-
phasized in the original theoretical predictions [3, 4] that
the observation of a ZBCP at finite magnetic field is only
a necessary condition for the existence of Majorana quasi-
particles. The sufficient condition to validate their exis-
tence must be some type of interference measurement,
such as the fractional Josephson effect [23, 24] manifest-
ing a 4π periodicity in an ac Josephson measurement.
While such a measurement, or the direct observation
of non-Abelian Majorana interference [25–27], will cer-
tainly be necessary down the line to absolutely validate
the existence of localized non-Abelian Majorana modes,
the high level of complexity and difficulty of this type
of measurements make it unlikely that they will be suc-
cessful in the near future. Therefore, it is desirable that
a simpler experimental smoking gun for the Majorana,
something with a difficulty level comparable with to the
existing ZBCP experiments, be proposed and carried out
long before the rather challenging fractional Josephson
measurement and the interference experiments could be
performed. In the current work, we propose a smoking
gun Majorana measurement that could not only be car-
ried out right now, but in fact it is conceivable that the
necessary experimental data could already be hidden in
the reported ZBCP measurements.

Our key observations in this context are: i) nanowire
Majorana modes always come in pairs [23] localized at
the two ends of the wire, and ii) the Majorana mode is
a pure zero–energy mode only when the wire is infinitely
long. For any realistic finite–length wire, the two end
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FIG. 3: (Color online) Comparison between the energy split-
ting of the Majorana mode at constant chemical potential
(orange lines) and constant density (blue lines). The quasi–
periodicity of the oscillations at constant µ is absent in a wire
with fixed number of particles. The difference is particularly
striking in the single–band case (top panels). Under the con-
stant density condition, small variations of the initial occu-
pancy result in qualitative changes of the dependence of ∆E
on VZ . In contrast, the constant chemical potential condition
is characterized by a generic oscillatory splitting.

the magnetic field.

The basis of our mechanism is that the Coulomb re-
pulsion among the carriers in the nanowire, even after
screening by the superconductor, renormalizes the elec-
trostatic potential profile in the nanowire as a result of
a self-consistent change in the density of electrons. Be-
cause of the repulsive sign of the Coulomb interaction,
this extra electrostatic potential will oppose any change
of the electron density that might result from variations
of the Zeeman potential VZ . Considering, for simplic-
ity, the extreme limit of strong Coulomb interaction, we
obtain the condition that the total number of electrons
in the wire mjust be fixed, i.e. the nanowire behaves
as a ’constant density’ rather than a ’constant chemi-
cal potential’ system. In the numerical calculations we
impose this condition by self–consistently adjusting the
chemical potential so that the total number of electrons
be the same as the particle number at the TQPT for a
nominal non–interacting chemical potential ∆µ0. The
results are shown in Fig. 3. The striking difference be-
tween the dependence of the splitting on VZ at constant
chemical potential versus constant density is particularly
evident in the single–band case (top panels). To under-
stand the suppression of the oscillations in the constant
density case, we note that a single–band system in the
topological phase has one occupied spin-channel. Con-
sequently, the electron–density in this regime is tied to
the Fermi wave—vector kF,eff ≈ n. Since kF,eff dom-
inates the rapidly oscillating part of ∆E in Eq. 3, if µ
self-consistently adjusts to VZ in a way to keep kF,eff

constant, then ∆E becomes slowly varying in VZ as well.

In the more realistic (and necessarily more complex)
multi–band case, the particle density is not tied to the
effective Fermi wave—vector of the top band, so one
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FIG. 4: (Color online) Left panels: MF splitting as a function
of chemical potential µ and Zeeman field VZ for single–band
system (top) and for a wire with ntop = 3 (bottom). The
dark blue regions correspond to the minima of the energy
splitting. The parallel bands represent the source of the oscil-
latory splitting and a hallmark for Majorana physics. Right
panel: Density as a function of chemical potential µ and Zee-
man splitting VZ . Note that, in the single–band case, the con-
stant density contours are nearly parallel with the structures
in the left panel, which may results in a strongly suppressed
splitting or in a monotonic dependence of the splitting on VZ .

