$\nu=\frac{5}{2}$ qubit: what makes us hopeful?

KITP lowdim09 18 February 2009
Rudolf Morf, Paul Scherrer Institute, Switzerland

Collaborators

Maurizio Storni, PSI+ETH
Nicholas d'Ambrumenil, Warwick
Sankar Das Sarma, Maryland

Acknowledgments

Bert Halperin, Harvard
Jim Eisenstein, Cal Tech (long time ago, 1998)
Swiss National Science Foundation and ETH Zurich

- adiabatic continuity between Coulomb GS and Pfaffian for systems with $N \leq 18$ electrons
- phase diagram in pseudopotential plane: Gapped phase coincides with Pfaffian phase
- preliminary evidence for braiding in systems with 4 quasiholes
- overview of the history of $\nu=\frac{5}{2}$

Adiabatic continuity between Pfaffian and Coulomb GS?

M. Storni, RM, Sankar Das Sarma (arXiv:0812.2691)

Study system in the presence of a hypothetical interaction

$$
V_{i n t}=(1-x) V_{\text {Coulomb }}+x \lambda V_{3 b o d y}
$$

which interpolates between Coulomb and the three-body interaction when x is varied from 0 to 1 . The parameter λ sets the energy scale of the 3 -body interaction such that the gap at $x=1$ coincides with the Coulomb gap in the second Landau level.

We compare $\nu=5 / 2$ with $\nu=1 / 2:(N=16)$

- evidence of adiabatic continuity between Pfaffian and Coulomb GS at $\nu=2+\frac{1}{2}$
- no adiabatic continuity between Pfaffian and Coulomb GS at $\nu=\frac{1}{2}$

What about the effects of a finite width (of the wave function perpendicular to the plane of the 2DEG?
May there be a Pfaffian-like state realized at $\nu=1 / 2$ for sufficiently large width?

gap for larger system sizes do not allow a definite prediction if for any value of the width parameter, there may exist a Pfaffian-phase at $\nu=1 / 2$

Phase diagram in the v_{1}, v_{3}-plane at $\mathrm{N}=16$

Blue (Red) curve denotes the physically accessible (v_{1}, v_{3}) points in lowest (second) Landau level when varying the finite width of the wf in the z-direction. The points refer to values $w / \ell_{0}=0,1,2,3,4$ starting right. The domain coloured in light blue is compressible.

The red line referring to the $\left(v_{1}, v_{3}\right)$-values accessible at $\nu=1 / 2$ are so close to the compressible domain that no definite conclusion can be reached on the existence of a Pfaffian phase at $\nu=1 / 2$.

Gapped phase coincides with $\left(v_{1}, v_{3}\right)$-domain of finite overlap between the $\operatorname{GS}\left(v_{1}, v_{3}\right)$ and the Pfaffian

What about quasiholes and quasiparticles in the Coulomb GS at $5 / 2$?

Densities shown are the real ones in the second LL (not their lowest LL image).
quasihole and quasiparticle are very large with diameter $d_{q h} \approx 8 \ell_{0}$ and $d_{q p} \approx 15 \ell_{0}$

Can we braid quasiholes? Use 4 quasiholes on sphere!

we "braid" by rotating the top two around the north pole by 180 degrees, thereby exchanging their positions.
at $\quad \nu=5 / 2$

$$
\text { at } \quad \nu=1 / 3
$$

$$
\nu=5 / 2
$$

- Lowest two levels are coupled together on braiding
- Tiny level splitting at avoided crossing, but overlaps between states large when crossing
- Maximum spacing between lowest two levels \approx gap / 4
$\nu=1 / 3$
- Lowest level entirely uncoupled

This makes us hopeful:

