
0
1

2
3

4
5

6
7

8
9

10
11

12

4000

3000

2000

10000

Magneticfield

Eigenstate number

Applications of Neural Networks 

in Condensed Matter Physics 

Titus Neupert 
KITP, Feb 14 2019

som
e



2010 2012 2014 2016 2018
0
20
40
60
80
100
120

Number of cond-mat papers with 
“machine learning” in the abstract



PRB 95, 245134 (2017) 
Phys. Rev. B 98, 174202 (2018) 

arXiv:1812.05625

Frank Schindler

(U Zurich)

Elmer V. H. Doggen (KIT)

Konstantin S. Tikhonov (KIT)

Alexander D. Mirlin (KIT)

Dmitry G. Polyakov (KIT)

Igor V. Gornyi (KIT)

Kenny Choo

(U Zurich)

Giuseppe Carleo (Flatiron) 
Nicolas Regnault (ENS Paris)

Johan Chang (UZH)

Pascal M. Vecsei (UZH)

Ruben Beynon (UZH)

PART II

PART I Phase classification

Neural networks as 
variational wave functions

PART III Quantum machine learning

PRL 121, 167204 (2018) 

preliminary



PART I Phase classification

Condensed matter physics is a classification problem



Example: find crystal structure (space group/crystal system 
classification) from X-ray diffraction (XRD) patterns

Phase classification (fully supervised)
[Vecsei et al., arXiv:1812.05625]

classification 
in one of 230 
space groups 

train with theoretically computed 
data (~100 000 datasets)



Phase classification (fully supervised)
[Vecsei et al., arXiv:1812.05625]

Results:

If network can be uncertain 
about ~50% of the cases

80%

quite messy experimental 
data on natural crystals



Objective:  
Classification of phases of matter using correlation functions
Supervised learning:  
Training deep in the phase

Determine phase boundary: 
Apply to states for which classification is less clear 

Phase classification in unknown phase diagram



Toy problem: Many-body localization
Standard model of MBL: spin-1/2 Heisenberg chain, 
open boundary conditions
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which the network allocates the input data to the respective
class. For a schematic representation of our network, see
Fig. 2.

In order for f̂ to approximate f , we need to tune the pa-
rameters of the network, i.e., the weights and biases, to min-
imize the discrepancy encoded in an appropriately chosen er-
ror functional Cost(f̂ , f). The common choice suited for a
Softmax-output layer is the cross entropy

Cost(f̂ , f) = �
X

x2{x}

2X

i=1

fi(x) log f̂i(x). (3)

In training, we then hope to find the global minimum of this
functional. One starts from, e.g., randomly initialized weights
and biases, which we jointly denote as X0, and then succes-
sively applies gradient descent to the weights and biases at
step n to obtain those at n + 1 as

Xn+1 = Xn��
@

@Xn

Cost, Xn 2
n

V
(↵+1,↵)
ij

, a
(↵)
i

o
. (4)

The stepsize � should neither be too large (otherwise minima
are overlooked), nor too small (otherwise convergence is slow
and it becomes harder to escape from local minima). A param-
eter such as �, which is not changed during training, but rather
determines how we train, is called a hyperparameter. Here, we
fix � empirically by requiring optimal minimization of the er-
ror on the training data. Each such iteration Xn 7! Xn+1 of
gradient descent is called a training step. Since it is too cum-
bersome to evaluate the error functional for large training sets,
we employ stochastic gradient descent: For each iteration, one
randomly chooses a relatively small subset of {x} as training
data. Note that from the point of view of variational calculus,
a neural network just corresponds to a shrewd and economic
choice of ansatz for minimizing the functional (3).

III. MANY BODY LOCALIZATION IN THE HEISENBERG
CHAIN AND ENTANGLEMENT SPECTRUM

As a toy model for MBL, we study the Heisenberg Hamil-
tonian in a random field in z-direction,

H = J

N�1X

r=1

Sr · Sr+1 +
NX

r=1

hrS
z

r (5)

on an N -site chain of spin-1/2 degrees of freedom with open
boundary conditions. Here, S = 1

2� acts on the spin on a
given site, with � the vector of Pauli matrices, and the hr,
r = 1, · · · , N , are static random external fields taken from a
uniform distribution in the interval [�h̄, h̄]. In the following,
we will set J = 1. The system is integrable for h̄ = 0. System
realizations with h̄ ⌧ 1 are in a thermalizing (ETH) regime.
System realizations with h̄ � 1 are in an MBL regime. Both
regimes are characterized by different energy level statistics:
The ETH regime exhibits level repulsion obeying the Gaus-
sian orthogonal ensemble (GOE) for the Heisenberg Hamilto-
nian of Eq. (5). On the other hand, the energy spectrum in the
MBL regime has a Poisson level statistics.

hi
dd

en
 la

ye
r

ou
tp

ut
 la

ye
r

MBL

ETH

Input:
entanglement spectra

Output:
confidence for

n1     input  
neurons n2 neurons 2 output 

neurons

FIG. 2. Schematic setup of the neural network used to map entan-
glement spectra to the confidence with which they are classified as
either belonging to the ETH or MBL regime. This map, which is ex-
plicitly given by Eq. (7), can be interpreted as the action of a hidden
layer of neurons on the input data, producing an intermediate com-
pressed spectrum, followed by a output layer of two neurons which
correspond to the two options of classification. Note that our choice
of a Softmax activation function for the output layer implies that the
confidences for ETH and MBL sum up to 1.

In between the two limits, the behavior of a specific system
being either ETH or in MBL depends on the specific disorder
realization and the eigenstate that is considered. Averaging
over disorder realizations removes these dependences, but the
transition between ETH and MBL regimes may still depend
on the energy density at which the system is probed, which
amounts to the existence of a many-body mobility edge. We
will assume that at h̄ = 0.25 and h̄ = 12.0 almost all eigen-
states are following the ETH and MBL regime, respectively.

A characteristic that has been shown to discriminate be-
tween ETH and MBL regimes is the entanglement spectrum.
It is defined as follows: Consider the reduced density matrix
⇢A of a system in the pure state | i obtained by subdividing
the Hilbert space into two parts, A and B, and tracing out the
degrees of freedom of B

⇢A = TrB | i h | ⌘ e
�He . (6)

The last equality defines the entanglement Hamiltonian He.
Here we are interested in a real-space cut separating regions
A and B such that all lattice sites r  NA, for some 0 <

NA < N , are in A, and B is the complement of A. The spec-
trum of He is called the entanglement spectrum, and contains
information about the nature of | i.

Several possibilities have been explored to determine from
the entanglement properties whether a state | i at finite en-
ergy density and fixed disorder shares the character of the
MBL or ETH regime. (i) The “Schmidt gap” �1(⇢A) �

J = 1

hr 2 [�h̄, h̄]

h̄ ⌧ 1 thermalizing regime (obeys ETH)
volume law entanglement

h̄ � 1 many-body localized regime
area law entanglement (constant in 1D)

regimes defined for states at finite energy density (not ground state)
Solve with ED: N = …12, 14, 16, 18 site chain; 

use U(1) symmetry



Conventional classification methods
based on energy level spectrum or entanglement entropy/spectrum
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which the network allocates the input data to the respective
class. For a schematic representation of our network, see
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eter such as �, which is not changed during training, but rather
determines how we train, is called a hyperparameter. Here, we
fix � empirically by requiring optimal minimization of the er-
ror on the training data. Each such iteration Xn 7! Xn+1 of
gradient descent is called a training step. Since it is too cum-
bersome to evaluate the error functional for large training sets,
we employ stochastic gradient descent: For each iteration, one
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choice of ansatz for minimizing the functional (3).
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FIG. 2. Schematic setup of the neural network used to map entan-
glement spectra to the confidence with which they are classified as
either belonging to the ETH or MBL regime. This map, which is ex-
plicitly given by Eq. (7), can be interpreted as the action of a hidden
layer of neurons on the input data, producing an intermediate com-
pressed spectrum, followed by a output layer of two neurons which
correspond to the two options of classification. Note that our choice
of a Softmax activation function for the output layer implies that the
confidences for ETH and MBL sum up to 1.

In between the two limits, the behavior of a specific system
being either ETH or in MBL depends on the specific disorder
realization and the eigenstate that is considered. Averaging
over disorder realizations removes these dependences, but the
transition between ETH and MBL regimes may still depend
on the energy density at which the system is probed, which
amounts to the existence of a many-body mobility edge. We
will assume that at h̄ = 0.25 and h̄ = 12.0 almost all eigen-
states are following the ETH and MBL regime, respectively.

A characteristic that has been shown to discriminate be-
tween ETH and MBL regimes is the entanglement spectrum.
It is defined as follows: Consider the reduced density matrix
⇢A of a system in the pure state | i obtained by subdividing
the Hilbert space into two parts, A and B, and tracing out the
degrees of freedom of B

⇢A = TrB | i h | ⌘ e
�He . (6)

The last equality defines the entanglement Hamiltonian He.
Here we are interested in a real-space cut separating regions
A and B such that all lattice sites r  NA, for some 0 <

NA < N , are in A, and B is the complement of A. The spec-
trum of He is called the entanglement spectrum, and contains
information about the nature of | i.

Several possibilities have been explored to determine from
the entanglement properties whether a state | i at finite en-
ergy density and fixed disorder shares the character of the
MBL or ETH regime. (i) The “Schmidt gap” �1(⇢A) �

A B

i) Schmidt gap: �1(⇢A)� �2(⇢A) for MBL (nearly pure)! 1
⌧ 1 for ETH

ii) Volume vs. area law scaling of                with S(NA)

iii) Standard deviation of                over many consecutive eigenstates

NA

S(NA)

large near the transition where both MBL and ETH like states coexist

iii) Level statistics of either the entanglement spectrum or the

    energy spectrum follow distinct statistical distributions in each regime

crude

needs finite size scaling

phase transition does not 
correspond to maximum

needs large systems
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FIG. 2. Schematic setup of the neural network used to map entan-
glement spectra to the confidence with which they are classified as
either belonging to the ETH or MBL regime. This map, which is ex-
plicitly given by Eq. (7), can be interpreted as the action of a hidden
layer of neurons on the input data, producing an intermediate com-
pressed spectrum, followed by a output layer of two neurons which
correspond to the two options of classification. Note that our choice
of a Softmax activation function for the output layer implies that the
confidences for ETH and MBL sum up to 1.

In between the two limits, the behavior of a specific system
being either ETH or in MBL depends on the specific disorder
realization and the eigenstate that is considered. Averaging
over disorder realizations removes these dependences, but the
transition between ETH and MBL regimes may still depend
on the energy density at which the system is probed, which
amounts to the existence of a many-body mobility edge. We
will assume that at h̄ = 0.25 and h̄ = 12.0 almost all eigen-
states are following the ETH and MBL regime, respectively.

A characteristic that has been shown to discriminate be-
tween ETH and MBL regimes is the entanglement spectrum.
It is defined as follows: Consider the reduced density matrix
⇢A of a system in the pure state | i obtained by subdividing
the Hilbert space into two parts, A and B, and tracing out the
degrees of freedom of B

⇢A = TrB | i h | ⌘ e
�He . (6)

The last equality defines the entanglement Hamiltonian He.
Here we are interested in a real-space cut separating regions
A and B such that all lattice sites r  NA, for some 0 <

NA < N , are in A, and B is the complement of A. The spec-
trum of He is called the entanglement spectrum, and contains
information about the nature of | i.

Several possibilities have been explored to determine from
the entanglement properties whether a state | i at finite en-
ergy density and fixed disorder shares the character of the
MBL or ETH regime. (i) The “Schmidt gap” �1(⇢A) �

Plain vanilla neural network

Simplicity: 

• plain vanilla 

• 1 hidden layer

• activation functions 

ReLu and Softmax
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ergy level statistics29–34, level statistics24,35 as well as density
of states36 analyses of the entanglement spectrum and studies
of the distribution of the entanglement entropy over a region
of energy eigenstates17,37–42. Necessarily, these methods rely
on a physical understanding of the nature of either regime or
about the transition. The neural network based method for
identifying the ETH-MBL transition that we present here re-
quires only that the information for distinguishing the ETH
from the MBL regime is – in some form – contained in the
entanglement spectrum. This is useful in particular in situ-
ations where the physical characteristics of a phase are not
fully understood, as one may certainly argue to be the case
for MBL.43,44 Thus, the neural network approach also allows
for the possibility of finding ways of characterizing the phase
transition beyond established methods, with the network’s ar-
chitecture providing a variational ansatz for a classification
criterion.

We use the network to classify the entanglement spectra of
all eigenstates of the Heisenberg chain, which are obtained
by exact diagonalization, in particular at finite energy density
(note that Ref. 7 has characterized the transition using ground
state properties of the disordered Heisenberg chain via a neu-
ral network-based approach of classifying entanglement spec-
tra). For a specific disorder configuration, this allows for in-
stance to trace the evolution of individual ETH states deep in
the MBL regime.39,45–47 We achieve this by considering the
spectra from multiple real-space entanglement cuts as input
for the neural network. By averaging over disorder realiza-
tions, we obtain a phase diagram, Fig. 1, that indicates the
location of the ETH-MBL transition as a function of energy
density and disorder strength. It is in good agreement with
results obtained using conventional methods.17,35,42,48

This paper is organized as follows: In Sec. II, which may
also be read as a short introduction to neural networks, we
introduce the general set-up of the network used here, suited
for binary classification of data. Subsequently, in Sec. III we
review the Heisenberg spin chain in a random field, and define
the entanglement spectrum. We then discuss the type of input
data as well as the network architecture used for classifying
entanglement spectra as MBL or ETH in Sec. IV. In Sec. V
we present our results and compare them to existing methods.