expects the oscillatory behavior to be partly restored.
Nonetheless, the quasi–periodicity of the oscillatory split-
ting is not a generic feature in a wire with constant par-
ticle density. Specific examples are shown in the lower
panels of Fig. 3 corresponding to a system with ntop = 3
(i.e., five occupied spin sub–bands). In systems with
more occupied bands, the dependence of the splitting
on Vz approaches the quasi–periodic oscillatory behav-
ior characteristic of the constant chemical potential case.
To gain a deeper understanding of the manifestations of
the Majorana oscillatory splitting in different conditions,
we show in Fig. 4 (left panels) the dependence of ∆E
on both the Zeeman field VZ and the chemical potential
∆µ, together with contour plots of the electron number as
function of the same variables (right panels). Examining
Fig. 4 we note that both the constant density contours
and the characteristic parallel structures characterizing
the MF splitting slope in a similar direction. Therefore,
the MF splitting as a function of the Zeeman field at con-
stant density will show far slower oscillations, than the
constant chemical potential situation. Moreover, a con-
stant density path may lie within either a low–splitting
or a high–splitting band for a significant range of Zeeman
fields, thus explaining the types of behavior illustrated in
Fig. 3.

Das Sarma et al. 

arXiv:1211.0539

constant chemical potential

or constant density?
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QPC, field dependence of plateaus
3

Figure 1. Solid curves: conductance of a ballistic normal-metal–superconductor

(NS) junction, with the superconductor in a topologically trivial phase (blue

curve, � = 8 Eso) or nontrivial phase (red curve, � = 4 Eso). The black dashed

curve is for an entirely normal system (� = 0). The data are obtained from the

model Hamiltonian [14, 15] of a semiconducting wire on a superconducting

substrate in a parallel magnetic field (Zeeman energy EZ = 6 Eso), for the

ballistic point contact geometry shown in the inset (not to scale, d = 2.5 lso,

W = lso). By varying the potential VQPC at constant Fermi energy EF = 120 Eso,

the point contact width w is varied between 0 and W . The dotted horizontal

lines indicate the shift from integer to half-integer conductance plateaux upon

transition from the topologically trivial to nontrivial phase.

The factor of two accounts for the fact that charge is added to the superconductor as Cooper pairs

of charge 2e. (The spin degree of freedom is included in the sum over n.) The superconductor

can be in a topologically trivial (Q = 1) or nontrivial (Q = −1) phase, depending on the relative

magnitude of EZ, � and the spin–orbit coupling energy Eso = h̄2/meffl2

so
. The blue and red

solid curves show these two cases, where the topological quantum number Q = sign Det r was

obtained in an independent calculation from the determinant of the reflection matrix [16]–[18].

As we see from figure 1, the conductance shows plateaux at values G p, p = 0, 1, 2, . . .,
given by

G p = 4e2

h
×

�
p, if Q = 1,

p + 1/2, if Q = −1.
(2)

The sequence of conductance plateaux in the topologically trivial and nontrivial phases can

be understood from basic symmetry requirements. As discovered by Béri [13], particle–hole

symmetry requires that the Rns at the Fermi level are either twofold degenerate or equal to 0

or 1. (See appendix B for a derivation.) A nondegenerate unit Andreev reflection eigenvalue

is therefore pinned to exactly this value and contributes a quantized amount of 2e2/h to

the conductance. This is the signature of the topological superconductor that persists even

after the Majorana bound state has merged with the continuum of states in the normal metal

contact.

New Journal of Physics 13 (2011) 053016 (http://www.njp.org/)

Wimmer et al. New J. Phys. (2011)
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QPC, field dependence of plateaus
Wimmer et al. New J. Phys. (2011)
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Figure 1. Solid curves: conductance of a ballistic normal-metal–superconductor

(NS) junction, with the superconductor in a topologically trivial phase (blue

curve, � = 8 Eso) or nontrivial phase (red curve, � = 4 Eso). The black dashed

curve is for an entirely normal system (� = 0). The data are obtained from the

model Hamiltonian [14, 15] of a semiconducting wire on a superconducting

substrate in a parallel magnetic field (Zeeman energy EZ = 6 Eso), for the

ballistic point contact geometry shown in the inset (not to scale, d = 2.5 lso,

W = lso). By varying the potential VQPC at constant Fermi energy EF = 120 Eso,

the point contact width w is varied between 0 and W . The dotted horizontal

lines indicate the shift from integer to half-integer conductance plateaux upon

transition from the topologically trivial to nontrivial phase.

