Titus Neupert

KITP, Feb 142019

Applications of Neural Networks in Condensed Matter Physics

Number of cond-mat papers with "machine learning" in the abstract

Kenny Choo (U Zurich)

Frank Schindler
(U Zurich)

Giuseppe Carleo (Flatiron) Nicolas Regnault (ENS Paris) Johan Chang (UZH)
Pascal M. Vecsei (UZH) Ruben Beynon (UZH)

Elmer V. H. Doggen (KIT) Konstantin S. Tikhonov (KIT) Alexander D. Mirlin (KIT)
Dmitry G. Polyakov (KIT) Igor V. Gornyi (KIT)

University of Zurich ${ }^{\text {UZH }}$

PART || Phase classification

Condensed matter physics is a classification problem

Phase classification (fully supervised)

[Vecsei et al., arXiv:1812.05625]

Example: find crystall structure (space group/crystal system classification) from X-ray diffraction (XRD) patterns

classification in one of 230 space groups

University of Zurich ${ }^{\text {UZH }}$

Phase classification (fully supervised)

[Vecsei et al., arXiv:1812.05625]

Results:

quite messy experimental data on natural crystals

	Crystal systems		Space groups	
	Test set	RRUFF	Test set	RRUFF
Convolutional	85%	56%	76%	42%
Dense	73%	70%	57%	54%

If network can be uncertain about $\sim 50 \%$ of the cases

Phase classification in unknown phase diagram

Objective:
Classification of phases of matter using correlation functions Supervised learning:
Training deep in the phase

Determine phase boundary:
Apply to states for which classification is less clear

Toy problem: Many-body localization

Standard model of MBL: spin-1/2 Heisenberg chain, open boundary conditions

$$
H=J \sum_{\mathrm{r}=1}^{N-1} \boldsymbol{S}_{\mathrm{r}} \cdot \boldsymbol{S}_{\mathrm{r}+1}+\sum_{\mathrm{r}=1}^{N} h_{\mathrm{r}} S_{\mathrm{r}}^{z}
$$

$$
J=1
$$

$$
h_{r} \in[-\bar{h}, \bar{h}]
$$

$\bar{h} \ll 1$ thermalizing regime (obeys ETH)
volume law entanglement
$\bar{h} \gg 1$ many-body localized regime area law entanglement (constant in 1D)
regimes defined for states at finite energy density (not ground state)
Solve with ED: $\mathrm{N}=\ldots 12,14,16,18$ site chain; use $U(1)$ symmetry

Conventional classification methods

based on energy level spectrum or entanglement entropy/spectrum

$$
\rho_{A}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi| \equiv e^{-H_{\mathrm{e}}}
$$

crude

i) Schmidt gap: $\lambda_{1}\left(\rho_{A}\right)-\lambda_{2}\left(\rho_{A}\right) \quad \rightarrow 1 \quad$ for MBL (nearly pure)
needs finite size scaling
ii) Volume vs. area law scaling of $S(N$
iii) Standard deviation of $S\left(N_{A}\right)$ phase transition does not correspond to maximum es large near the transition where both VIBL and EIATHKe states coexist
iii) Level statistics of either the entanglement spectrum or the energy spectrum follow distinct statistical distributions in each regime

Plain vanilla neural network

Input:
entanglement spectra
..

n_{1} input
neurons

Output:

confidence for

Binary classification

$$
\hat{f}(x)=\operatorname{Softmax}\left[V^{(3,2)} \operatorname{ReLu}\left(V^{(2,1)} x+a^{(2)}\right)+a^{(3)}\right]
$$

$\operatorname{ReLu}_{i}(x)=x_{i} \theta\left(x_{i}\right)$

Simplicity:

- plain vanilla
- 1 hidden layer
- activation functions ReLu and Softmax

University of Zurich ${ }^{\text {UZH }}$

Cost function and regularization

University of Zurich ${ }^{\text {UZH }}$

Results: Disorder-averaged phase diagram

Robust against choice of input data:
a) entanglement spectrum
b) differences in entanglement spectrum