II. NEURAL NETWORKS FOR BINARY
CLASSIFICATION

An artificial neural network is an alternating sequence of
affine linear maps and nonlinear functions that are succes-
sively applied to input data x giving output y. Each pair of
maps in this sequence is a layer of the network. Let the target
space of the ↵-th layer of the network have dimension n↵+1,
corresponding to n↵+1 neurons. In this work, we focus on bi-
nary classification, where we want to learn a map f(x) from
the dataset {x}, represented by vectors x of dimension n1, to
the discrete target set {(0, 1), (1, 0)}. This representation of
the target set is somewhat arbitrary – here, we choose one-hot
vectors, i.e., vectors with a single non-zero element. Their
entries are interpreted as the neurons of the output layer.

The network setup described above now implements a trial
map f̂ , which should approximate the unknown map f as
good as possible. One important difference is that while the
target space of f is discrete, that of f̂ is continuous. This al-
lows for smooth convergence of f̂ to f . To achieve this, we
first train the network by adjusting its parameters to gradually
improve its performance on a training set which is labelled,
i.e., for which the output of f is known to be either (0, 1) or
(1, 0) for each x. We then apply the network to a testing set to
evaluate how well it generalizes to classify data that it has not
seen before. It is essential to avoid overfitting: with a large
number n2 of hidden layer units, the network will learn not
only the general rules by which the data can be identified as
pertaining to the MBL or ETH regimes. Rather, it will also
pick up non-universal features, such as noise specific to the
training data set that was used. To improve the generaliza-
tion capability of the network at this stage, we employ cross-
validation: we first obtain the training and testing sets by ran-
domly subdividing a large set of labelled data into two parts
of equal size, and then average the trained network’s output
(when applying it to previously unlabelled data) over multiple
such training runs.

We now describe the full action of the network on the input
data: In the first layer, the input vectors x of dimension n1

are mapped to a space of dimension n2 via an affine linear
map x 7! V

(2,1)
x + a

(2), followed by the application of a
nonlinear activation function g2 (the nonlinearity of which is
required in order to be able to approximate arbitrary maps f ),
so that the full action of the first layer may be written as x ⌘
x

(1) 7! x
(2) = g2(V (2,1)

x + a
(2)). Here, V

(2,1) is a n2 ⇥ n1

matrix, and matrix-vector multiplication between V
(2,1) and

x is implied here as well as below. Each entry of the resulting
vector x

(2) can be interpreted as the output of an individual
neuron, of which there are n2 in total. In general, the first
layer is followed by further layers, each of which implements
the map

x
(↵) 7! x

(↵+1) = g↵+1

⇣
V

(↵+1,↵)
x

(↵) + a
(↵+1)

⌘
. (1)

The elements of the rows in the matrix V
(↵+1,↵) are called

the weights of the respective neuron, and the corresponding
element of the vectors a

(↵+1) are referred to as its bias. All
layers but the last one are called hidden layers. If there are h

hidden layers, x
(h+2) = y is the two-component output vec-

tor. In the networks we use all vectors, matrices, and numbers
are real.

In the following we will use a network with h = 1, built
from the activation functions g2 = ReLu and g3 = Softmax,
defined as

ReLui(x) = xi ✓(xi),

Softmaxi(x) =
e
�xi

P
j
e�xj

,
(2)

which are applied component-wise on their vector-valued ar-
gument, and the indices i, j run over these components. The
projections of the Softmax output onto the target set vectors
sum up to 1 and can be interpreted as the confidences with
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the map

x
(↵) 7! x

(↵+1) = g↵+1

⇣
V

(↵+1,↵)
x

(↵) + a
(↵+1)

⌘
. (1)

The elements of the rows in the matrix V
(↵+1,↵) are called

the weights of the respective neuron, and the corresponding
element of the vectors a

(↵+1) are referred to as its bias. All
layers but the last one are called hidden layers. If there are h

hidden layers, x
(h+2) = y is the two-component output vec-

tor. In the networks we use all vectors, matrices, and numbers
are real.

In the following we will use a network with h = 1, built
from the activation functions g2 = ReLu and g3 = Softmax,
defined as

ReLui(x) = xi ✓(xi),

Softmaxi(x) =
e
�xi

P
j
e�xj

,
(2)

which are applied component-wise on their vector-valued ar-
gument, and the indices i, j run over these components. The
projections of the Softmax output onto the target set vectors
sum up to 1 and can be interpreted as the confidences with
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�2(⇢A), where {�j(⇢A); �j � �j+1} denotes the spectrum
of ⇢A. Being the difference of the two largest eigenvalues
of the density matrix, i.e., of the two largest coefficients in
the Schmidt decomposition of the system into A and B, it is
nearly 0 for mixed ⇢A, typical for the ETH regime, and ap-
proximates 1 for almost pure ⇢A, characteristic of the MBL
phase.50 (ii) ETH states have volume-law entanglement scal-
ing, while MBL states have area-law entanglement scaling.
To discriminate between the two in a one-dimensional system,
one computes the entanglement entropy S(NA) as a function
of NA. Extensive scaling of S(NA) with NA is expected in
the ETH regime, while S(NA) is constant over different val-
ues of NA in the MBL regime. (iii) The standard deviation
�E of a sample of entanglement entropies calculated from
eigenstates in a range of energies [E, E + �E]. Within ei-
ther phase, �E is small, while near the transition, where we
find both MBL-like and ETH-like states in the energy interval
that is probed, �E is enhanced.38–40,42 (iv) The level spacings
in the entanglement spectrum follow distinct statistical distri-
butions in the ETH and MBL regimes. A statistical analysis
of the level distributions thus allows to identify the nature of
individual eigenstates.24,35

The power of the neural-network based approach of clas-
sifying entanglement spectra as ETH or MBL that we pursue
here, is that it does not require any a-priori knowledge of such
criteria. Indeed, the neural network is expected to learn them
by itself from the training by examples. In Sec. V, we com-
pare its performance with (iii), as well as with the energy level
statistics.

IV. TRAINING DATA AND NETWORK ARCHITECTURE

We train with a single-hidden-layer neural network aimed
at binary classification of entanglement spectra for eigenstates
obtained from the exact diagonalization of Hamiltonian (5).
For a N -site chain, there are |{x}| = 2N eigenstates. Notice
however, that the total spin-projection in z direction measured
by the operator S

z

tot =
P

N

r=1 S
z

r commutes with the Hamilto-
nian (5), corresponding to a global spin rotation symmetry. In
the following we focus on eigenstates in the S

z

tot = 0 sector.
In the S

z

tot = 0 subspace, we are thus left with |{x}| =
�

N

N/2

�

states, where we only use chains with even N here.
For a cut of size NA on a N -site chain, there are n1 = 2NA

levels in each entanglement spectrum. We can further make
use of S

z

tot,A =
P

NA

r=1 S
z

r to block-diagonalize the entangle-
ment Hamiltonian. From now on, we focus on the largest
block, e.g., with S

z

tot,A = 0 if NA is even. In this subspace,
the entanglement spectrum has lentgh n1 =

�
NA

bNA/2c
�
, where

bNA/2c is the integer part of NA/2. For training, we addi-
tionally leave out the eigenstates at very low and high ener-
gies, which are known to deviate substantially from the gen-
eral trend of the given phase (concretely, we remove the 10%
highest and 10% lowest energy states). After obtaining the re-
duced density matrix ⇢A we need to take the logarithm of its
eigenvalues to arrive at the entanglement spectrum according
to Eq. (6), a procedure which is prone to numerical errors due

a) b)

FIG. 3. a) Dependence of the critical value h̄c on how confident
the network is required to be in classifying a given entanglement
spectrum as MBL for the average of 40 disorder realizations of the
N = 16 chain. Here, different lines denote different percentages
of MBL spectra that are required in order to classify a given h̄ as
MBL. For the transition value h̄c, we then take the smallest h̄ that
is classified as MBL in this way. The plateaus come from the finite
h̄ resolution �h̄ = 0.125. b) Correlation of the critical values h̄c

obtained from individual disorder realizations with respective mean
disorder strength h|h|i, averaged over all sites of the N = 16 chain,
for 40 individual disorder realizations. The correlation coefficient in
this case is ⇢ = cov(h̄c, h|h|i)/[�(h̄c)�(h|h|i)] ⇡ 0.76, with cov
denoting the covariance, and � the standard deviation, respectively.

to finite machine precision. Hence, we use only the first half
(that is, the lower-lying half) of each entanglement spectrum
for training, since in both the MBL and ETH regimes, the sec-
ond half generically consists only of ⇢A eigenvalues which are
smaller than 10�16 and therefore cannot contain any informa-
tion. Note that the exact size of the part of the entanglement
spectrum we train with is irrelevant, we checked that if we in-
stead choose 1/3 or 2/3 of it the resulting phase diagram does
not change.

We choose the activation functions as in Eq. (2), so that the
full action of the network is

f̂(x) = Softmax[V (3,2) ReLu(V (2,1)
x + a

(2)) + a
(3)],

(7)
where V

(2,1) and V
(3,2) are n2 ⇥ n1 and 2 ⇥ n2 weight ma-

trices, respectively, while a
(2) and a

(3) are the corresponding
n2 and 2-dimensional bias vectors. Here, n1 =

�
NA

bNA/2c
�
,

and n2 is a free parameter. In fact, we will take n2 to have
a relatively large value, of the order of 103. In doing so, the
network will become prone to overfit. To avoid overfitting,
we employ two strategies (in addition to cross-validation, dis-
cussed in Sec. II):

• Dropout regularization: In each training step, we only
train with half of the hidden layer neurons, which are
randomly chosen each time, effecting the replacement
V

(2,1) ! PV
(2,1) in Eq. (7), where P projects onto a

random subset of size n2/2 of the hidden layer units.
This prevents successive build-up of neuronal weight
configurations adjusted to nonuniversial properties of
the training data, and speeds up the convergence of the
test-set error.

Binary classification



Cost function and regularization

5

• Weight decay: During training, weights that have at-
tained nonzero values at some point, but are no longer
actively contributing to the minimization of the error
function, should decay to zero in subsequent training
steps. This can be achieved by adding a term �µXn

on the right-hand side of Eq. (4), which corresponds to
an augmentation of the error functional (3) by the term
µ|X|2, where | · | denotes the l2-norm of vectors and
matrices. Here, we will apply weight decay only to the
hidden layer weights V

(2,1), since only this preserves a
certain reparametrization symmetry of the network.51

With these regularization methods, the number of training
steps does not need to be fine-tuned as long as it is large
enough. Independent of system size we find that a network
with the described architecture classifies samples of testing
data, which have no overlap with the training data, very suc-
cessfully with an accuracy of ⌘ = 1, where ⌘ is the ratio
of correctly identified spectra to all spectra in the testing set.
Note that this is the case independent of whether we train and
test with entanglement spectra obtained from the same or dif-
ferent disorder realizations.

However, being able to distinguish between the pure ETH
and MBL regimes alone, at h̄ = 0.25 and h̄ = 12.0, re-
spectively, is not enough to uniquely determine the classifica-
tion strategy learned by the neural network. In order to make
the predictions for the transition region reliable, we introduce
confidence optimization: The network should classify entan-
glement spectra at intermediate h̄-values with maximal con-
fidence. Note that this does not require any prior knowledge
of the phase diagram. To implement this criterion, we add
a penalizing term to the error functional which quantifies the
lack of confidence at intermediate h̄-values. Here, we simply
choose the Shannon entropy applied to the network output,
since the result of the Softmax activation function can be in-
terpreted as a probability distribution.

The full error functional used here for training the network
to determine the spin chain phase diagram then reads

Cost(f̂ , f) = �
X

x2TD

2X

i

fi(x) log f̂i(x)

� �

X

x2TR

2X

i

f̂i(x) log f̂i(x) + µ|V |2,

(8)

where TD stands for training data, i.e., entanglement spectra
from h̄ = 0.25 and h̄ = 12.0, while TR stands for transi-
tion region, i.e. entanglement spectra at intermediate disor-
der strengths 0.25 < h̄ < 12.0. We stress once again that
the set for TR is not labelled, meaning we do not make any
assumption about the nature of the states in the TR. In the
last two terms of Eq. (8), � and µ are further hyperparameters
controlling the importance of confidence optimization and the
strength of weight decay, respectively. We choose suitable
values empirically by requiring optimal minimization of the
error on the testing data. In particular, we observe that as long
as both µ and � are chosen to be of order 1, their exact values
do not influence the results significantly. For the following ap-
plications, we therefore choose � = µ = 1, unless otherwise

a) b)

FIG. 4. Comparison of energy-resolved ETH to MBL transition indi-
cators for a single realization of the disorder of a N = 18 chain. The
reduced density matrix is built for NA = 9. a) Standard deviation of
the von Neumann entanglement entropy of a cut of length NA over
512 consecutive eigenstates. b) Uncertainty in the classification of
entanglement spectra by a neural network with one hidden layer, in-
cluding cross-validation over 50 trainings. States classified as MBL
with a confidence larger than 0.1 but smaller than 0.9 are assigned a
1, all others a 0. The continuous color range comes from averaging
over 512 consecutive eigenstates.

noted. To understand the influence of the respective terms, see
Fig. 8 in Appendix C, where the phase transition regions ob-
tained from networks trained with all possible combinations
of �, µ 2 {0, 1} are compared.

