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To Believe that there is a problem

• We used to believe that symmetry breaking describe all phases and
phase transitions. Landau, 1937

• We build a comprehensive theory based
- Order parameter
- Ginzburg-Landau theory
- Group theory

• The discovery of FQH state teaches us that
symmetry breaking orders are not every thing. New kind of
orders exist.
Different FQH states have the same symmetry, but they still
represent the different phases:
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How to describe the new orders?

The new orders (and because it is new)
• cannot be described symmetry breaking
• cannot be described order parameters
• cannot be described long range correlations

But to make progress, we need to describe the new order in term
of what it is, not in terms what it is not.

• Topology-dependent and topologically stable ground state
degeneracy can (partially) describe the new order Wen & Niu 90

Motivate us to name the new order as topological orderWen 89

• Non-Abelian Berry’s phases of the degenerate ground state from
deforming the torus → representation of modular group which can
completely (?) describe the topological order.Wen 89

• Topological entanglement entropy and spectrum can describe the
topological order.Kitaev & Preskill 06, Levin & Wen 06, Haldane 08 (Can be probed by
quantum noise Klich & Levitov 08)
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Towards a comprehensive theory of topological order

• The description and characterization of symmetry breaking orders
using order parameters and group theory play a key role in
developing a comprehensive theory of symmetry breaking order.

Even though some those characterizations of topological order
were proposed 20 years ago, we have not been able to use them to
develop a comprehensive theory of topological order.

• Finding easy-to-use ways to describe and characterize topological
order is the key in developing a comprehensive theory of
topological order.

In this talk, we will discuss two new ways to describe and
characterize topological order based on

• ground state wave functions
• fixed-point Lagrangian (tensor network)
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Topological order in FQH states and Pattern of zeros

• Filling fraction ν = 1/m Laughlin state Ψ1/m =
∏

(zi − zj)
m

is characterized by the mth zero as we bring two electrons together.

• Generalizing that, we bring a electrons together in a wave function:
Let zi = λξi + z(a), i = 1, 2, · · · , a

Φ({zi}) = λSaP(ξ1, ..., ξa; z(a), za+1, za+2, · · · ) + O(λSa+1)

• The sequence of positive integers {Sa} characterizes the FQH wave
function in the first Landau level and is called the pattern of zeros.

The pattern of zeros {Sa} is a quantitative way to describe
and characterize the (chiral) topological order in FQH
statesWen & Wang 08,Barkeshli & Wen 08

• Topological properties, such as filling fraction, ground state
degeneracy on genus g surfaces, quasiparticle charges and
quantum dimensions, number of quasiparticle types, the fusion
algebra of quasiparticles, can all be calculated from such a
quantitative characterization.
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Towards a classification of Topological order in FQH states

• Not all sequences of integers {Sa} can correspond to a FQH
wavefunction. Only those that satisfy, for any a, b, c ,

Sa+b − Sa − Sb ≥ 0

Sa+b+c − Sa+b − Sb+c − Sa+c + Sa + Sb + Sc = even ≥ 0

can correspond to FQH wavefunctions.
Finding all those sequences may lead to a classification of
topological orders in FQH states

• Relation to 1D CDW picture:Seidel & Lee 06, Bergholtz etal 06, Bernevig & Haldane 07,

Seidel & Yang 08, Ardonne etal 08

view la = Sa − Sa−1 as the orbital occupied by ath electron →
occupation distribution nl=number of la = l .

Z2 : (S2,S3, ...) = (0, 2, 4, 8, ...) (nl) = (20|20|20|...)

Z
(2)
5 : (S2,S3, ...) = (0, 2, 6, 10, ...) (nl) = (20102000|20102000|...)
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An application of {Sa} characterization

• A quasiparticle γ in a FQH state can also be quantitatively
characterized by pattern of zeros {Sγ;a}:
Let Ψγ(ξ, zi ) be a FQH wavefunction with a quasiparticle γ at ξ,
then Sγ;a is the order of zero of Ψγ(ξ, zi ) when we bring a
electrons to ξ.

• {Sγ;a} must satisfies:

Sγ;a+b − Sγ;a − Sb ≥ 0,

Sγ;a+b+c − Sγ;a+b − Sγ;a+c − Sb+c + Sγ;a + Sb + Sc ≥ 0

• The above equations have many solutions, and each solution
correspond to a type of quasiparticle.