- Adiabatic continuity at $\nu=5 / 2$ between Pfaffian and Coulomb GS for all sizes studied ($N \leq 18$).
- The gapped phase at $\nu=5 / 2$ observed in the plane of pseudopontials v_{1}, v_{3} coincides with the domain of non-zero overlap between the overlap of the $\operatorname{GS}\left(v_{1}, v_{3}\right)$ with the Pfaffian state.
- Maximum overlap between GS and Pfaffian essentially coincides with gap maximum when varying v_{1} and keeping v_{3} fixed.
- Evidence of braiding seen in evolution of spectrum when positions of quasiparticles are quasi-adiabatically interchanged

Open Problems:

- No adiabatic continuity at $\nu=1 / 2$ between Pfaffian and Coulomb GS. Yet, for some system sizes and for finite width, adiabatic continuity is observed: Existence of Pfaffian state at $\nu=1 / 2$ in the thermodynamic limit under special conditions?
- What is the nature of the phas at $\nu=5 / 2$ when v_{1} is reduced by about $10-15$ percent below its Coulomb value in the second LL?
- Theory of disorder effects in FQH states needed!
- Role of spin at $\nu=5 / 2$?

Appendix: a short overview of the early history of $\nu=5 / 2$

Cf. also references concerning $\nu=5 / 2$ in Nayak, Simon, Stern, Freedman and Das Sarma, RMP 80, 1083 (2008) First observation of FQH state at $\nu=5 / 2$: Willett et al. PRL 59, 1776 (1987)

Collapse of $\nu=5 / 2$ state in tilted field:
Eisenstein et al. PRL 61, 997 (1988)

Activation energy of $\rho_{x x}$ in a tilted field: Eisenstein et al., Surf. Sci. 229, 31 (1990)

Conclusions from Experiment

FQH-plateau at $\nu=5 / 2$
Gap decreases in tilted field - gap reduction $\propto B_{t o t}$
Transition to compressible state for $B_{t o t} \geq B_{t o t}^{c}$
Simplest scenario - generally believed for 10 years until 1998

- FQH state at most partially polarized or fully unpolarized (cf. $\nu=8 / 5$)
- lowest energy excitations involve spin flip - gain in Zeeman energy
- Transition to gapless fully polarized state at $B=B_{c}$ induced by Zeeman energy

FQH states in half-filled Landau levels

Theoretical ideas

Halperin (1983): generalization of Laughlin wf (bilayers or spin)

$$
\Psi_{m m n}=\prod_{i<k}^{N / 2}\left(z_{i}-z_{k}\right)^{m}\left(w_{i}-w_{k}\right)^{m}\left(z_{i}-w_{k}\right)^{n} \times \text { Gaussian }
$$

$$
\text { Fill Factor } \nu=\frac{2}{m+n}
$$

- example $\nu=2 / 5$ spin-singlet state for $m=3, \quad n=2$ (observed by Eisenstein et al. 1988)
- $\nu=1 / 2$: for bilayer systems: z_{i} electrons in layer $1, w_{i}$ electrons in layer 2

Halperin (1983) Pair Wave Function

grouping electrons into pairs, triplets or k-tuplets

charge of cluster $e^{*}=k e$
magnetic length for electrons $\ell_{0}=\sqrt{\hbar c / e B}$
magnetic length for clusters $\ell_{*}=\sqrt{\hbar c / k e B}=\ell_{0} / \sqrt{k}$
Filling fraction for electrons $\nu=n \times 2 \pi \ell_{0}^{2}$
density of clusters $n^{*}=n / k$
What is filling ν^{*} for cluster particles? $\nu^{*}=n^{*} \times 2 \pi \ell_{*}^{2}=\frac{\nu}{k^{2}}$

Laughlin wf for k-tuplet of electrons

$$
\psi_{\nu^{*}}=\prod_{i<j}^{N / k}\left(Z_{i}-Z_{k}\right)^{m^{*}} \times \exp \left(-\sum_{i=1}^{N / k}\left|Z_{i}\right|^{2} /\left(4 \ell_{*}^{2}\right)\right)
$$