We refer the reader to Appendix B for further information
on the hyperparameters used in Eq. (8), and to Appendix C
for comparison of results for different system sizes. In all
cases, there is no fine-tuning of the network needed. We have
checked that changing the hyperparameters slightly from the
values we used does not induce noticeable variations in the
classification output.

V. RESULTS AND COMPARISON WITH
CONVENTIONAL METHODS

A. Disorder-averaged phase diagram

With the single-hidden-layer neural network described
above, we were able to reproduce the phase diagram of the
model given by Eq. (5). Figure 1 shows the confidence for
the MBL phase averaged over 40 disorder realizations of the
N = 16 chain as a function of the field h̄ and the energy den-
sity. A quantitative determination of the critical value of h̄

that corresponds to the transition between the ETH and MBL
regimes is in part a question of definition: In order to define
a critical h̄c, there are two quantities that need to be speci-
fied: the threshold for the network confidence, above which
a given entanglement spectrum is classified as being in the
MBL regime, and the fraction of eigenstates that need to be
classified as MBL by lying above this threshold. We show in
Fig. 3 a) the resulting dependence of h̄c on these two quanti-
ties for the N = 16 chain. For example, if we consider states
above a threshold of 90% confidence as being MBL, and re-
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Results: Disorder-averaged phase diagram
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We show that a simple artificial neural network trained on entanglement spectra of individual states of a
many-body quantum system can be used to determine the transition between a many-body localized and a
thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We
employ a multilayer perceptron with a single hidden layer, which is trained on labelled entanglement spectra
pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra
belonging to states in the transition region. For training, we use a cost function that contains, in addition to the
usual error and regularization parts, a term that favors a confident classification of the transition region states.
The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can
be computed for small systems. Furthermore, we map out the structure of eigenstates across the transition with
spatial resolution. We test the robustness of these results against providing the input data in alternate forms,
such as the level spacings of the entanglement spectra, and analyze the network operation using the dreaming
technique.

I. INTRODUCTION

Artificial neural networks are routinely employed for data
classification. They are useful when features distinguishing
one class of data from another are unknown or unwieldy. A
neural network can learn such features from examples, i.e.,
a set of labelled training data. In physics, the application of
neural networks, and machine learning in general, to many-
body quantum mechanics is a novel and burgeoning field
of research.1 Currently, there are three main lines of pur-
suit: The application of machine learning to the problem of
classifying various phases of matter2–8, accelerating material
searches and design9–12, and the quest to encode quantum me-
chanical states in structures mimicking the setup of a neural
network13–15. This work is concerned with the first kind of
approach. Most previous studies have considered the iden-
tification of phases and phase transitions by training neural
networks on a large set of prototype configurations. Here,
we instead use entanglement spectra16, which in recent years
emerged as a powerful tool to characterize of a plethora of
physical systems, and have been employed for a neural net-
work based detection of phase transitions in Ref. 7.

We apply neural network based phase classification to a
fundamental question in quantum statistical physics, namely
the distinction between systems that obey the eigenstate ther-
malization hypothesis (ETH) and those violating it. Accord-
ing to the ETH, local observables in a typical many-body
eigenstate should take the values that pertain to the observ-
ables in a thermal ensemble, with the whole system acting
as a heat bath for its subsystems in the thermodynamic limit.
A well-studied class of systems that violate the ETH are
those exhibiting many-body localization (MBL)17–24, mean-
ing that partial memory of initial conditions is preserved for
infinite times. Due to this property, which is intimately re-
lated to the emergence of an extensive number of integrals of
motion22,25–27, MBL systems have been envisioned as particu-
larly robust quantum memories.28 Here, we study the Heisen-

FIG. 1. Phase diagram of the Heisenberg chain with Hamiltonian (5)
obtained from the neural network ansatz in Eq. (7) trained with cost
function (8) on entanglement spectra obtained from an exact diago-
nalization of the Hamiltonian (5) on N = 16 sites. The plot shows
the average confidence for the MBL phase over 40 realizations of
disorder as a function of the absolute values of the random magnetic
field h̄, spaced with �h̄ = 0.125, and for eigenstates belonging
to different rescaled energies ✏ = (E � Emin)/(Emax � Emin).
Compared to Ref. 17 where a similar plot was obtained with better-
controlled, yet more sophisticated methods, we have used smaller
systems and fewer disorder realizations.

berg chain in a random field as a simple model for MBL. At
strong disorder, the model is in the MBL regime, whereas it
satisfies the ETH if disorder is weak. Several measures or
quantities allow a well-controlled quantitative distinction of
thermal and localized regimes. They have been used to study
the ETH-MBL transition in finite size numerical simulations,
in particular for an extensive analysis of the Heisenberg model
in a random field. These characterizing quantities include en-

[Luitz et al., PRB 2015]
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(Dated: November 3, 2014)

We present a large scale exact diagonalization study of the one dimensional spin 1/2 Heisenberg
model in a random magnetic field. In order to access properties at varying energy densities across
the entire spectrum for system sizes up to L = 22 spins, we use a spectral transformation which can
be applied in a massively parallel fashion. Our results allow for an energy-resolved interpretation of
the many body localization transition including the existence of an extensive many-body mobility
edge. The ergodic phase is well characterized by Gaussian orthogonal ensemble statistics, volume-
law entanglement, and a full delocalization in the Hilbert space. Conversely, the localized regime
displays Poisson statistics, area-law entanglement and non ergodicity in the Hilbert space where
a true localization never occurs. We perform finite size scaling to extract the critical edge and
exponent of the localization length divergence.

PACS numbers: 75.10.Pq, 72.15.Rn, 05.30.Rt

The interplay of disorder and interactions in quan-
tum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following pre-
cursors works [1–4], perturbative calculations [5, 6] have
established that the celebrated Anderson localization [7]
can survive interactions, and that for large enough dis-
order, many-body eigenstates can also “localize” (in a
sense to be precised later) and form a new phase of matter
commonly referred to as the many-body localized (MBL)
phase.

The enormous boost of interest for this topic over the
last years can probably be ascribed to the fact that the
MBL phase challenges the very foundations of quantum
statistical physics, leading to striking theoretical and ex-
perimental consequences [8, 9]. Several key features of
the MBL phase can be highlighted as follows. It is non-
ergodic, and breaks the eigenstate thermalization hy-
pothesis (ETH) [10–12]: a closed system in the MBL
phase does not thermalize solely following its own dy-
namics. The possible presence of a many-body mobility
edge (at a finite energy density in the spectrum) indi-
cates that conductivity should vanish in a finite tem-
perature range in a MBL system [5, 6]. Coupling to
an external bath will eventually destroy the properties
of the MBL phase, but recent arguments show that it
can survive and be detected using spectral signatures for
weak bath-coupling [13]. This leads to the suggestion
that the MBL phase can be characterized experimen-
tally, using e.g. controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [14–
17]. Another appealing aspect (with experimental con-
sequences for self-correcting memories) is that MBL sys-
tems can sustain long-range, possibly topological, order
in situations where equilibrated systems would not [18–
22]. Finally, a striking phenomenological approach [23]
pinpoints that the MBL phase shares properties with in-
tegrable systems, with extensive local integrals of mo-

Figure 1. Disorder (h) — Energy density (✏) phase dia-
gram of the disordered Heisenberg chain Eq. (1). The er-
godic phase (dark region with a participation entropy vol-
ume law coe�cient a1 ' 1) is separated from the localized
regime (bright region with a1 ⌧ 1). Various symbols (see
legend) show the energy-resolved MBL transition points ex-
tracted from finite size scaling performed over system sizes
L 2 {14, 15, 16, 17, 18, 19, 20, 22}. Red squares correspond to
a visual estimate of the boundary between volume and area
law scaling of entanglement entropy SE .

tion [24–26], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates
at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.

Going beyond perturbative approaches, direct numer-
ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
in a variety of systems [14, 17, 21, 27–42]. The MBL
transition dealing with eigenstates at high(er) energy,
ground-state methods are not well adapted. Most nu-
merical studies use full exact diagonalization (ED) to ob-
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• Weight decay: During training, weights that have at-
tained nonzero values at some point, but are no longer
actively contributing to the minimization of the error
function, should decay to zero in subsequent training
steps. This can be achieved by adding a term �µXn

on the right-hand side of Eq. (4), which corresponds to
an augmentation of the error functional (3) by the term
µ|X|2, where | · | denotes the l2-norm of vectors and
matrices. Here, we will apply weight decay only to the
hidden layer weights V
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With these regularization methods, the number of training
steps does not need to be fine-tuned as long as it is large
enough. Independent of system size we find that a network
with the described architecture classifies samples of testing
data, which have no overlap with the training data, very suc-
cessfully with an accuracy of ⌘ = 1, where ⌘ is the ratio
of correctly identified spectra to all spectra in the testing set.
Note that this is the case independent of whether we train and
test with entanglement spectra obtained from the same or dif-
ferent disorder realizations.

However, being able to distinguish between the pure ETH
and MBL regimes alone, at h̄ = 0.25 and h̄ = 12.0, re-
spectively, is not enough to uniquely determine the classifica-
tion strategy learned by the neural network. In order to make
the predictions for the transition region reliable, we introduce
confidence optimization: The network should classify entan-
glement spectra at intermediate h̄-values with maximal con-
fidence. Note that this does not require any prior knowledge
of the phase diagram. To implement this criterion, we add
a penalizing term to the error functional which quantifies the
lack of confidence at intermediate h̄-values. Here, we simply
choose the Shannon entropy applied to the network output,
since the result of the Softmax activation function can be in-
terpreted as a probability distribution.

The full error functional used here for training the network
to determine the spin chain phase diagram then reads

Cost(f̂ , f) = �
X

x2TD

2X

i

fi(x) log f̂i(x)

� �

X

x2TR

2X

i

f̂i(x) log f̂i(x) + µ|V |2,

(8)

where TD stands for training data, i.e., entanglement spectra
from h̄ = 0.25 and h̄ = 12.0, while TR stands for transi-
tion region, i.e. entanglement spectra at intermediate disor-
der strengths 0.25 < h̄ < 12.0. We stress once again that
the set for TR is not labelled, meaning we do not make any
assumption about the nature of the states in the TR. In the
last two terms of Eq. (8), � and µ are further hyperparameters
controlling the importance of confidence optimization and the
strength of weight decay, respectively. We choose suitable
values empirically by requiring optimal minimization of the
error on the testing data. In particular, we observe that as long
as both µ and � are chosen to be of order 1, their exact values
do not influence the results significantly. For the following ap-
plications, we therefore choose � = µ = 1, unless otherwise

a) b)

FIG. 4. Comparison of energy-resolved ETH to MBL transition indi-
cators for a single realization of the disorder of a N = 18 chain. The
reduced density matrix is built for NA = 9. a) Standard deviation of
the von Neumann entanglement entropy of a cut of length NA over
512 consecutive eigenstates. b) Uncertainty in the classification of
entanglement spectra by a neural network with one hidden layer, in-
cluding cross-validation over 50 trainings. States classified as MBL
with a confidence larger than 0.1 but smaller than 0.9 are assigned a
1, all others a 0. The continuous color range comes from averaging
over 512 consecutive eigenstates.

noted. To understand the influence of the respective terms, see
Fig. 8 in Appendix C, where the phase transition regions ob-
tained from networks trained with all possible combinations
of �, µ 2 {0, 1} are compared.

We refer the reader to Appendix B for further information
on the hyperparameters used in Eq. (8), and to Appendix C
for comparison of results for different system sizes. In all
cases, there is no fine-tuning of the network needed. We have
checked that changing the hyperparameters slightly from the
values we used does not induce noticeable variations in the
classification output.

V. RESULTS AND COMPARISON WITH
CONVENTIONAL METHODS

A. Disorder-averaged phase diagram

With the single-hidden-layer neural network described
above, we were able to reproduce the phase diagram of the
model given by Eq. (5). Figure 1 shows the confidence for
the MBL phase averaged over 40 disorder realizations of the
N = 16 chain as a function of the field h̄ and the energy den-
sity. A quantitative determination of the critical value of h̄

that corresponds to the transition between the ETH and MBL
regimes is in part a question of definition: In order to define
a critical h̄c, there are two quantities that need to be speci-
fied: the threshold for the network confidence, above which
a given entanglement spectrum is classified as being in the
MBL regime, and the fraction of eigenstates that need to be
classified as MBL by lying above this threshold. We show in
Fig. 3 a) the resulting dependence of h̄c on these two quanti-
ties for the N = 16 chain. For example, if we consider states
above a threshold of 90% confidence as being MBL, and re-
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[Serbyn et al., PRL 2016]



Summary Part I

• great performance, comparable to 
established (physical) methods


• works with less data than physical 
quantities


• simple and natural choice of 
network and cost function; no 
tweaking; confidence optimization


• blueprint for other phase 
classification applications using NNs

Probing many-body localization with neural networks
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2Laboratoire Pierre Aigrain, Département de physique de l’ENS, Ecole normale supérieure,
PSL Research University, Université Paris Diderot, Sorbonne Paris Cité,

Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
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We show that a simple artificial neural network trained on entanglement spectra of individual states of a
many-body quantum system can be used to determine the transition between a many-body localized and a
thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We
employ a multilayer perceptron with a single hidden layer, which is trained on labelled entanglement spectra
pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra
belonging to states in the transition region. For training, we use a cost function that contains, in addition to the
usual error and regularization parts, a term that favors a confident classification of the transition region states.
The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can
be computed for small systems. Furthermore, we map out the structure of eigenstates across the transition with
spatial resolution. We test the robustness of these results against providing the input data in alternate forms,
such as the level spacings of the entanglement spectra, and analyze the network operation using the dreaming
technique.