The factor of two accounts for the fact that charge is added to the superconductor as Cooper pairs

of charge 2e. (The spin degree of freedom is included in the sum over n.) The superconductor

can be in a topologically trivial (Q = 1) or nontrivial (Q = −1) phase, depending on the relative

magnitude of EZ, � and the spin–orbit coupling energy Eso = h̄2/meffl2

so
. The blue and red

solid curves show these two cases, where the topological quantum number Q = sign Det r was

obtained in an independent calculation from the determinant of the reflection matrix [16]–[18].

As we see from figure 1, the conductance shows plateaux at values G p, p = 0, 1, 2, . . .,
given by

G p = 4e2

h
×

�
p, if Q = 1,

p + 1/2, if Q = −1.
(2)

The sequence of conductance plateaux in the topologically trivial and nontrivial phases can

be understood from basic symmetry requirements. As discovered by Béri [13], particle–hole

symmetry requires that the Rns at the Fermi level are either twofold degenerate or equal to 0

or 1. (See appendix B for a derivation.) A nondegenerate unit Andreev reflection eigenvalue

is therefore pinned to exactly this value and contributes a quantized amount of 2e2/h to

the conductance. This is the signature of the topological superconductor that persists even

after the Majorana bound state has merged with the continuum of states in the normal metal

contact.

New Journal of Physics 13 (2011) 053016 (http://www.njp.org/)
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Conductance increase near pinch-

off is gone by 4 K,  Andreev 

enhancement at higher 

conductance is still present

QPC field dependence at 4 K
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3 configurations:

1.  Quantum point contact

2.  Andreev bound states

3.  Quantum dot (weakly coupled to both sides)
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ABS, Zeeman splitting
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ABS, Zeeman splitting
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3 configurations:

1.  Quantum point contact

2.  Andreev bound states

3.  Quantum dot (weakly coupled to both sides)

20



N-dot-S

Ti=Au (10 nm=50 nm) N lead. All measurements were
performed in a He3-He4 dilution refrigerator with base
temperature of T ! 30 mK using conventional lock-in
measurement techniques (Vac ! 3 !V). We measure two
devices labeled " and #. After measurement of device #
the dilution refrigerator temperature was cycled, after
which the device characteristics were changed. Data for
device # following the thermal cycle we label as device $
for easy reference. We label the odd occupation regions in
each device with roman numerals. Note however that the
numerals are arbitrary and do not reflect the electron
number which we estimate to be a few tens. Tuning the
electron occupation of the QD using the backgate also
alters the parameters, !S;N, energy level spacing "", and

charging energy U, allowing study of different regimes of
behavior in a single device [28]. Devices are characterized
in theN state by applying an in plane magnetic field greater
than the Al lead critical field (Bc ! 200 mT) [Fig. 1(a)].
The even or odd electron occupation is confirmed through
the evolution of Coulomb peaks in a high magnetic field
(B " Bc). Device parameters vary in the range ""!
2–8 meV and U! 1–5 meV.
Low bias differential conductance (G ¼ dI=dVsd) in the