Volume law coefficient of the entanglement entropy

Confidence for MBL averaged over disorder realization and eigenstates

- fewer disorder realizations (40)
- smaller system ($\mathrm{N}=16$)

Results: Transition in single disorder realization

standard deviation of entanglement entropy over 512 consecutive eigenstates

fraction of uncertainly classified states (out of 512 consecutive states)
output >0.9 taken as certain

Dreaming: What the network has learned

Dreaming: What the network has learned

Creation by

- modify inp reached
- input is ins
- repeat with
- initial input

Shape reproduced, magnitude not
Reproduces power-law form of entanglement spectra
[Serbyn et al., PRL 2016]

Summary Part

- great performance, comparable to established (physical) methods
- works with lless data than physical quantities
- simple and natural choice of network and cost function; no tweaking; confidence optimization
- blueprint for other phase classification applications using NNs

Problems

- quantitative correctness not guaranteed
- discovery of new phases
- interpretability

Advantages

- simple and performant
- no physical insight about phase characteristics needed

University of Zurich ${ }^{\text {UZH }}$

Neural networks as variational wave functions for quantum many-body problems

Explore utility of neural networks as variational wave functions

[G. Carleo and M. Troyer, Science 355 (2017)]

Network represents one (compressed) many-body quantum state

Determine eigenstates of a given Hamiltonian variationally
Promise: also works for long-range entangled states (topologically ordered, Chern insulators, chiral p-wave superconductors, ...)
[D. L. Deng et al., Phys. Rev. X, Phys. Rev. X 7, 021021]
University of Zurich ${ }^{\text {UZH }}$

2 problems

Compute simultaneous eigenstates of (non-local) symmetries and of the Hamiltonian

- dispersion of excitations
- target specific excited states

2) Compute (at least low-lying) excited states

- gaps
- (topological) degeneracies

Goal: a method that would be ready to compete with ED and DMRG for generic problems

Network architecture

Random Boltzmann machine (one hidden layer)

$$
\begin{aligned}
& \Psi(\boldsymbol{\sigma})=\sum_{\boldsymbol{h}} e^{\sum_{j} a_{j} \sigma_{j}+\sum_{i} b_{i} h_{j}+\sum_{i j} h_{i} W_{i j} \sigma_{j}} \\
& \log (\Psi(\boldsymbol{\sigma}))=\sum_{\text {hidden spins }} a_{j} \sigma_{j}+\sum_{i} \log \left[\cosh \left(b_{i}+\sum_{j} W_{i j} \sigma_{j}\right)\right]
\end{aligned}
$$

no direct probabilistic interpretation due to complex numbers
Feed forward neural network with one hidden layer and log(cosh) activation function

$$
\log (\Psi(\boldsymbol{\sigma}))=b+\sum_{i} w_{i} \log \left[\cosh \left(b_{i}+\sum_{j} W_{i j} \sigma_{j}\right)\right]
$$

Problem 1) Symmetries

How to implement nonlocal symmetries?

$$
\Psi(\boldsymbol{\sigma}) \longleftrightarrow \Psi\left(\boldsymbol{\sigma}^{\prime}\right)
$$

Linear operators in Hilbert space, but RBM is a nonlinear function No natural way to extend action to hidden spins