I. INTRODUCTION

Artificial neural networks are routinely employed for data
classification. They are useful when features distinguishing
one class of data from another are unknown or unwieldy. A
neural network can learn such features from examples, i.e.,
a set of labelled training data. In physics, the application of
neural networks, and machine learning in general, to many-
body quantum mechanics is a novel and burgeoning field
of research.1 Currently, there are three main lines of pur-
suit: The application of machine learning to the problem of
classifying various phases of matter2–8, accelerating material
searches and design9–12, and the quest to encode quantum me-
chanical states in structures mimicking the setup of a neural
network13–15. This work is concerned with the first kind of
approach. Most previous studies have considered the iden-
tification of phases and phase transitions by training neural
networks on a large set of prototype configurations. Here,
we instead use entanglement spectra16, which in recent years
emerged as a powerful tool to characterize of a plethora of
physical systems, and have been employed for a neural net-
work based detection of phase transitions in Ref. 7.

We apply neural network based phase classification to a
fundamental question in quantum statistical physics, namely
the distinction between systems that obey the eigenstate ther-
malization hypothesis (ETH) and those violating it. Accord-
ing to the ETH, local observables in a typical many-body
eigenstate should take the values that pertain to the observ-
ables in a thermal ensemble, with the whole system acting
as a heat bath for its subsystems in the thermodynamic limit.
A well-studied class of systems that violate the ETH are
those exhibiting many-body localization (MBL)17–24, mean-
ing that partial memory of initial conditions is preserved for
infinite times. Due to this property, which is intimately re-
lated to the emergence of an extensive number of integrals of
motion22,25–27, MBL systems have been envisioned as particu-
larly robust quantum memories.28 Here, we study the Heisen-

FIG. 1. Phase diagram of the Heisenberg chain with Hamiltonian (5)
obtained from the neural network ansatz in Eq. (7) trained with cost
function (8) on entanglement spectra obtained from an exact diago-
nalization of the Hamiltonian (5) on N = 16 sites. The plot shows
the average confidence for the MBL phase over 40 realizations of
disorder as a function of the absolute values of the random magnetic
field h̄, spaced with �h̄ = 0.125, and for eigenstates belonging
to different rescaled energies ✏ = (E � Emin)/(Emax � Emin).
Compared to Ref. 17 where a similar plot was obtained with better-
controlled, yet more sophisticated methods, we have used smaller
systems and fewer disorder realizations.

berg chain in a random field as a simple model for MBL. At
strong disorder, the model is in the MBL regime, whereas it
satisfies the ETH if disorder is weak. Several measures or
quantities allow a well-controlled quantitative distinction of
thermal and localized regimes. They have been used to study
the ETH-MBL transition in finite size numerical simulations,
in particular for an extensive analysis of the Heisenberg model
in a random field. These characterizing quantities include en-

• quantitative correctness not 
guaranteed 


• discovery of new phases 

• interpretability

Problems
• simple and performant

• no physical insight about 

phase characteristics 
needed
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PART II Neural networks as variational wave 
functions for quantum many-body 
problems



Explore utility of neural networks  
as variational wave functions

Network represents one (compressed) many-body quantum state


Determine eigenstates of a given Hamiltonian variationally


Promise: also works for long-range entangled states (topologically ordered, Chern 
insulators, chiral p-wave superconductors, …)


[G. Carleo and M. Troyer, Science 355 (2017)]

Input Output

r1, r2, r3, ...  (r1, r2, r3, ...)

[D. L. Deng et al., Phys. Rev. X, Phys. Rev. X 7, 021021]



2 problems

Compute simultaneous eigenstates of (non-local) symmetries 
and of the Hamiltonian


- dispersion of excitations

- target specific excited states

1)

Compute (at least low-lying) excited states


- gaps

- (topological) degeneracies

2)

Goal: a method that would be ready to compete with ED 
and DMRG for generic problems



Network architecture

Random Boltzmann machine (one hidden layer)

Exploring Excited States with Artificial Neural Networks
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In a landmark paper, G. Carleo and M. Troyer1 proposed a method of using artifical neural networks as a
variational Monte Carlo ansatz to find ground states of many body systems. In this paper we wish to implement
and extend the proposed method to make it a viable tool for numerical studies. In particular, we wish to extend
the method to take advantage of symmetries and also to be able to find not just the ground state but also excited
states. We test the methods on the spin 1/2 Heisenberg model.

I. INTRODUCTION

II. METHODS

A. Restricted Boltzmann Machine

The type of network we are interested in is called the Re-
stricted Boltzmann Machine (RBM). This is the network pro-
posed in1 to solve many-body problems. This model has a
energy based interpretation. There is one visible layer bi-
nary spin variables corresponding to the physical configura-
tion � and a single hidden layer of M auxiliary binary vari-
ables (h1, h2, . . . hM ) taking values in {�1, 1}. The visible
and hidden layers can then be considered to interact through a
Ising type energy,

E(�,h) = �

X

j

aj�j �

X

i

bihj �

X

ij

hiWij�j (1)

where aj and bi are known as the visible and hidden bias re-
spectively analogous to a local magnetic field, and Wij is the
weights corresponding to an Ising interaction between visible
and hidden nodes. The probability distribution P (�,h) de-
scribed by the network is then simply the Boltzmann weight
corresponding to the above energy

P (�,h) =
1

Z
e
�E(�,h) (2)

where Z is simply a normalisation which we can ignore for
our purposes. The idea then is to interpret the marginal prob-
ability as corresponding to the amplitude of the wavefunction
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up to some additive constant which simply correspond to an
overall normalisation and phase of the wavefunction.

FIG. 1. Architecture of a Restricted Boltzmann Machine with N
visible nodes corresponding to physical spins and M hidden units.

B. Variational Monte Carlo

Given a variational ansatz  ({↵k}) we want to optimize
the parameters ↵k such that the trial wavefunction minimizes
the energy of a target Hamiltonian H . There are several meth-
ods for achieving this task, the most common of which is
stochastic gradient descent (SGD). We find however that an al-
ternative method called stochastic reconfiguration (SR) works
much better especially when trying to find excited states.

This optimisation method was introduced by Sorella et.
al2 and can be seen as an imaginary time evolution. Let
 (↵0) 2 C2n be a wavefunction depending on an initial set
of variational parameters {↵0

k}k=1,...,p. Consider now a small
variation in the parameters, i.e. ↵k = ↵

0
k + �↵k. The corre-

sponding wavefunction can then be written as

 (↵k) =  (↵
0
k) +

pX

k
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@

@↵k
 (↵0

k), (5)

Introducing the logarithmic derivatives
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(6)
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B. Variational Monte Carlo

Given a variational ansatz  ({↵k}) we want to optimize
the parameters ↵k such that the trial wavefunction minimizes
the energy of a target Hamiltonian H . There are several meth-
ods for achieving this task, the most common of which is
stochastic gradient descent (SGD). We find however that an al-
ternative method called stochastic reconfiguration (SR) works
much better especially when trying to find excited states.
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al2 and can be seen as an imaginary time evolution. Let
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Problem 1) Symmetries
How to implement nonlocal symmetries?


Linear operators in Hilbert space, but RBM is a nonlinear function

No natural way to extend action to hidden spins


Example: Translation symmetry (by lattice spacing)

 (�)  (�0)

2

the expansion can be rewritten as

 (↵k) =  (↵
0
k) +

pX

k=1

�↵kOk (↵
0
k) (7)

One can consider Ok as an operator which acts element wise,
i.e. a diagonal operator.

The SR scheme then proceeds by performing imaginary
time evolution which to first order is given by

 0
exact = (1� ✏Ĥ) (8)

The aim now is to determine the coefficients {�↵
0
k}k=1,...,p

corresponding to the new wavefunction 0, that minimises the
distance to  0

exact according to some chosen metric. For our
simulations we used the Fubini-Study metric
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After some algebra, we obtain to first order in ✏,
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(10)
This is the linear equation which we must solve for �↵. We
then update the the parameters as ↵k = ↵

0
k + �↵k and repeat

the procedure to convergence.
Since each SR iteration requires the inversion of a matrix,

the computation complexity of each step is O(N3
w), as com-

pared to O(Nw) for the gradient descent methods, where Nw

is the number of variational parameters. However, the SR
method is known to be more stable than the standard gradient
descent methods. In preliminary studies, we have noticed that
optimisation with SR requires much fewer iterations to con-
verge. This faster convergence might make up for the larger
computational cost required.

C. Translational Symmetry

Let us define T̂ to be a generator of the translational sym-
metry. Then a state | i has momentum k if

T̂ | i = e
ik
| i

=) h�| T̂ | i = e
ik
h�| i

=)  (T̂�1�) = e
ik (�),

(11)

where � is a configuration in the computational basis, e.g.
", ", #, . . ..

In order to obtain the eigenstates in the other momentum
sectors, we want that the networks output obeys Eq. (11).
Since the network represent the logarithm of the wavefunc-
tion, this mean log (T̂�) = ik+log (�). It is not straight-
forward to adjust the weights of the network such that this
condition is satisfied, so we take a different approach.

Let log N (�) represent the value obtain from the network
as given by Eq. (4). To obtain the amplitude of a configuration

�, we first map the configuration to the canonical configura-
tion, related by translation, corresponding to the lexicograph-
ically smallest. For example,

� = (1, 0, 1, 1, 0, 0) ! (0, 0, 1, 0, 1, 1) = T̂
2� = �canonical,

(12)
then the amplitude is given by

log (�) = 2ik + log N (�canonical) (13)

where the factor 2 comes from the fact that � is related to
�canonical by a translation by two sites T̂ 2.

In this way, we can be assured that condition Eq. (11) is def-
initely obeyed. Minimising the energy under these constraints
then gives the lowest eigenstate in the respective momentum
sector.

D. Excited States Without Symmetry

In topologically ordered systems, degenerate states in dis-
tinct topological sectors are not distinguishable by any sym-
metry thus in order access these state we need to use a differ-
ent method.

The task is as follows: Given a RBM which represents the
ground state of a Hamiltonian, say �0(�) we would like to
find the wavefunction with the lowest energy but orthogonal
to �0. To that end, we define

 = �1 � ��0 (14)

where � is a complex scalar and  corresponds to an differ-
ent RBM with its own set of weights and biases. To enforce
orthogonality between  and �0, i.e. h�0| i = 0 we have to
set

� =
h�0|�1i

h�0|�0i
(15)

which can be computed in standard Monte Carlo fashion
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where M represents the average over a Monte Carlo sample
from the distribution |�0(�)|2.

The optimisation scheme then simply proceeds in two
steps:

1. Sample ground state wavefunction |�0(�)|2 to com-
pute � as in Eq. (16)

2. Perform the standard SR step on the full wavefunction
 = �1 � ��0 using the updated �.

In principle, if the overlap � can be computed exactly and the
SR step is not subject to sampling noise, one only needs to
project away the ground state component once and then the
imaginary time evolution would necessarily converge to the
first excited state. However, due to the various sources of
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the expansion can be rewritten as
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One can consider Ok as an operator which acts element wise,
i.e. a diagonal operator.

The SR scheme then proceeds by performing imaginary
time evolution which to first order is given by

 0
exact = (1� ✏Ĥ) (8)

The aim now is to determine the coefficients {�↵
0
k}k=1,...,p

corresponding to the new wavefunction 0, that minimises the
distance to  0

exact according to some chosen metric. For our
simulations we used the Fubini-Study metric
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This is the linear equation which we must solve for �↵. We
then update the the parameters as ↵k = ↵

0
k + �↵k and repeat

the procedure to convergence.
Since each SR iteration requires the inversion of a matrix,

the computation complexity of each step is O(N3
w), as com-

pared to O(Nw) for the gradient descent methods, where Nw

is the number of variational parameters. However, the SR
method is known to be more stable than the standard gradient
descent methods. In preliminary studies, we have noticed that
optimisation with SR requires much fewer iterations to con-
verge. This faster convergence might make up for the larger
computational cost required.
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Let us define T̂ to be a generator of the translational sym-
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where � is a configuration in the computational basis, e.g.
", ", #, . . ..

In order to obtain the eigenstates in the other momentum
sectors, we want that the networks output obeys Eq. (11).
Since the network represent the logarithm of the wavefunc-
tion, this mean log (T̂�) = ik+log (�). It is not straight-
forward to adjust the weights of the network such that this
condition is satisfied, so we take a different approach.