S state for region "-I [Fig. 1(a)] is strongly suppressed. In
even occupation regions we observe resonant peaks at
jeVsdj! 152 !eV which we attribute to single quasipar-
ticle tunneling where the chemical potential of the N lead
and the edge of the superconducting energy gap are
aligned; i.e., jeVsdj ¼ ". From these features we estimate
the superconducting transition temperature, " ¼
1:76kBTc ! 152 !eV, as Tc ! 1 K. In this regime the
transport is well described by a low transparency tunnel
junction in the conventional BTK theory [26]. We estimate
the conditions for resonance between the discrete QD
levels and the lead chemical potentials, !N;S ! "d and
!N;S ! "d þU, by fitting transport resonance peaks for
jeVsdj> " [29] [see dashed lines in Figs. 1(a) and 1(b)].
The relative tunnel coupling asymmetry of devices is de-
termined through consideration of the N state stability
diagram [29]. For region "-I, Fig. 1(a), we determine
that !N > !S in contrast to regions in device # and $
where !S > !N . In Fig. 1(d) we plot GðVsdÞ at the center
of each nodd region for comparison. We observe that for
!S > !N single quasiparticle tunneling features are sup-
pressed relative to the subgap features in good agreement
with predictions for the noninteracting N-QD-S system
[27,29]. We attribute the subgap transport peaks observed
when !S > !N to resonant Andreev transport through
Andreev energy levels, formed through electron-hole mix-
ing of the QD energy level. For regions with highU such as
$-I (U! 4:2 meV) we observe a crossing of the subgap
transport resonances at Vsd ¼ 0 in the nodd region near the
zero-bias resonance points. For region #-II where U!
3:4 meV the subgap resonance crossing point occurs at the
center of the nodd region. Finally, for region #-III with
small U! 1:4 meV the subgap resonances never cross.
For comparison with experimental results the local en-

ergy spectrum has been calculated for the Anderson impu-
rity coupled to a superconducting reservoir using the
numerical renormalization group (NRG) method detailed
in Ref. [19]. The system has two possible ground states, a
doublet and a BCS-like singlet (which is a superposition of
doubly occupied and empty states). Calculations of the
single particle spectral function at the QD reveal a pair
of sharp peaks or Andreev energy levels which indicate the
excitation between the GS and excited state through addi-
tion of an electron (Eb > 0) or hole (Eb < 0) at an energy
Eb relative to the Fermi energy. Note that both Andreev
energy levels correspond to the same excited state. When

FIG. 1 (color online). (a) False color plot of N state (B ¼
220 mT) and S state (B ¼ 0 mT) differential conductance (G ¼
dI=dVsd) for region "-I (!N=!S ! 12) with odd electron number
nodd. The color scale is in units of e2=h. Dashed lines mark the
Coulomb diamond from which the charging energy U! 2 meV
is estimated. (b) False color plots of GðVsd; VGÞ for three nodd
regions all with high asymmetry !S=!N > 40. Vsd scales are
identical to that in (a) in the S state. Charging energies are U!
4:2 meV, U! 3:4 meV, and U! 1:4 meV for $-I, #-II, and
#-III, respectively. The intercept of dashed lines with Vsd ¼ 0
indicates the zero-bias resonance conditions. (c) Schematic of
the N-QD-S system. Andreev reflections mix electron-hole states
on the QD and generate two broadened Andreev energy levels in
the local energy spectrum pictured at þEb and'Eb. (d) Plots of
GðeVsd="Þ for the center of nodd regions alongside an example
of the transport in the even occupation Coulomb blockade (CB)
regime.

PRL 104, 076805 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
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Summary

• QPC ZBPs are ubiquitous.  Oscillations as function of gate 
and field, but quantitative disagreement with Majorana models

• B-dependence of QPC zero-bias conductance qualitatively 
similar to Wimmer et al.

• Zeeman-split ABS show SO splitting

• ABS zero-bias peaks appear at finite B and B = 0, depending 
on couplings to N and S

• Quantum dot at finite bias allows spectroscopy of dot and 
superconducting-wire DOS
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ABS, Zeeman splitting

-400

-200

0

200

400

D
C

 B
ia

s 
(!

V
)

254025202500248024602440
Gate closer to S  (mV)

1.0
0.8
0.6
0.4
0.2
0.0

C
onductance ( e

2/h)

-400

-200

0

200

400

D
C

 B
ia

s 
(!

V
)

2520250024802460
Gate closer to S  (mV)

0.8

0.6

0.4

0.2

0.0

C
onductance ( e

2/h)

-400

-200

0

200

400

D
C

 B
ia

s 
(!

V
)

2520250024802460
Gate closer to S  (mV)

0.6

0.4

0.2

0.0

C
onductance ( e

2/h)

B = 0

By = 30 mT By = 75 mT

24



QPC, vary conductance
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QPC, vary conductance
By = 500 mT
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QPC, vary gates under S
By = 500 mT
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N-dot-S:  at 1 T, is lineshape thermal?
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500 mK here, compare with 100 mK data
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