Example: Translation symmetry (by lattice spacing)
Eigenstate satisfies:

$$
\begin{gathered}
\hat{T}|\Psi\rangle=e^{i k}|\Psi\rangle \\
\Longrightarrow\langle\boldsymbol{\sigma}| \hat{T}|\Psi\rangle=e^{i k}\langle\boldsymbol{\sigma} \mid \Psi\rangle \\
\Longrightarrow \Psi\left(\hat{T}^{-1} \boldsymbol{\sigma}\right)=e^{i k} \Psi(\boldsymbol{\sigma}), \\
\log \Psi(\hat{T} \boldsymbol{\sigma})=i k+\log \Psi(\boldsymbol{\sigma})
\end{gathered}
$$

nonlinear constraint on weights and biases

Solution: only evaluate network in canonical configurations and compute others

$$
\boldsymbol{\sigma}=(1,0,1,1,0,0) \rightarrow(0,0,1,0,1,1)=\hat{T}^{2} \boldsymbol{\sigma}=\boldsymbol{\sigma}_{\text {canonical }}
$$

$$
\log \Psi(\boldsymbol{\sigma})=2 i k+\log \Psi_{N}\left(\boldsymbol{\sigma}_{\text {canonical }}\right)
$$

University of

Results 1) Symmetries

Spin-1/2 Heisenberg antiferromagnet

PBC, 36 sites, 72 hidden units

~4000 network parameters
VS.
3×10^{9} parameters in ED wave function

Results 1) Symmetries

Bose-Hubbard chain $\quad \hat{H}=-t \sum_{i=1}^{L}\left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1}+\right.$ h.c. $)+\frac{U}{2} \sum_{i=1}^{L} \hat{n}_{i}\left(\hat{n}_{i}-1\right) \quad \mathrm{U}=1$

(b) 40 sites, 40 bosons

~6500 network parameters
vs. 5×10^{22} in ED state

Problem 2) Excited states

Found ground state $\Psi_{0}(\boldsymbol{\sigma})$, want to find lowest excited state.

$$
\Psi=\Phi_{1}-\lambda \Phi_{0}
$$

$$
\lambda=\frac{\left\langle\Phi_{0} \mid \Phi_{1}\right\rangle}{\left\langle\Phi_{0} \mid \Phi_{0}\right\rangle} \quad \lambda=\sum_{\boldsymbol{\sigma}}\left(\frac{\Phi_{1}(\boldsymbol{\sigma})}{\Phi_{0}(\boldsymbol{\sigma})}\right) \frac{\left|\Phi_{0}(\boldsymbol{\sigma})\right|^{2}}{\sum_{\boldsymbol{\sigma}^{\prime}}\left|\Phi_{0}\left(\boldsymbol{\sigma}^{\prime}\right)\right|^{2}} \approx\left\langle\frac{\Phi_{1}(\boldsymbol{\sigma})}{\Phi_{0}(\boldsymbol{\sigma})}\right\rangle_{M}
$$

$$
\left\langle\Phi_{0} \mid \Psi\right\rangle=0 \quad \text { orthogonal state }
$$

1) get trial state Φ_{1}
2) sample ground state wave function to compute λ
3) perform stochastic reconfiguration step with $\Psi=\Phi_{1}-\lambda \Phi_{0}$

Error $\frac{\left\langle\Phi_{0} \mid \Psi\right\rangle}{\left\langle\Phi_{0} \mid \Phi_{0}\right\rangle} \cdot \frac{\left\langle\Psi \mid \Phi_{0}\right\rangle}{\langle\Psi \mid \Psi\rangle}$ (residual ground state overlap) remains below 1\% for sample size of 2000.

Results 2) Excited states

Spin-1/2 Heisenberg antiferromagnet

$$
\hat{H}=4 \sum_{i=1}^{L} \hat{\boldsymbol{S}}_{i} \cdot \hat{\boldsymbol{S}}_{i+1}
$$

$4 \mathrm{~L}(2 \mathrm{~L})$ hidden units in ground (excited) state
University of Zurich ${ }^{\text {VZH }}$

Scaling and performance

Typical convergence behavior

Spin-1/2 Heisenberg antiferromagnet
hard to compare computational cost here: CPU wall-times

2D frustrated magnets: $\mathrm{J}_{1}-\mathrm{J}_{2}$ model on square lattice

$$
H=J_{1} \sum_{\mathrm{NN}} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}+J_{2} \sum_{\mathrm{NNN}} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}
$$