Let log N (�) represent the value obtain from the network
as given by Eq. (4). To obtain the amplitude of a configuration

�, we first map the configuration to the canonical configura-
tion, related by translation, corresponding to the lexicograph-
ically smallest. For example,

� = (1, 0, 1, 1, 0, 0) ! (0, 0, 1, 0, 1, 1) = T̂
2� = �canonical,

(12)
then the amplitude is given by

log (�) = 2ik + log N (�canonical) (13)

where the factor 2 comes from the fact that � is related to
�canonical by a translation by two sites T̂ 2.

In this way, we can be assured that condition Eq. (11) is def-
initely obeyed. Minimising the energy under these constraints
then gives the lowest eigenstate in the respective momentum
sector.

D. Excited States Without Symmetry

In topologically ordered systems, degenerate states in dis-
tinct topological sectors are not distinguishable by any sym-
metry thus in order access these state we need to use a differ-
ent method.

The task is as follows: Given a RBM which represents the
ground state of a Hamiltonian, say �0(�) we would like to
find the wavefunction with the lowest energy but orthogonal
to �0. To that end, we define

 = �1 � ��0 (14)

where � is a complex scalar and  corresponds to an differ-
ent RBM with its own set of weights and biases. To enforce
orthogonality between  and �0, i.e. h�0| i = 0 we have to
set

� =
h�0|�1i

h�0|�0i
(15)

which can be computed in standard Monte Carlo fashion
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where M represents the average over a Monte Carlo sample
from the distribution |�0(�)|2.

The optimisation scheme then simply proceeds in two
steps:

1. Sample ground state wavefunction |�0(�)|2 to com-
pute � as in Eq. (16)

2. Perform the standard SR step on the full wavefunction
 = �1 � ��0 using the updated �.

In principle, if the overlap � can be computed exactly and the
SR step is not subject to sampling noise, one only needs to
project away the ground state component once and then the
imaginary time evolution would necessarily converge to the
first excited state. However, due to the various sources of
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kĤi � hO

†
kihĤi
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the procedure to convergence.
Since each SR iteration requires the inversion of a matrix,

the computation complexity of each step is O(N3
w), as com-

pared to O(Nw) for the gradient descent methods, where Nw

is the number of variational parameters. However, the SR
method is known to be more stable than the standard gradient
descent methods. In preliminary studies, we have noticed that
optimisation with SR requires much fewer iterations to con-
verge. This faster convergence might make up for the larger
computational cost required.
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where � is a configuration in the computational basis, e.g.
", ", #, . . ..

In order to obtain the eigenstates in the other momentum
sectors, we want that the networks output obeys Eq. (11).
Since the network represent the logarithm of the wavefunc-
tion, this mean log (T̂�) = ik+log (�). It is not straight-
forward to adjust the weights of the network such that this
condition is satisfied, so we take a different approach.

Let log N (�) represent the value obtain from the network
as given by Eq. (4). To obtain the amplitude of a configuration

�, we first map the configuration to the canonical configura-
tion, related by translation, corresponding to the lexicograph-
ically smallest. For example,

� = (1, 0, 1, 1, 0, 0) ! (0, 0, 1, 0, 1, 1) = T̂
2� = �canonical,

(12)
then the amplitude is given by

log (�) = 2ik + log N (�canonical) (13)

where the factor 2 comes from the fact that � is related to
�canonical by a translation by two sites T̂ 2.

In this way, we can be assured that condition Eq. (11) is def-
initely obeyed. Minimising the energy under these constraints
then gives the lowest eigenstate in the respective momentum
sector.

D. Excited States Without Symmetry

In topologically ordered systems, degenerate states in dis-
tinct topological sectors are not distinguishable by any sym-
metry thus in order access these state we need to use a differ-
ent method.

The task is as follows: Given a RBM which represents the
ground state of a Hamiltonian, say �0(�) we would like to
find the wavefunction with the lowest energy but orthogonal
to �0. To that end, we define

 = �1 � ��0 (14)

where � is a complex scalar and  corresponds to an differ-
ent RBM with its own set of weights and biases. To enforce
orthogonality between  and �0, i.e. h�0| i = 0 we have to
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where M represents the average over a Monte Carlo sample
from the distribution |�0(�)|2.

The optimisation scheme then simply proceeds in two
steps:

1. Sample ground state wavefunction |�0(�)|2 to com-
pute � as in Eq. (16)

2. Perform the standard SR step on the full wavefunction
 = �1 � ��0 using the updated �.

In principle, if the overlap � can be computed exactly and the
SR step is not subject to sampling noise, one only needs to
project away the ground state component once and then the
imaginary time evolution would necessarily converge to the
first excited state. However, due to the various sources of
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k + �↵k and repeat

the procedure to convergence.
Since each SR iteration requires the inversion of a matrix,

the computation complexity of each step is O(N3
w), as com-

pared to O(Nw) for the gradient descent methods, where Nw

is the number of variational parameters. However, the SR
method is known to be more stable than the standard gradient
descent methods. In preliminary studies, we have noticed that
optimisation with SR requires much fewer iterations to con-
verge. This faster convergence might make up for the larger
computational cost required.
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T̂ | i = e
ik
| i

=) h�| T̂ | i = e
ik
h�| i

=)  (T̂�1�) = e
ik (�),

(11)

where � is a configuration in the computational basis, e.g.
", ", #, . . ..

In order to obtain the eigenstates in the other momentum
sectors, we want that the networks output obeys Eq. (11).
Since the network represent the logarithm of the wavefunc-
tion, this mean log (T̂�) = ik+log (�). It is not straight-
forward to adjust the weights of the network such that this
condition is satisfied, so we take a different approach.

Let log N (�) represent the value obtain from the network
as given by Eq. (4). To obtain the amplitude of a configuration

�, we first map the configuration to the canonical configura-
tion, related by translation, corresponding to the lexicograph-
ically smallest. For example,

� = (1, 0, 1, 1, 0, 0) ! (0, 0, 1, 0, 1, 1) = T̂
2� = �canonical,

(12)
then the amplitude is given by

log (�) = 2ik + log N (�canonical) (13)

where the factor 2 comes from the fact that � is related to
�canonical by a translation by two sites T̂ 2.

In this way, we can be assured that condition Eq. (11) is def-
initely obeyed. Minimising the energy under these constraints
then gives the lowest eigenstate in the respective momentum
sector.

D. Excited States Without Symmetry

In topologically ordered systems, degenerate states in dis-
tinct topological sectors are not distinguishable by any sym-
metry thus in order access these state we need to use a differ-
ent method.

The task is as follows: Given a RBM which represents the
ground state of a Hamiltonian, say �0(�) we would like to
find the wavefunction with the lowest energy but orthogonal
to �0. To that end, we define

 = �1 � ��0 (14)

where � is a complex scalar and  corresponds to an differ-
ent RBM with its own set of weights and biases. To enforce
orthogonality between  and �0, i.e. h�0| i = 0 we have to
set

� =
h�0|�1i

h�0|�0i
(15)

which can be computed in standard Monte Carlo fashion

� =
X

�

✓
�1(�)

�0(�)

◆
|�0(�)|2P
�0 |�0(�0)|2

⇡

*
�1(�)

�0(�)

+

M

(16)

where M represents the average over a Monte Carlo sample
from the distribution |�0(�)|2.

The optimisation scheme then simply proceeds in two
steps:

1. Sample ground state wavefunction |�0(�)|2 to com-
pute � as in Eq. (16)

2. Perform the standard SR step on the full wavefunction
 = �1 � ��0 using the updated �.

In principle, if the overlap � can be computed exactly and the
SR step is not subject to sampling noise, one only needs to
project away the ground state component once and then the
imaginary time evolution would necessarily converge to the
first excited state. However, due to the various sources of
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noise and possibly even numerical errors, any small compo-
nent of the ground state would grow exponentially, thus mak-
ing it necessary to constantly perform the projection.

Finally, it is important to note that due to the stochastic
nature of the optimisation, the state  necessarily contains a
small component of the ground state. In order to quantify the
accuracy of the result we can compute the normalised overlap

h�0| i

h�0|�0i
·
h |�0i

h | i
(17)

which can also be computed as Monte Carlo average. In the
simulations below, we verified that this quantity is below 1%
for a sample size of about 2000.

III. RESULTS

To test the methods introduced above, we used the peri-
odic one-dimensional spin-1/2 antiferromagnetic Heisenberg
model defined by

Ĥ = 4
LX

i=1

Ŝi · Ŝi+1 (18)

where Ŝi are the spin-1/2 operators on site i and we choose
perodc boundary conditions.

FIG. 2. Momentum Spectrum of one-dimensional Heisenberg
Model with L = 20. The blue line shows the exact values com-
puted using Lanczos algorithm in DiagHam library, green star rep-
resents the energy obtained from an RBM with M = 40 hidden
units and green dashed line indicates the relative error defined by
✏ =

���E�Eexact
Eground

���
.

We obtained the exact momentum spectrum for L = 20 us-
ing Lanczos algorithms implemented in the DiagHam library
and compared it to the values obtained with the RBM with
M = 40 hidden units. The results are shown in Fig. 2. One
can observe that the relative error ✏ =

���E�Eexact
Eground

��� is much
larger at momenta away from 0 or ⇡, possibly suggesting that
the RBM ansatz is less efficient at representing those excited

ground states. In order to obtain better accuracies at those mo-
menta, it is necessary to use more hidden units. We show also
the result for L = 40 in Fig. 3.

FIG. 3. Momentum Spectrum of one-dimensional Heisenberg
Model with L = 40 obtained from an RBM with M = 80 hid-
den units. Once again, looking at the spectrum near k = ⇡, it is
fairly evident that there is a jump in the relative error.

Next, using the 2-step method described above, we ob-
tained the energy gap from the ground state to the first excited
state as a function of system size L. The exact values were
computed using the MPS algorithm in the ALPS package3.
The results is shown in Fig. 4. Here, the hidden unit density
of �1 (see Eq. (14)) was fixed at ↵ = no. of hidden units

no. of visible units = 2,
while the ground state �0 was obtain using ↵ = 4. It is nec-
essary to compute the ground state accurately since the er-
ror necessarily propagates to the excited state wavefunction
 = �1 � ��0.

FIG. 4. Energy gap from the ground state to the first ex-
cited state of one-dimensional spin-1/2 Heisenberg Model for L =
8, 12, 16, 20, 24, 28. The blue line shows the exact values computed
using MPS in the ALPS package, the green star represents the en-
ergy gap obtained from an RBM with hidden unit density ↵ = 2.
In the inset, we plot versus 1/L, showing that the gap is inversely
proportional to system size.

Spin-1/2 Heisenberg antiferromagnet 

~4000 network parameters
vs.

3x109 parameters in ED wave function

PBC, 36 sites, 72 hidden units
3
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FIG. 1. (a) Momentum-resolved spectrum of the one-dimensional Heisenberg model with L = 36 spins. The blue line shows the exact values
computed using ED, the green circles represent the energy obtained from a 3-layer FFNN with hidden unit density ↵1 = 2 (↵2 = 0.5) in
the first (second) hidden layer (corresponding to 3996 free parameters) and red dots shows the energy from an RBM with hidden unit density
↵1 = 3. (b) Relative error ✏ as a function of system size, for the k = ⇡/2 state. For the RBM, we fix the hidden unit density ↵1 = 3, whereas
for the FFNN we use a density of ↵1 = 2 in the first hidden layer and a density of ↵2 = 0.5 in the second hidden layer. For the k = 0 sector
the relative error is ⇠ 10�5. (c) Energy gap from the ground state to the first excited state of one-dimensional spin-1/2 Heisenberg model.
The blue line shows the exact values computed using ED, the green circles represents the energy gap obtained from an RBM with hidden unit
density ↵ = 2. FFNN results are identical to the RBM ones and are thus not shown here. In the inset, we plot versus 1/L, showing that the
gap is inversely proportional to system size. The relative error of the excited states obtained is less than 3⇥ 10�4 for all cases.

are not distinguished by good quantum numbers, for instance
in topologically ordered systems or in spin glasses. In this
case, the following procedure can be applied. The task is
as follows: Given an ANN variational wave function which
represents the ground state of a Hamiltonian, say �0(�) we
would like to find the wavefunction  with the lowest energy
but orthogonal to �0. To that end, we define

 = �1 � ��0 (10)

where � is a complex scalar and �1 corresponds to a different
ANN variational wave function with its own set of weights
and biases. To enforce orthogonality between  and �0, i.e.
h�0| i = 0 we set � = h�0|�1i

h�0|�0i , which can be computed in
standard Monte Carlo fashion

� =
X

�

✓
�1(�)

�0(�)

◆
|�0(�)|2P
�0 |�0(�0)|2

⇡

*
�1(�)

�0(�)

+

Ns

(11)

where the average is carried over Ns samples generated from
the distribution |�0(�)|2 through Monte Carlo sampling.

The optimization scheme then proceeds in two steps:

1. Sample the ground state wavefunction |�0(�)|2 to
compute � as in Eq. (11)

2. Perform the imaginary time evolution with stochastic
reconfiguration [28] on the full wavefunction = �1�

��0 using the updated �.