{Sa} and {Sγ;a} are quantitative characterizations of FQH
state and their quasiparticles. Such quantitative
characterizations allow us to calculation topological
properties quantitatively.
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Characterize topo. orders through fixed-point Lagrangian

• We may want to use Lagrangian to characterize phases, but
- some times similar Lagrangian correspond to the same phase
- some times similar Lagrangian correspond to the different phases

c gg

• A RG idea: under the RG transformation, a Lagrangian flows to
fixed-point Lagrangian. It is the fixed-point Lagrangian that
characterizes phase.

c gg
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Limitations of standard RG approach

But the RG approach appear not to apply to topological phases:
If a bosonic system is in a topological phase, then its low energy
effective Lagrangian (the fixed-point Lagrangian) can be

• A pure gauge theory with G = Z2, Zn, U(1), SU(2), ...
• A Chern-Simons gauge theory with any G
• A QED (U(1) gauge theory + massless fermions)
• A QCD (SU(2) gauge theory + massless fermions)
• A “gravity” theory with gapless gravitions

How can the RG flow of a bosonic Lagrangian L(ϕ) with a scaler
field ϕ produces such rich class of fixed-point Lagrangian with
gauge fields and fermionic fields?

Xiao-Gang Wen, MIT Towards a theory of topological order: from FQH states to spin liquids



Limitations of standard RG approach

But the RG approach appear not to apply to topological phases:
If a bosonic system is in a topological phase, then its low energy
effective Lagrangian (the fixed-point Lagrangian) can be

• A pure gauge theory with G = Z2, Zn, U(1), SU(2), ...
• A Chern-Simons gauge theory with any G
• A QED (U(1) gauge theory + massless fermions)
• A QCD (SU(2) gauge theory + massless fermions)
• A “gravity” theory with gapless gravitions

How can the RG flow of a bosonic Lagrangian L(ϕ) with a scaler
field ϕ produces such rich class of fixed-point Lagrangian with
gauge fields and fermionic fields?

Xiao-Gang Wen, MIT Towards a theory of topological order: from FQH states to spin liquids



Tensor renormalization group: a new RG approach

After a discretization, we can rewrite any space-time path integral
at a tensor-trace over a tensor network∫

Dϕ(x , t)e−L(ϕ) =
∑
{αi}

∏
Tαiαjαkαl ≡ tTr⊗ T

T

T

T

T J

T

T

T

T

T

T

T

TT

T

T

T

J’

• If we know how to calculate tensor-trace, then we can solve any
thing.

• Unfortunately, according to the principle of “no-free lunch”,
calculating the tensor-trace is an NP hard problem.Schuch etc 07

• But Levin and Nave discovered a principle of “free lousy lunch”: if
you are willing to accept some errors, calculating the tensor-trace
has only polynomial complexity.
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Filtering out local entanglements
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• Levin and Nave’s implementation of TRG flow T → T ′ has a small
problem: the resulting fixed-point tensor is not isolated.
Local entanglements are not completely removed

• Topological order = pattern of long range entanglements
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• Tensor entanglement filtering renormalization (TEFR): Gu & Wen 09

Filter out local entanglement but keep long range entanglement
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Application of TEFR to 2D statistical Ising model

• Using TEFR and the resulting fixed-point tensor, we can calculate
free energy, ground state energy, low energy spectrum, central
charge and scaling dimensions, entanglement entropy, correlation
functions, etc Zhengcheng Gu & Wen 09
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• Fixed-point tensors: T high
1111 = 1 and T low

1111 = T low
2222 = 1.

Symmetry breaking as direct sum: T low = T high ⊕ T high

c h1 h2 h3 h4

0.49942 0.12504 0.99996 1.12256 1.12403

1/2 1/8 1 9/8 9/8

Computation time: 10 hours on a desktop.
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Application of TEFR to spin-1 chain

H =
∑

i

(
Si · Si+1 + U(Sz

i )2
)

+ B
∑

i

Sx
i

y

2
z

B

U
2.0

0

Haldane

TRI

Z

0.6

Z 2

y
2

TRI

Haldane
0

2.0

Z

Zz

0.6

2

B

U

H =
∑

i

(
Si · Si+1 + U(Sz

i )2
)

+
B

2

∑
i

(Sx
i (Sz

i+1)
2 + Sx

i+1(S
z
i )2 + 2Sz

i )

0.5

z

y

B

U
2.0

0

Haldane

TRI

Z

Z 2

2

0.5

y

TRI

Haldane
0

2.0

Z

Zz
2

2

B

U

Xiao-Gang Wen, MIT Towards a theory of topological order: from FQH states to spin liquids



Haldane phase is a symmetry protected topological phase

• Fixed-point tensor for Haldane phase:
HT

σ

σ σ

σ2 2

22

• TH + δT → TH if δT has time-reversal, parity and translation
symmetry.

The Haldane phase is a symmetry protected topological
phase.

• “Fixed-point” wavefunction:

• The boundary spin-1/2 and string order parameter are not good
ways to characterize the Haldane phase.
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Theory of topological order
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Pattern
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Theory of topological order
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