What are the charges of excitations in this system?
Form quasihole wave function in terms of cluster coordinates Z_{i} with quasihole at Z_{0}

$$
\psi_{\nu^{*}}^{(+)}=\prod_{i=1}^{N / k}\left(Z_{i}-Z_{0}\right) \times \psi_{\nu^{*}}
$$

Quasihole charge $\quad q^{*}=\frac{e^{*}}{m^{*}}$
Paired state $(k=2)$ at $\quad \nu=\frac{1}{2}, \quad \nu^{*}=\frac{1}{8}$

$$
m^{*}=\frac{1}{\nu^{*}}=\frac{k^{2}}{\nu}=8, \quad q^{*}=\frac{e}{4}
$$

Adding 1 unit of flux creates 2 quasiholes with charge $\frac{e}{4}$

Haldane and Rezayi (1988) spin-singlet state (s-wave paired state).
Let $z_{i}=z_{i}^{\uparrow}$ and $w_{i}=z_{i}^{\downarrow}$

$$
\Psi_{H R}=\Psi_{331} \times \text { permanent } \frac{1}{z_{i}-w_{k}} \equiv \Psi_{2} \times \operatorname{det} \frac{1}{\left(z_{i}^{\uparrow}-z_{k}^{\downarrow}\right)^{2}}
$$

Moore and Read (1991) cf. also Greiter, Wen and Wilczek (1991): spin polarized p-wave paired wave function

$$
\Psi_{M R}=\Psi_{2} \times \operatorname{Pf} \frac{1}{z_{i}-z_{k}}
$$

Pfaffian (antisymmetric function of all variables) defined by

$$
\operatorname{Pf} \frac{1}{z_{i}-z_{k}}=\sum_{P \in S_{N}}(-1)^{\sigma_{P}} \prod_{i=1}^{N / 2} \frac{1}{z_{P[i]}-z_{P[i+N / 2]}}
$$

is exact ground state (zero-energy state) for special 3-body interaction

$$
V_{3 b o d y}=\prod_{i<k<m}^{N} \mathcal{S}\left(\nabla_{k}^{2} \nabla_{m}^{4} \delta\left(z_{i}-z_{k}\right) \delta\left(z_{i}-z_{m}\right)\right)
$$

Note $\Psi_{M R} \equiv A \Psi_{331}$ on disk and sphere, A is the antisymmetrizer. More complicated on torus.

2 quasihole excitation:

$$
\Psi_{M R+2 q h}=\Psi_{2} \times \operatorname{Pf} \frac{\left(z_{i}-w\right)\left(z_{k}-u\right)+(u \longleftrightarrow w)}{z_{i}-z_{k}}
$$

4 quasihole excitation:

$$
\Psi_{M R+4 q h}=\Psi_{2} \times \operatorname{Pf} \frac{\left(z_{i}-w_{1}\right)\left(z_{i}-u_{1}\right)\left(z_{k}-w_{2}\right)\left(z_{k}-u_{2}\right)+\left(u_{\ell} \longleftrightarrow w_{\ell}\right)}{z_{i}-z_{k}}
$$

Note: There exists a second, linearly independent wf with 4 quasiholes at positions $w_{1}, u_{1}, w_{2}, u_{2}$: interchanging

$$
u_{1} \leftrightarrow w_{2}
$$

$$
\Psi_{M R+4 q h}^{\prime}=\Psi_{2} \times \operatorname{Pf} \frac{\left(z_{i}-w_{1}\right)\left(z_{i}-w_{2}\right)\left(z_{k}-u_{1}\right)\left(z_{k}-u_{2}\right)+\left(u_{\ell} \longleftrightarrow w_{\ell}\right)}{z_{i}-z_{k}}
$$

Nayak and Wilczek (1996), Milovanovic and Read (1996):
$2 n$-quasiholes: 2^{n-1} fold degeneracy for Pfaff-interaction \Longrightarrow non-abelian statistics