In principle, if the overlap � can be computed exactly and
the stochastic reconfiguration step is not subject to sampling
noise or approximation errors [see Eq. (18)], one only needs
to project away the ground state component once and then
the imaginary time evolution would necessarily converge to
the first excited state. However, due to the various sources of

noise and possibly even numerical errors, any small compo-
nent of the ground state would grow exponentially, thus mak-
ing it necessary to constantly perform the projection.

Finally, it is important to note that due to the stochastic na-
ture of the optimization, the state  is not exactly orthogonal
to the ground state. In order to quantify the accuracy of the
result we can compute the normalized overlap

h�0| i

h�0|�0i

h |�0i

h | i
, (12)

which can also be computed as a Monte Carlo average.
Results — To test the two methods introduced above, we

study two one-dimensional benchmark models: the spin-1/2
antiferromagnetic Heisenberg chain and the Bose-Hubbard
chain. The former is defined by the Hamiltonian

Ĥ = 4
LX

i=1

Ŝi · Ŝi+1, (13)

where Ŝi are the spin-1/2 operators on site i and we choose
periodic boundary conditions. The momentum-resolved
spectrum of this model can be obtained using the Bethe
ansatz [29].

As a first benchmark, we computed the momentum spec-
trum of the model with L = 36 sites using both the RBM
and the 3-layer deep FFNN and compared them to the results
from exact diagonalization (ED). We set the hidden unit den-
sity defined by ↵n = Mn/L to be ↵1 = 3 for the RBM and
↵1 = 2 (↵2 = 0.5) for the first (second) layer of the FFNN.
The ANN results, compared to those obtained from ED are
shown in Fig. 1(a). One can observe that the relative error
✏ = |(E � Eexact)/Eground| is much larger for higher energy
states, i.e., for momenta away from 0 or ⇡. Moreover, the
relative error for the RBM is higher than that of the 3-layer

3
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FIG. 1. (a) Momentum-resolved spectrum of the one-dimensional Heisenberg model with L = 36 spins. The blue line shows the exact values
computed using ED, the green circles represent the energy obtained from a 3-layer FFNN with hidden unit density ↵1 = 2 (↵2 = 0.5) in
the first (second) hidden layer (corresponding to 3996 free parameters) and red dots shows the energy from an RBM with hidden unit density
↵1 = 3. (b) Relative error ✏ as a function of system size, for the k = ⇡/2 state. For the RBM, we fix the hidden unit density ↵1 = 3, whereas
for the FFNN we use a density of ↵1 = 2 in the first hidden layer and a density of ↵2 = 0.5 in the second hidden layer. For the k = 0 sector
the relative error is ⇠ 10�5. (c) Energy gap from the ground state to the first excited state of one-dimensional spin-1/2 Heisenberg model.
The blue line shows the exact values computed using ED, the green circles represents the energy gap obtained from an RBM with hidden unit
density ↵ = 2. FFNN results are identical to the RBM ones and are thus not shown here. In the inset, we plot versus 1/L, showing that the
gap is inversely proportional to system size. The relative error of the excited states obtained is less than 3⇥ 10�4 for all cases.

are not distinguished by good quantum numbers, for instance
in topologically ordered systems or in spin glasses. In this
case, the following procedure can be applied. The task is
as follows: Given an ANN variational wave function which
represents the ground state of a Hamiltonian, say �0(�) we
would like to find the wavefunction  with the lowest energy
but orthogonal to �0. To that end, we define

 = �1 � ��0 (10)

where � is a complex scalar and �1 corresponds to a different
ANN variational wave function with its own set of weights
and biases. To enforce orthogonality between  and �0, i.e.
h�0| i = 0 we set � = h�0|�1i

h�0|�0i , which can be computed in
standard Monte Carlo fashion
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where the average is carried over Ns samples generated from
the distribution |�0(�)|2 through Monte Carlo sampling.

The optimization scheme then proceeds in two steps:

1. Sample the ground state wavefunction |�0(�)|2 to
compute � as in Eq. (11)

2. Perform the imaginary time evolution with stochastic
reconfiguration [28] on the full wavefunction = �1�

��0 using the updated �.

In principle, if the overlap � can be computed exactly and
the stochastic reconfiguration step is not subject to sampling
noise or approximation errors [see Eq. (18)], one only needs
to project away the ground state component once and then
the imaginary time evolution would necessarily converge to
the first excited state. However, due to the various sources of

noise and possibly even numerical errors, any small compo-
nent of the ground state would grow exponentially, thus mak-
ing it necessary to constantly perform the projection.
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to the ground state. In order to quantify the accuracy of the
result we can compute the normalized overlap
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, (12)

which can also be computed as a Monte Carlo average.
Results — To test the two methods introduced above, we

study two one-dimensional benchmark models: the spin-1/2
antiferromagnetic Heisenberg chain and the Bose-Hubbard
chain. The former is defined by the Hamiltonian

Ĥ = 4
LX

i=1

Ŝi · Ŝi+1, (13)

where Ŝi are the spin-1/2 operators on site i and we choose
periodic boundary conditions. The momentum-resolved
spectrum of this model can be obtained using the Bethe
ansatz [29].

As a first benchmark, we computed the momentum spec-
trum of the model with L = 36 sites using both the RBM
and the 3-layer deep FFNN and compared them to the results
from exact diagonalization (ED). We set the hidden unit den-
sity defined by ↵n = Mn/L to be ↵1 = 3 for the RBM and
↵1 = 2 (↵2 = 0.5) for the first (second) layer of the FFNN.
The ANN results, compared to those obtained from ED are
shown in Fig. 1(a). One can observe that the relative error
✏ = |(E � Eexact)/Eground| is much larger for higher energy
states, i.e., for momenta away from 0 or ⇡. Moreover, the
relative error for the RBM is higher than that of the 3-layer

k = ⇡/2
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FIG. 2. Momentum-resolved spectrum of weakly interacting U = 1 bosons on a one-dimensional periodic lattice. (a) N = 10 bosons in
L = 10 sites. Blue line shows the analytically calculated value and the green circles indicates the value obtained from a 3-layer FFNN with
hidden unit density ↵1 = 4 (↵2 = 1) in the first (second) hidden layer (860 free parameters). The red circles show the value from an RBM
with hidden unit density ↵1 = 8 (890 free parameters). Dashed lines indicate the relative error. (b) N = 40 bosons in L = 40 sites. Dashed
blue line shows values inferred from MPS calculations. The green circles indicates the values obtained from a standard fully connected 3-layer
feedforward neural network with hidden unit density ↵1 = 2 (↵2 = 1) in the first (second) hidden layer (6560 free parameters) except for the
last point k = 18⇡

40 where we used 100 neurons in the first hidden layer and 40 in the second layer (8180 free parameters). We show only the
first 10 momenta.

FFNN, possibly suggesting that either the RBM ansatz is less
efficient at representing those excited states or that the opti-
mization of the network is caught in a local minimum. We
checked that increasing the number of hidden units systemat-
ically improves the accuracy of the network.

In Fig. 1(b), we show the scaling of the relative error with
system size for the two different network architectures, which
shows that the 3-layer FFNN systematically performs bet-
ter than an RBM with a comparable number of parameters.
Whereas the relative error remains roughly constant with sys-
tem size for the FFNN, the RBM error instead seems to in-
crease linearly. Once again, this circumstance does not strictly
imply that RBM machines are less expressive than FFNNs,
since optimization is also an extremely crucial ingredient to
be considered.

Next, using the two-step method described above, we ob-
tained the energy gap from the ground state to the first ex-
cited state as a function of system size L. This way, we do
not use any information about the translation symmetry. Ex-
act values were computed using ED. The results are shown in
Fig. 1 (c). Here, the hidden unit density of �1 [see Eq. (10)]
was fixed at ↵1 = 2 (except the L = 40 computation where
we used ↵1 = 4), while the ground state �0 was obtained us-
ing ↵1 = 4. This choice of hidden unit densities gives us a
relative error below 3⇥ 10�5 for the ground states and below
2 ⇥ 10�4 for the excited states. It is necessary to compute
the ground state accurately, since the error necessarily prop-
agates to the excited state wavefunction due to the relation
 = �1 � ��0. We also verified that the overlap with the
ground state is below 1% for a sample size of about 2000.

We now turn to the Bose-Hubbard model in one-dimension

with periodic boundary conditions,

Ĥ = �t

LX

i=1

(ĉ†i ĉi+1 + h.c.) +
U

2

LX

i=1

n̂i(n̂i � 1), (14)

where ĉ
†
i and ĉi are the boson creation and annihilation oper-

ators on site i, respectively, and n̂ = ĉ
†
i ĉi represents the local

density at site i. For this problem, we experienced signifi-
cant difficulty in lowering the relative error in both the 2-layer
FFNN and the RBM even with a large number of hidden units,
suggesting that either optimization is difficult or that the ex-
pressiveness of the ansatz is limited. A 3-layer FFNN, on the
hand, converged significantly better.

We set U = 1 and consider two system sizes. First the
case of N = 10 bosons on a one-dimensional periodic lattice
with L = 10 sites, for which exact results are easily obtained.
We used a 3-layer FFNN with hidden unit density ↵1 = 4
(↵2 = 1) in the first (second) hidden layer (860 free parame-
ters), and a RBM with hidden unit density ↵1 = 8 (890 free
parameters). The relative error on the FFNN was lower than
5⇥ 10�4 for all momenta, whereas for the RBM one can see
the error is increasing for larger momenta. The results are
shown in Fig. 2 (a).

Next, we show in Fig. 2 (b) the results for N = 40 bosons
in L = 40 sites. Here, the full (within the fixed particle num-
ber sector) Hilbert space dimension (⇠ 5⇥ 1022) is too large
to obtain results using ED. We could only infer the eigenen-
ergies of the lowest few momentum sectors by matching with
the lowest few eigenstates computed with MPS, since it is not
straightforward to include momentum resolution in MPS. Al-
though MPS [30, 31] can in principle be used to determine
momentum spectra, it is challenging to efficiently use this
method to higher dimensions and bosons.

Conclusions — We showed that artificial neural networks
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We conclude with results on the Bose-Hubbard model,

Ĥ = �t

LX

i=1

(ĉ†i ĉi+1 + h.c.) +
U

2

LX

i=1

n̂i(n̂i � 1) (19)

where ĉ†(ĉ) are the boson creation(annihilation) operators and
n̂ = ĉ

†
ĉ represents the local density.

We consider first the case of N = 10 non-interacting (U =
0) bosons on a one-dimensional periodic lattice with L = 20
sites where analytical results are easily obtained. The results
are shown in Fig. 5.

FIG. 5. Momentum Spectrum of N = 10 non-interacting U = 0
bosons on a one-dimensional periodic lattice with L = 20 sites. Blue
line shows the analytically calculated value and the green star indi-
cates the value obtained from an RBM with M = 40 hidden units
(except for the k = ⇡/4 point where M = 80 hidden units were used
in order to obtain a relative error ✏ < 10�4. As before we note the
low momentum spectrum requires fewer hidden units for the same
accuracy.

Next we move on to the weakly interacting case U = 1.
Here exact results are a bit more difficult to obtain since we
are not in the Mott insulating regime where density fluctua-
tions are suppressed such that one can do exact diagonaliza-
tion by restricting the Hilbert space to have only a few bosons
per site. We thus have to work with the full (particle number
conserving) Hilbert space with dimension 20030010. Even
though MPS can easily give the lowest few excited states, ob-
taining the low energy momentum spectrum is still a challenge
since it is not straightforward to implement translational sym-
metries within MPS.

IV. CONCLUSION
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Problem 2) Excited states
Found ground state            , want to find lowest excited state. 0(�)
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the expansion can be rewritten as

 (↵k) =  (↵
0
k) +

pX

k=1

�↵kOk (↵
0
k) (7)

One can consider Ok as an operator which acts element wise,
i.e. a diagonal operator.

The SR scheme then proceeds by performing imaginary
time evolution which to first order is given by

 0
exact = (1� ✏Ĥ) (8)

The aim now is to determine the coefficients {�↵
0
k}k=1,...,p

corresponding to the new wavefunction 0, that minimises the
distance to  0

exact according to some chosen metric. For our
simulations we used the Fubini-Study metric

�(�, ) = arccos

s
h |�i h�| i

h | i h�|�i
. (9)

After some algebra, we obtain to first order in ✏,
X

k0

h
hO

†
kOk0i � hO

†
kihOk0i

i
�↵k0 = �✏

h
hO

†
kĤi � hO

†
kihĤi

i
.

(10)
This is the linear equation which we must solve for �↵. We
then update the the parameters as ↵k = ↵

0
k + �↵k and repeat

the procedure to convergence.
Since each SR iteration requires the inversion of a matrix,

the computation complexity of each step is O(N3
w), as com-

pared to O(Nw) for the gradient descent methods, where Nw

is the number of variational parameters. However, the SR
method is known to be more stable than the standard gradient
descent methods. In preliminary studies, we have noticed that
optimisation with SR requires much fewer iterations to con-
verge. This faster convergence might make up for the larger
computational cost required.