Spin-1/2 Heisenberg model
highly frustrated for $\mathrm{J}_{1} \sim \mathrm{~J}_{2}$; sign problem

extensively studied (ED, DMRG, VMC, ...)
staggered

stripe

University of Zurich ${ }^{\text {UZ }}$

The Go challenge

$\mathrm{J}_{1}-\mathrm{J}_{2}$ challenge

ED

VMC

DMRG

Convolutional, complex, deep

~ 3000 parameters independent of system size

University of Zurich ${ }^{\text {vin }}$

Results

ENERGIES
10×10 lattice

ORDER PARAMETER

6x6 lattice

VMC [W.-J. Hu, F. Becca, A. Parola, and S. Sorella, PRB 88, 060402 (2013)]
DMRG [S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, PRL 113, 027201 (2014)] NN [X. Liang, W.-Y. Liu, P.-Z. Lin, G.-C. Guo, Y.-S. Zhang, and L. He, PRB 98, 104426 (2018)] (10000 parameters)

Best energies in small or large $\mathrm{J}_{2} / \mathrm{J}_{1}$ worse in the middle

University of Zurich ${ }^{\text {VZH }}$

Comparison for 10x10 lattice

ED

completely unbiased
2^{100} parameters, 260 terrabyte
1 lightyear stack of hard disks

DMRG

entanglement bias

universal ansatz
O(million) parameters

VMC

physics-inspired, problem-specific ansatz
few parameters
Neural network states
unknown bias
universal ansatz
~3000 parameters

University of Zurich ${ }^{\text {UZH }}$

Summary Part II

- Neural networks: powerful class of variational quantum states
- FFNN better than RBM
- deeper, convolutional is better
- implementation of nonlocal symmetries
- access to low-lying excited states
- depending on model and regime: competitive with established techniques

PART IIII Quantum machine learning

Goal: Use quantum architectures for machine learning tasks

Fundamental difference:

- neural networks are nonliinear
- quantum evolution is unitary (=linear)

Nonlinearity through measurement step

Network architecture

Inspired by matrix product states
[M. Stoudenmire and D. J. Schwab, arXiv: 1605.05775.]
[I. Glasser, N. Pancotti, JI. Cirac, arXiv:1806.05964.]
Inscribe data in initial state (only real wave functions):

$$
|\Phi(\boldsymbol{x})\rangle=\left[\begin{array}{c}
\cos \left(\frac{\pi}{2} x_{1}\right) \\
\sin \left(\frac{\pi}{2} x_{1}\right)
\end{array}\right] \otimes\left[\begin{array}{c}
\cos \left(\frac{\pi}{2} x_{2}\right) \\
\sin \left(\frac{\pi}{2} x_{2}\right)
\end{array}\right] \otimes \cdots \otimes\left[\begin{array}{c}
\cos \left(\frac{\pi}{2} x_{N}\right) \\
\sin \left(\frac{\pi}{2} x_{N}\right)
\end{array}\right]
$$

Network of successively applied unitaries

6 free parameters per unitary

Toy problem: Balance

Training data:

arm length and weight of a scale

Label:
scale tips left or right

Training on classical computer

	training set	test set
accuracy	0.97	0.95

Performance of trained network on IBM Q 20 Tokyo

	measured on quantum computer	predicted
accuracy on test set	0.94	
loss on test set	0.031	0.95

Summary

Ple Phase classification

- NN are performant aids for some tasks
- interpretability/scientific rigor biggest challenge - performant even with small input

PII: Variational Wave functions

- potentially powerful new approach to manybody quantum systems
- companion tool for quantum simulators

PIII: Quantum Machine Learning

- promising short-term application for analogue quantum computers due to statistical nature
- no rigorous performance results

University of Zurich ${ }^{\text {SZH }}$