Halperin (1983): microscopic implementation of pair wf (RM+Halperin 1986,1987 and RM 1998)

$$
\Psi_{H M}=\Psi_{1} \mathcal{S}\left(\prod_{i<k}^{N / 2}\left(z_{2 i} z_{2 i-1}+z_{2 k} z_{2 k-1}-2 Z_{i} Z_{k}\right)^{2}\right) \quad Z_{i}=\frac{1}{2}\left(z_{2 i}+z_{2 i-1}\right)
$$

2 quasihole excitation:

$$
\Psi_{H M+2 q h}=\Psi_{1} \mathcal{S}\left\{\prod_{i=1}^{N / 2}\left(\left(z_{2 i}-w\right)\left(z_{2 i-1}-u\right)\right) \prod_{i<k}^{N / 2}\left(z_{2 i} z_{2 i-1}+z_{2 k} z_{2 k-1}-2 Z_{i} Z_{k}\right)^{2}\right\}
$$

Different pairing mechanism in $\Psi_{M R}$ vs. $\Psi_{H M}$

Moore Read Pfaffian: $\Psi_{M R}$ characterized by non-abelian statistics $(q=1 / 4)$
Halperin pair wf: $\Psi_{H M}$ abelian(?) fractional statistics $(q=1 / 4)$

- Study spin-polarized and -unpolarized systems
- Exact diagonalization
- spherical geometry (Haldane)
- Neglect Landau level mixing - study half-filled $n=1$ Landau level

FQH states on sphere:

Unique relation between number of electrons N and number of flux units N_{Φ}

$$
N_{\Phi}=\frac{1}{\nu} N+k \quad k: \text { shift }(\text { Wen and Zee (92)) }
$$

Examples:

$$
\nu=1 / 3: \quad N_{\Phi}=3 N-3, \quad k=-3
$$

$$
\nu=\frac{2}{5}: \text { polarized } \quad N_{\Phi}=\frac{5}{2} N-4, \quad k=-4 \quad \text { unpolarized }: \quad N_{\Phi}=\frac{5}{2} N-3, \quad k=-3
$$

Shift k for FQH state at $\nu=5 / 2$ unknown, predictions:

$$
\begin{gathered}
k=-4 \quad \text { Haldane }- \text { Rezayi } \\
k=-3 \text { Moore }- \text { Read, Halperin pair wf }
\end{gathered}
$$

Unpolarized system $\quad S=0$

- very large finite size effects
- spin-singlet is GS only at $N=6, N_{\Phi}=10$ (even for vanishing Zeeman energy, $g=0$)
- no consistent energy gap values
- no local singlet: pair correlation function resembles that of polarized state with long-wavelength spinwave excitation to establish $S=0$. Real GS would be polarized.

Polarized system

- $L=0 \mathrm{GS}$ at $N_{\Phi}=2 N-3, \quad k=-3$ for all even tested $(N \leq 18)$
- For all other values of the shift k we obtain GS with $L=O\left(N^{0}\right)=O(1)$, consistent with excitations in an incompressible background.

Is there a gap?

Energy gap at $\nu=5 / 2$

Left plot: gap derived from individual quasiparticle and quasihole excitations
Right plot: gap derived from exciton with largest even angular momentum $L \leq N / 2$
Note: these energy values have been corrected for finite size effect due to Coulomb attraction between quasihole at north pole and quasiparticle at south pole (with separation equal to $2 R_{\text {sphere }} \sim \sqrt{N}$) giving rise to a $1 / \sqrt{N}$ contribution to the exciton energy.

$$
\Delta \approx 0.027 \pm 0.003 e^{2} / \epsilon \ell_{0}
$$

The Haldane pseudopotential

2 electrons in lowest Landau level with relative angular momentum L

$$
\phi_{L, n}\left(z_{1}, z_{2}\right)=\left(z_{1}-z_{2}\right)^{L}\left(z_{1}+z_{2}\right)^{n} e^{-\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) / 4}
$$