C. Translational Symmetry

Let us define T̂ to be a generator of the translational sym-
metry. Then a state | i has momentum k if

T̂ | i = e
ik
| i

=) h�| T̂ | i = e
ik
h�| i

=)  (T̂�1�) = e
ik (�),

(11)

where � is a configuration in the computational basis, e.g.
", ", #, . . ..

In order to obtain the eigenstates in the other momentum
sectors, we want that the networks output obeys Eq. (11).
Since the network represent the logarithm of the wavefunc-
tion, this mean log (T̂�) = ik+log (�). It is not straight-
forward to adjust the weights of the network such that this
condition is satisfied, so we take a different approach.

Let log N (�) represent the value obtain from the network
as given by Eq. (4). To obtain the amplitude of a configuration

�, we first map the configuration to the canonical configura-
tion, related by translation, corresponding to the lexicograph-
ically smallest. For example,

� = (1, 0, 1, 1, 0, 0) ! (0, 0, 1, 0, 1, 1) = T̂
2� = �canonical,

(12)
then the amplitude is given by

log (�) = 2ik + log N (�canonical) (13)

where the factor 2 comes from the fact that � is related to
�canonical by a translation by two sites T̂ 2.

In this way, we can be assured that condition Eq. (11) is def-
initely obeyed. Minimising the energy under these constraints
then gives the lowest eigenstate in the respective momentum
sector.

D. Excited States Without Symmetry

In topologically ordered systems, degenerate states in dis-
tinct topological sectors are not distinguishable by any sym-
metry thus in order access these state we need to use a differ-
ent method.

The task is as follows: Given a RBM which represents the
ground state of a Hamiltonian, say �0(�) we would like to
find the wavefunction with the lowest energy but orthogonal
to �0. To that end, we define

 = �1 � ��0 (14)

where � is a complex scalar and  corresponds to an differ-
ent RBM with its own set of weights and biases. To enforce
orthogonality between  and �0, i.e. h�0| i = 0 we have to
set

� =
h�0|�1i

h�0|�0i
(15)

which can be computed in standard Monte Carlo fashion

� =
X
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�1(�)

�0(�)

◆
|�0(�)|2P
�0 |�0(�0)|2

⇡

*
�1(�)
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+

M

(16)

where M represents the average over a Monte Carlo sample
from the distribution |�0(�)|2.

The optimisation scheme then simply proceeds in two
steps:

1. Sample ground state wavefunction |�0(�)|2 to com-
pute � as in Eq. (16)

2. Perform the standard SR step on the full wavefunction
 = �1 � ��0 using the updated �.

In principle, if the overlap � can be computed exactly and the
SR step is not subject to sampling noise, one only needs to
project away the ground state component once and then the
imaginary time evolution would necessarily converge to the
first excited state. However, due to the various sources of
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method is known to be more stable than the standard gradient
descent methods. In preliminary studies, we have noticed that
optimisation with SR requires much fewer iterations to con-
verge. This faster convergence might make up for the larger
computational cost required.
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forward to adjust the weights of the network such that this
condition is satisfied, so we take a different approach.

Let log N (�) represent the value obtain from the network
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In this way, we can be assured that condition Eq. (11) is def-
initely obeyed. Minimising the energy under these constraints
then gives the lowest eigenstate in the respective momentum
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D. Excited States Without Symmetry

In topologically ordered systems, degenerate states in dis-
tinct topological sectors are not distinguishable by any sym-
metry thus in order access these state we need to use a differ-
ent method.

The task is as follows: Given a RBM which represents the
ground state of a Hamiltonian, say �0(�) we would like to
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 = �1 � ��0 (14)

where � is a complex scalar and  corresponds to an differ-
ent RBM with its own set of weights and biases. To enforce
orthogonality between  and �0, i.e. h�0| i = 0 we have to
set

� =
h�0|�1i

h�0|�0i
(15)

which can be computed in standard Monte Carlo fashion

� =
X

�

✓
�1(�)

�0(�)

◆
|�0(�)|2P
�0 |�0(�0)|2

⇡

*
�1(�)

�0(�)

+

M

(16)

where M represents the average over a Monte Carlo sample
from the distribution |�0(�)|2.
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pute � as in Eq. (16)

2. Perform the standard SR step on the full wavefunction
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In principle, if the overlap � can be computed exactly and the
SR step is not subject to sampling noise, one only needs to
project away the ground state component once and then the
imaginary time evolution would necessarily converge to the
first excited state. However, due to the various sources of
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the expansion can be rewritten as

 (↵k) =  (↵
0
k) +

pX

k=1

�↵kOk (↵
0
k) (7)

One can consider Ok as an operator which acts element wise,
i.e. a diagonal operator.

The SR scheme then proceeds by performing imaginary
time evolution which to first order is given by

 0
exact = (1� ✏Ĥ) (8)

The aim now is to determine the coefficients {�↵
0
k}k=1,...,p

corresponding to the new wavefunction 0, that minimises the
distance to  0

exact according to some chosen metric. For our
simulations we used the Fubini-Study metric

�(�, ) = arccos

s
h |�i h�| i

h | i h�|�i
. (9)

After some algebra, we obtain to first order in ✏,
X

k0

h
hO

†
kOk0i � hO

†
kihOk0i

i
�↵k0 = �✏

h
hO

†
kĤi � hO

†
kihĤi

i
.

(10)
This is the linear equation which we must solve for �↵. We
then update the the parameters as ↵k = ↵

0
k + �↵k and repeat

the procedure to convergence.
Since each SR iteration requires the inversion of a matrix,

the computation complexity of each step is O(N3
w), as com-

pared to O(Nw) for the gradient descent methods, where Nw

is the number of variational parameters. However, the SR
method is known to be more stable than the standard gradient
descent methods. In preliminary studies, we have noticed that
optimisation with SR requires much fewer iterations to con-
verge. This faster convergence might make up for the larger
computational cost required.

C. Translational Symmetry

Let us define T̂ to be a generator of the translational sym-
metry. Then a state | i has momentum k if

T̂ | i = e
ik
| i

=) h�| T̂ | i = e
ik
h�| i

=)  (T̂�1�) = e
ik (�),

(11)

where � is a configuration in the computational basis, e.g.
", ", #, . . ..

In order to obtain the eigenstates in the other momentum
sectors, we want that the networks output obeys Eq. (11).
Since the network represent the logarithm of the wavefunc-
tion, this mean log (T̂�) = ik+log (�). It is not straight-
forward to adjust the weights of the network such that this
condition is satisfied, so we take a different approach.

Let log N (�) represent the value obtain from the network
as given by Eq. (4). To obtain the amplitude of a configuration

�, we first map the configuration to the canonical configura-
tion, related by translation, corresponding to the lexicograph-
ically smallest. For example,

� = (1, 0, 1, 1, 0, 0) ! (0, 0, 1, 0, 1, 1) = T̂
2� = �canonical,

(12)
then the amplitude is given by

log (�) = 2ik + log N (�canonical) (13)

where the factor 2 comes from the fact that � is related to
�canonical by a translation by two sites T̂ 2.

In this way, we can be assured that condition Eq. (11) is def-
initely obeyed. Minimising the energy under these constraints
then gives the lowest eigenstate in the respective momentum
sector.

D. Excited States Without Symmetry

In topologically ordered systems, degenerate states in dis-
tinct topological sectors are not distinguishable by any sym-
metry thus in order access these state we need to use a differ-
ent method.

The task is as follows: Given a RBM which represents the
ground state of a Hamiltonian, say �0(�) we would like to
find the wavefunction with the lowest energy but orthogonal
to �0. To that end, we define

 = �1 � ��0 (14)

where � is a complex scalar and  corresponds to an differ-
ent RBM with its own set of weights and biases. To enforce
orthogonality between  and �0, i.e. h�0| i = 0 we have to
set

� =
h�0|�1i

h�0|�0i
(15)

which can be computed in standard Monte Carlo fashion
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where M represents the average over a Monte Carlo sample
from the distribution |�0(�)|2.

The optimisation scheme then simply proceeds in two
steps:

1. Sample ground state wavefunction |�0(�)|2 to com-
pute � as in Eq. (16)

2. Perform the standard SR step on the full wavefunction
 = �1 � ��0 using the updated �.

In principle, if the overlap � can be computed exactly and the
SR step is not subject to sampling noise, one only needs to
project away the ground state component once and then the
imaginary time evolution would necessarily converge to the
first excited state. However, due to the various sources of
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noise and possibly even numerical errors, any small compo-
nent of the ground state would grow exponentially, thus mak-
ing it necessary to constantly perform the projection.

Finally, it is important to note that due to the stochastic
nature of the optimisation, the state  necessarily contains a
small component of the ground state. In order to quantify the
accuracy of the result we can compute the normalised overlap

h�0| i

h�0|�0i
·
h |�0i

h | i
(17)

which can also be computed as Monte Carlo average. In the
simulations below, we verified that this quantity is below 1%
for a sample size of about 2000.

III. RESULTS

To test the methods introduced above, we used the peri-
odic one-dimensional spin-1/2 antiferromagnetic Heisenberg
model defined by

Ĥ = 4
LX

i=1

Ŝi · Ŝi+1 (18)

where Ŝi are the spin-1/2 operators on site i and we choose
perodc boundary conditions.

FIG. 2. Momentum Spectrum of one-dimensional Heisenberg
Model with L = 20. The blue line shows the exact values com-
puted using Lanczos algorithm in DiagHam library, green star rep-
resents the energy obtained from an RBM with M = 40 hidden
units and green dashed line indicates the relative error defined by
✏ =

���E�Eexact
Eground

���
.

We obtained the exact momentum spectrum for L = 20 us-
ing Lanczos algorithms implemented in the DiagHam library
and compared it to the values obtained with the RBM with
M = 40 hidden units. The results are shown in Fig. 2. One
can observe that the relative error ✏ =

���E�Eexact
Eground

��� is much
larger at momenta away from 0 or ⇡, possibly suggesting that
the RBM ansatz is less efficient at representing those excited

ground states. In order to obtain better accuracies at those mo-
menta, it is necessary to use more hidden units. We show also
the result for L = 40 in Fig. 3.

FIG. 3. Momentum Spectrum of one-dimensional Heisenberg
Model with L = 40 obtained from an RBM with M = 80 hid-
den units. Once again, looking at the spectrum near k = ⇡, it is
fairly evident that there is a jump in the relative error.

Next, using the 2-step method described above, we ob-
tained the energy gap from the ground state to the first excited
state as a function of system size L. The exact values were
computed using the MPS algorithm in the ALPS package3.
The results is shown in Fig. 4. Here, the hidden unit density
of �1 (see Eq. (14)) was fixed at ↵ = no. of hidden units

no. of visible units = 2,
while the ground state �0 was obtain using ↵ = 4. It is nec-
essary to compute the ground state accurately since the er-
ror necessarily propagates to the excited state wavefunction
 = �1 � ��0.

FIG. 4. Energy gap from the ground state to the first ex-
cited state of one-dimensional spin-1/2 Heisenberg Model for L =
8, 12, 16, 20, 24, 28. The blue line shows the exact values computed
using MPS in the ALPS package, the green star represents the en-
ergy gap obtained from an RBM with hidden unit density ↵ = 2.
In the inset, we plot versus 1/L, showing that the gap is inversely
proportional to system size.
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Next, using the 2-step method described above, we ob-
tained the energy gap from the ground state to the first excited
state as a function of system size L. The exact values were
computed using the MPS algorithm in the ALPS package3.
The results is shown in Fig. 4. Here, the hidden unit density
of �1 (see Eq. (14)) was fixed at ↵ = no. of hidden units

no. of visible units = 2,
while the ground state �0 was obtain using ↵ = 4. It is nec-
essary to compute the ground state accurately since the er-
ror necessarily propagates to the excited state wavefunction
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FIG. 4. Energy gap from the ground state to the first ex-
cited state of one-dimensional spin-1/2 Heisenberg Model for L =
8, 12, 16, 20, 24, 28. The blue line shows the exact values computed
using MPS in the ALPS package, the green star represents the en-
ergy gap obtained from an RBM with hidden unit density ↵ = 2.
In the inset, we plot versus 1/L, showing that the gap is inversely
proportional to system size.
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FIG. 1. (a) Momentum-resolved spectrum of the one-dimensional Heisenberg model with L = 36 spins. The blue line shows the exact values
computed using ED, the green circles represent the energy obtained from a 3-layer FFNN with hidden unit density ↵1 = 2 (↵2 = 0.5) in
the first (second) hidden layer (corresponding to 3996 free parameters) and red dots shows the energy from an RBM with hidden unit density
↵1 = 3. (b) Relative error ✏ as a function of system size, for the k = ⇡/2 state. For the RBM, we fix the hidden unit density ↵1 = 3, whereas
for the FFNN we use a density of ↵1 = 2 in the first hidden layer and a density of ↵2 = 0.5 in the second hidden layer. For the k = 0 sector
the relative error is ⇠ 10�5. (c) Energy gap from the ground state to the first excited state of one-dimensional spin-1/2 Heisenberg model.
The blue line shows the exact values computed using ED, the green circles represents the energy gap obtained from an RBM with hidden unit
density ↵ = 2. FFNN results are identical to the RBM ones and are thus not shown here. In the inset, we plot versus 1/L, showing that the
gap is inversely proportional to system size. The relative error of the excited states obtained is less than 3⇥ 10�4 for all cases.

are not distinguished by good quantum numbers, for instance
in topologically ordered systems or in spin glasses. In this
case, the following procedure can be applied. The task is
as follows: Given an ANN variational wave function which
represents the ground state of a Hamiltonian, say �0(�) we
would like to find the wavefunction  with the lowest energy
but orthogonal to �0. To that end, we define

 = �1 � ��0 (10)

where � is a complex scalar and �1 corresponds to a different
ANN variational wave function with its own set of weights
and biases. To enforce orthogonality between  and �0, i.e.
h�0| i = 0 we set � = h�0|�1i

h�0|�0i , which can be computed in
standard Monte Carlo fashion

� =
X

�

✓
�1(�)

�0(�)

◆
|�0(�)|2P
�0 |�0(�0)|2

⇡

*
�1(�)

�0(�)

+

Ns

(11)

where the average is carried over Ns samples generated from
the distribution |�0(�)|2 through Monte Carlo sampling.

The optimization scheme then proceeds in two steps:

1. Sample the ground state wavefunction |�0(�)|2 to
compute � as in Eq. (11)

2. Perform the imaginary time evolution with stochastic
reconfiguration [28] on the full wavefunction = �1�

��0 using the updated �.

In principle, if the overlap � can be computed exactly and
the stochastic reconfiguration step is not subject to sampling
noise or approximation errors [see Eq. (18)], one only needs
to project away the ground state component once and then
the imaginary time evolution would necessarily converge to
the first excited state. However, due to the various sources of

noise and possibly even numerical errors, any small compo-
nent of the ground state would grow exponentially, thus mak-
ing it necessary to constantly perform the projection.

Finally, it is important to note that due to the stochastic na-
ture of the optimization, the state  is not exactly orthogonal
to the ground state. In order to quantify the accuracy of the
result we can compute the normalized overlap

h�0| i

h�0|�0i

h |�0i

h | i
, (12)

which can also be computed as a Monte Carlo average.
Results — To test the two methods introduced above, we

study two one-dimensional benchmark models: the spin-1/2
antiferromagnetic Heisenberg chain and the Bose-Hubbard
chain. The former is defined by the Hamiltonian

Ĥ = 4
LX

i=1

Ŝi · Ŝi+1, (13)

where Ŝi are the spin-1/2 operators on site i and we choose
periodic boundary conditions. The momentum-resolved
spectrum of this model can be obtained using the Bethe
ansatz [29].

As a first benchmark, we computed the momentum spec-
trum of the model with L = 36 sites using both the RBM
and the 3-layer deep FFNN and compared them to the results
from exact diagonalization (ED). We set the hidden unit den-
sity defined by ↵n = Mn/L to be ↵1 = 3 for the RBM and
↵1 = 2 (↵2 = 0.5) for the first (second) layer of the FFNN.
The ANN results, compared to those obtained from ED are
shown in Fig. 1(a). One can observe that the relative error
✏ = |(E � Eexact)/Eground| is much larger for higher energy
states, i.e., for momenta away from 0 or ⇡. Moreover, the
relative error for the RBM is higher than that of the 3-layer
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Summary of Optimisation Parameters

For the simulations done in this paper, the main optimisation parameters are: (1) regularisation parameter �, (2) learning rate
✏, (3) Number of replicas for parallel tempering, (4) Number of samples for the Monte Carlo average, (5) standard deviation, �,
of initial parameters (the parameters are initialised with a normal distribution with a zero mean value and a standard deviation
of �). The choice of these parameters for the various simulations are given in the table below.

RBM RBM (Gap) 3-layer FFNN
Regularisation, � 0.01 0.001 0.01
Learning Rate, ✏ 0.01 0.01 0.01
Number of Parallel Tempering Replicas n.a. n.a. 100-200
Number of Samples ⇠ number of parameters
Initial Standard Deviation, � 0.01 0.01 Layer n: 0.3/Mn

Computational Time: ANN vs ED

In Fig. 3, we compare the computational time of the RBM versus that of ED. For the system sizes presented here, the RBM
generally requires more computational time and resource. However, it is clear that while the time for the ED calculations scales
exponentially with system size, the RBM only scales polynomially. The FFNN with a similar number of parameters as the RBM
generally takes a similar amount of time.

FIG. 3. Computational time of the RBM and ED for the one-dimensional spin half Heisenberg model. The RBM used has a hidden unit density
of ↵1 = 3. The number of samples used is fixed at 5000 and the number of iterations is 10000. The computational time shown for RBM and
ED is the wall time of the whole process executed on 28 cores of the Intel(R) Xeon(R) CPU E5-2690 v4 and 12 cores of the Intel Dual Xeon
2630 respectively.

Convergence

In Fig. 4 show here the typical convergence properties of the two schemes introduced in the main text.

9

(a) (b)

FIG. 4. Convergence properties of the optimisation scheme. The red line shows the average energy of the previous 100 iterations. Dash lines
indicates the exact values. (a) First excited state of the L = 28 one-dimensional spin half Heisenberg model using the 2-step method involving
the sum of two RBM. (b) Bose Hubbard model with N = 10 bosons in L = 10 sites at momentum k = 8⇡/10 using the two-layer FFNN.

Scaling and performance

Spin-1/2 Heisenberg antiferromagnet 


hard to compare computational cost 
here: CPU wall-times

Typical convergence behavior



2D frustrated magnets: 
J1-J2 model on square lattice

J1

J2

H = J1

X

NN

Si · Sj + J2

X

NNN

Si · Sj

Spin-1/2 Heisenberg model


highly frustrated for J1~J2; sign problem


extensively studied (ED, DMRG, VMC, …)

J2/J1
0 0.5

staggered stripe?



The Go challenge

October 2015 
2nd dan

March 2016 
9th dan

May 2017 
world champion 

J1-J2 challenge

VMC

DMRG

ED



Convolutional, complex, deep

12 10 8 6 4 2 avg 
poolingNo of filters:

~ 3000 parameters independent of system size



Results

Best energies in small or large J2/J1

worse in the middle

ENERGIES 

10x10 lattice

ORDER PARAMETER 

6x6 lattice

VMC [W.-J. Hu, F. Becca, A. Parola, and S. Sorella, PRB 88, 060402 (2013)] 
DMRG [S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, PRL 113, 027201 (2014)] 
NN [X. Liang, W.-Y. Liu, P.-Z. Lin, G.-C. Guo, Y.-S. Zhang, and L. He, PRB 98, 104426 (2018)]  
(10000 parameters)



Comparison for 10x10 lattice

ED 
completely unbiased 

2100 parameters, 260 terrabyte 

1 lightyear stack of hard disks

DMRG 
entanglement bias

universal ansatz

O(million) parameters

VMC 
physics-inspired, problem-specific ansatz

few parameters

Neural network states 
unknown bias

universal ansatz

~3000 parameters
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Summary Part II

• Neural networks: powerful class of variational quantum states

• FFNN better than RBM

• deeper, convolutional is better

• implementation of nonlocal symmetries

• access to low-lying excited states

• depending on model and regime: competitive with established 

techniques



PART III Quantum machine learning



Goal: Use quantum architectures for machine 
learning tasks

Input Output

Fundamental difference: 

- neural networks are nonlinear 
- quantum evolution is unitary (=linear) 

Nonlinearity through measurement step



Network architecture

Inspired by matrix product states 

Inscribe data in initial state (only real wave functions):
Discriminative network
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6 free parameters per 
unitary 

[M. Stoudenmire and D. J. Schwab, arXiv: 1605.05775.] 
[I. Glasser, N. Pancotti, J I. Cirac, arXiv:1806.05964.]



The balance problem

• Discriminative task

weight 1

weight 2

distance 2
distance 1

• Given the four parameters, the network has to decide to which side
the balance tilts

• Quantum circuit from the used network architecture

|�(x1)i
U1

|�(x2)i
U2

|�(x3)i
U3

|�(x4)i

Toy problem: Balance

Training data:  
arm length and weight of a scale 

Label: 
scale tips left or right

The balance problem

• Discriminative task

weight 1

weight 2

distance 2
distance 1

• Given the four parameters, the network has to decide to which side
the balance tilts

• Quantum circuit from the used network architecture

|�(x1)i
U1

|�(x2)i
U2

|�(x3)i
U3

|�(x4)i

Training on classical computer

The balance problem

• Training of a simulated network

• No errors taken into account for simulations

• Finally achieved accuracies

training set test set

accuracy 0.97 0.95

The balance problem

• Applied the circuit on a quantum computer

• Quantum hardware has errors

coupled qubits [0,1] [1,2] [2,3]

CNOT error rate 0.023 0.019 0.015

• Additional readout-error of 0.037

• We consider the sample as correctly labeled if the probability of
assigning the correct label is p � 0.5

• Final result

measured on quantum computer predicted

accuracy on test set 0.94 0.95
loss on test set 0.031 0.023

Performance of trained network on IBM Q 20 Tokyo  
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Summary

• NN are performant aids for some tasks

• interpretability/scientific rigor biggest challenge

• performant even with small input

PI: Phase classification

• promising short-term application for analogue 
quantum computers due to statistical nature


• no rigorous performance results 

The balance problem

• Discriminative task

weight 1

weight 2

distance 2
distance 1

• Given the four parameters, the network has to decide to which side
the balance tilts

• Quantum circuit from the used network architecture

|�(x1)i
U1

|�(x2)i
U2

|�(x3)i
U3

|�(x4)i

PIII: Quantum Machine Learning 

PII: Variational Wave functions 
• potentially powerful new approach to many-

body quantum systems

• companion tool for quantum simulators

Probing many-body localization with neural networks

Frank Schindler,1 Nicolas Regnault,2 and Titus Neupert1
1Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

2Laboratoire Pierre Aigrain, Département de physique de l’ENS, Ecole normale supérieure,
PSL Research University, Université Paris Diderot, Sorbonne Paris Cité,

Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
(Dated: April 11, 2017)

We show that a simple artificial neural network trained on entanglement spectra of individual states of a
many-body quantum system can be used to determine the transition between a many-body localized and a
thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We
employ a multilayer perceptron with a single hidden layer, which is trained on labelled entanglement spectra
pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra
belonging to states in the transition region. For training, we use a cost function that contains, in addition to the
usual error and regularization parts, a term that favors a confident classification of the transition region states.
The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can
be computed for small systems. Furthermore, we map out the structure of eigenstates across the transition with
spatial resolution. We test the robustness of these results against providing the input data in alternate forms,
such as the level spacings of the entanglement spectra, and analyze the network operation using the dreaming
technique.

I. INTRODUCTION

Artificial neural networks are routinely employed for data
classification. They are useful when features distinguishing
one class of data from another are unknown or unwieldy. A
neural network can learn such features from examples, i.e.,
a set of labelled training data. In physics, the application of
neural networks, and machine learning in general, to many-
body quantum mechanics is a novel and burgeoning field
of research.1 Currently, there are three main lines of pur-
suit: The application of machine learning to the problem of
classifying various phases of matter2–8, accelerating material
searches and design9–12, and the quest to encode quantum me-
chanical states in structures mimicking the setup of a neural
network13–15. This work is concerned with the first kind of
approach. Most previous studies have considered the iden-
tification of phases and phase transitions by training neural
networks on a large set of prototype configurations. Here,
we instead use entanglement spectra16, which in recent years
emerged as a powerful tool to characterize of a plethora of
physical systems, and have been employed for a neural net-
work based detection of phase transitions in Ref. 7.

We apply neural network based phase classification to a
fundamental question in quantum statistical physics, namely
the distinction between systems that obey the eigenstate ther-
malization hypothesis (ETH) and those violating it. Accord-
ing to the ETH, local observables in a typical many-body
eigenstate should take the values that pertain to the observ-
ables in a thermal ensemble, with the whole system acting
as a heat bath for its subsystems in the thermodynamic limit.
A well-studied class of systems that violate the ETH are
those exhibiting many-body localization (MBL)17–24, mean-
ing that partial memory of initial conditions is preserved for
infinite times. Due to this property, which is intimately re-
lated to the emergence of an extensive number of integrals of
motion22,25–27, MBL systems have been envisioned as particu-
larly robust quantum memories.28 Here, we study the Heisen-

FIG. 1. Phase diagram of the Heisenberg chain with Hamiltonian (5)
obtained from the neural network ansatz in Eq. (7) trained with cost
function (8) on entanglement spectra obtained from an exact diago-
nalization of the Hamiltonian (5) on N = 16 sites. The plot shows
the average confidence for the MBL phase over 40 realizations of
disorder as a function of the absolute values of the random magnetic
field h̄, spaced with �h̄ = 0.125, and for eigenstates belonging
to different rescaled energies ✏ = (E � Emin)/(Emax � Emin).
Compared to Ref. 17 where a similar plot was obtained with better-
controlled, yet more sophisticated methods, we have used smaller
systems and fewer disorder realizations.

berg chain in a random field as a simple model for MBL. At
strong disorder, the model is in the MBL regime, whereas it
satisfies the ETH if disorder is weak. Several measures or
quantities allow a well-controlled quantitative distinction of
thermal and localized regimes. They have been used to study
the ETH-MBL transition in finite size numerical simulations,
in particular for an extensive analysis of the Heisenberg model
in a random field. These characterizing quantities include en-