Haldane pseudoptential: energy of two-electron state

$$
V_{L}=\frac{<\phi_{L, n}|V| \phi_{L, n}>}{<\phi_{L, n} \mid \phi_{L, n}>}
$$

Test system by varying V_{1}

- Paired state stable in the window $0.95 \lesssim V_{1} / V_{1}^{\text {Coulomb }} \lesssim 1.2$
- Gap $\Delta_{5 / 2} \approx 0.025 e^{2} / \epsilon \ell_{0}$ at $V_{1}=V_{1}^{\text {Coulomb }}$
- Gap is maximum for V_{1} which maximizes overlap of GS with $\Psi_{M R}$ or pair wave function $\Psi_{H M}$
- For $V_{1} \gtrsim 1.2$ transition to Composite Fermion liquid state (like in the lowest half-filled Landau level)
- For $V_{1}<0.9$ transition to symmetry broken state (at $L=2$). Charge density wave state à la Fogler and Shklovskii.

Compare to $\nu=7 / 3$ state, also observed in Eisenstein's experiment

- Excitation gap $\Delta_{7 / 3} \approx 0.02 e^{2} / \epsilon \ell_{0}$ at $V_{1}=V_{1}^{\text {Coulomb }}$, similar to $\Delta_{5 / 2}$
- For $V_{1}<0.96$ transition to symmetry broken state (here at $L=2$).

J.P. Eisenstein (1998) private communication

- In tilted field, activation energy at $\nu=7 / 3$ decreases with increasing tilt angle in a similar way as at $\nu=5 / 2$.
- The $\nu=7 / 3$ state also disappears for large enough tilt angle
comments on $\quad \nu=7 / 3$
- gap reduction due to Zeeman energy is extremely unlikely
- The GS is most likely polarized
- If excitations involved reversed spin, gap would increase with increasing tilt
- If excitations are polarized, the gap does not depend on the Zeeman energy
scenario for gap reduction in tilted field at $\frac{5}{2}$ and $\frac{7}{3}$
- both $\frac{5}{2}$ and $\frac{7}{3}$ FQH states are spin-polarized
- interaction is modified by tilting the magnetic field
- reduction of gap at $\frac{5}{2}$ and $\frac{7}{3}$
- transition to compressible state at sufficiently large tilt angle, possibly charge density wave à la Fogler and Shklovskii ???

Why does this happen at $\nu=\frac{5}{2}$ but not at $\nu=\frac{1}{2}$?

Compare Coulomb GS in half filled lowest LL with that in half-filled second LL

Coulomb energy is low if correlation hole is as close to origin as possible

- composite fermion liquid best at $\nu=1 / 2$
- paired state is best at $\nu=5 / 2$

W. Pan et al. Sol. St. Comm. 119, 641 (2001): Gap as a function of electron density $\nu=5 / 2$ vs. $\nu=8 / 5$ (unpolarized at low density)

Smooth dependence of gap on magnetic field, no break in slope or sign of discontinuity, indicates that neither ground- nor excited state at $\nu=5 / 2$ is changing its character, while Zeeman energy changes by factor $\approx 2 \mathrm{~K}$.
Thus, no phase transition in the spin sector appears to occur in this large range of fields. At the largest field the system is likely polarized, implying that it should be SPIN-POLARIZED in the whole range of magnetic field shown.

Eisenstein et al. PRL 88,076801 (2002)
First observation of $\nu=7 / 2$ state

Nicholas d'Ambrumenil and RM, Phys. Rev. B68, 113309 (2003)
Theoretical gaps much larger than experimentally observed
Eisenstein et al. 2002 at $\nu=5 / 2$ and $7 / 2$

$$
\Delta_{5 / 2}^{e x p} \approx 0.31 \mathrm{~K} \quad \Delta_{7 / 2}^{e x p} \approx 0.07 \mathrm{~K}
$$

M+d'Ambrumenil, 2003

$$
\Delta_{5 / 2}^{t h} \approx 1.6 \mathrm{~K} \quad \Delta_{7 / 2}^{t h} \approx 1.4 \mathrm{~K}
$$

$$
f \approx 5
$$20

- Theoretical calculations determine intrinsic gap Δ^{i} - no disorder
- samples suffer from disorder via the statistical distribution of donors in dopant layer
discovery of $7 / 2$ plateau is a blessing
- states at $5 / 2$ and $7 / 2$ are related by charge conjugation
- $7 / 2$ implies $2+2-1 / 2-\frac{1}{2}$ filled hole statein second LL
- $5 / 2$ implies $2+0+1 / 2-\frac{1}{2}$ filled electron state in second LL
- physics at $5 / 2$ and $7 / 2$ should be essentially the same, if Landau level mixing is weak perturbation.

FQH gaps result from Coulomb interaction of electrons

gaps scale with Coulomb energy $E_{c}=\frac{e^{2}}{\epsilon \ell_{0}} \quad \ell_{0}=\sqrt{\frac{\hbar c}{e B}}$

$$
\Delta_{\nu}=\delta_{\nu} E_{c} \sim \delta_{\nu} \sqrt{B_{\nu}}
$$

As $\delta_{5 / 2}=\delta_{7 / 2}$ - intrinsic gaps $\Delta_{5 / 2}^{i}$ and $\Delta_{7 / 2}^{i}$ are related by

$$
\frac{\Delta_{5 / 2}^{i}}{\Delta_{7 / 2}^{i}}=\sqrt{\frac{B_{5 / 2}}{B_{7 / 2}}}=\sqrt{\frac{7}{5}} \quad \text { limit of no LL mixing }
$$

to analyze $\Delta^{e x p}$: use symmetry related states at ν and ν^{\prime} and assume:

- $\delta_{\nu}=\delta_{\nu^{\prime}}$
- intrinsic gap is dominated by Coulomb energy E_{c}
- disorder induced reduction of gap is the same at ν and $\nu^{\prime}: \Gamma_{\nu}=\Gamma_{\nu^{\prime}}$

$$
\Delta_{\nu}^{e x p}=\Delta_{\nu}^{i}-\Gamma_{\nu}=\delta_{\nu} E_{c}-\Gamma_{\nu}
$$

plot $\Delta_{\nu}^{e x p}$ as function of $E_{c} \quad$ (not magnetic field B)

Plot $\Delta_{\nu}^{e x p}$ vs Coulomb energy $E_{c}=\frac{e^{2}}{\epsilon \ell_{0}} \sim \sqrt{B}$

Slope is measure of intrinsic gap $\Delta^{i}=\delta \times E_{c}$: $\quad \delta \approx 0.014$
theoretical values including $L L$ mixing $\delta_{5 / 2} \approx 0.016, \quad \delta_{7 / 2} \approx 0.015$

$$
\Delta_{5 / 2}^{i} \approx 1.55 \mathrm{~K} \quad \Delta_{5 / 2}^{t h} \approx 1.6 \mathrm{~K}
$$

$$
\Delta_{7 / 2}^{i} \approx 1.32 \mathrm{~K} \quad \Delta_{7 / 2}^{t h} \approx 1.4 \mathrm{~K}
$$

Recent theoretical work on $\nu=5 / 2$

- $\nu=5 / 2$: non-abelian statistics for topologically protected quantum computation: Das Sarma, Freedman and Nayak 2005
- breaking of particle-hole symmetry at 5/2: Pfaffian vs. Anti-Pfaffian: Lee at al. 2007, Levin et al. 2007
- suggestions for experimental verification of non-abelian statistics by interference studies: Stern and Halperin 2006, Bonderson et al. 2006
- numerical investigation of quasihole systems at 5/2: Töke, Regnault and Jain 2006, 2007 conclusion: spectrum for Coulomb interaction qualitatively different from Pfaffian phase
- numerical investigation of $5 / 2$ state in disk geometry: Wan, Hu, Rezayi and Yang, 2006,2008 Pfaff phase stable in window of physical parameters, possible appearance of Anti-Pfaffian phase

