Automated resummation of QCD

final state observables

Giulia Zanderighi

- In collaboration with
A. Banfi (Amsterdam) and G. Salam (Paris)

QCD \& jet observables

x A wealth of information about QCD lies in its final states.

- The problem is how to extract it.

QCD \& jet observables

x A wealth of information about QCD lies in its final states.

- The problem is how to extract it.
x Event shape variables \& jet-rates are IRC safe observables which describe the topology of an event's hadronic final state

QCD \& jet observables

x A wealth of information about QCD lies in its final states.

- The problem is how to extract it.
x Event shape variables \& jet-rates are IRC safe observables which describe the topology of an event's hadronic final state
x The most famous example: the Thrust

$$
T \equiv \frac{1}{Q} \max _{\vec{n}_{T}} \sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|=\frac{1}{Q} \sum_{i}\left|p_{i z}\right|
$$

QCD \& jet observables

x A wealth of information about QCD lies in its final states.

- The problem is how to extract it.
x Event shape variables \& jet-rates are IRC safe observables which describe the topology of an event's hadronic final state
x The most famous example: the Thrust

$$
T \equiv \frac{1}{Q} \max _{\vec{n}_{T}} \sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|=\frac{1}{Q} \sum_{i}\left|p_{i z}\right|
$$

Pencil-like event: $\tau \equiv 1-T \ll 1$ Planar event: $T \simeq 2 / 3$

Perturbative QCD ingredients

Studies based on perturbative predictions for event shape distributions.

Perturbative QCD ingredients

Studies based on perturbative predictions for event shape distributions.
Leading order $(\mathrm{LO}) \equiv \mathcal{O}\left(\alpha_{s}\right)$

- By hand or numerically

Perturbative QCD ingredients

Studies based on perturbative predictions for event shape distributions.
Leading order $(\mathrm{LO}) \equiv \mathcal{O}\left(\alpha_{s}\right)$

- By hand or numerically

Next-to-Leading order (NLO) $\equiv \mathcal{O}\left(\alpha_{s}{ }^{2}\right)$

- Usually only done numerically [Event2, Disent, NLOJET++...]

LO, NLO, ... all diverge in two-jet region ($1-T \rightarrow 0$)

Perturbative QCD ingredients

Studies based on perturbative predictions for event shape distributions.

Leading order (LO) $\equiv \mathcal{O}\left(\alpha_{s}\right)$

- By hand or numerically

Next-to-Leading order (NLO) $\equiv \mathcal{O}\left(\alpha_{s}{ }^{2}\right)$

- Usually only done numerically [Event2, Disent, NLOJET++...]

LO, NLO, ... all diverge in two-jet region ($1-T \rightarrow 0$)

Subject of this seminar is

FINAL-STATE RESUMMATION

i. e. all-orders description of the "exclusive" 2-jet limit.

Jet observables

Jet observables are a good compromise between
e simplicity (it is feasible to make theoretical predictions about them)
a sensitivity to properties of QCD radiation

Jet observables

Jet observables are a good compromise between
e simplicity (it is feasible to make theoretical predictions about them)
e sensitivity to properties of QCD radiation
Provide a wealth of information, e.g.:

- Measurements of the coupling α_{s} and its renormalization group running

Jet observables

Jet observables are a good compromise between
e simplicity (it is feasible to make theoretical predictions about them)
a sensitivity to properties of QCD radiation
Provide a wealth of information, e.g.:

- Measurements of the coupling α_{s} and its renormalization group running
- Measurements/cross checks of the values of the colour factors of QCD

Jet observables

Jet observables are a good compromise between
e simplicity (it is feasible to make theoretical predictions about them)
e sensitivity to properties of QCD radiation
Provide a wealth of information, e.g.:

- Measurements of the coupling α_{s} and its renormalization group running
- Measurements/cross checks of the values of the colour factors of QCD
- Studies of connection between parton-level (perturbative description of quarks and gluons) and hadron-level (the real)

Large Logarithms to all orders

Probability of "constrained" events, i. e. $V\left(k_{1} \ldots k_{n}\right)<v$, has a divergent PT expansion

$$
\Sigma(v) \equiv \operatorname{Prob}(V<v)=1+\sum_{m \leq 2 n} R_{n, m} \alpha_{s}^{n} \log ^{m} v+\ldots
$$

i. e. there is a soft \& collinear divergence [\rightsquigarrow Log] for each emitted gluon

Today's state-of-the art accuracy

- accounts for all Leading (LL) and Next-to-Leading Logs (NLL)

$$
\Sigma(v)=\exp \{\underbrace{L g_{1}\left(\alpha_{s} L\right)}_{L L}+\underbrace{g_{2}\left(\alpha_{s} L\right)}_{N L L}+\ldots\}
$$

NB:

- LL means $\alpha_{s}{ }^{n} L^{n+1}$ in $\ln \Sigma$, not just $\alpha_{s}{ }^{n} L^{2 n}$ in Σ
- NLL means $\left(\alpha_{s} L\right)^{n}$ in $\ln \Sigma$, not just $\alpha_{s}{ }^{n} L^{2 n-1}$ in Σ
- furthermore resummed results are matched to Fixed Order at NLO

Basics of resummation: factorization

First half of the history: Matrix elements and phase space exploit angular ordering \Rightarrow soft independent emissions (\Rightarrow QED)
e.g. $\quad e^{+} e^{-} \rightarrow 2$ jets $\Rightarrow w_{p \bar{p}}\left(k_{1}, \ldots, k_{n}\right)=\frac{1}{n!} \prod_{i=1}^{n} w_{p \bar{p}}\left(k_{i}\right) \sim \frac{1}{n!} \prod_{i=1}^{n} \frac{\alpha_{s} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\theta}$

Basics of resummation: factorization

First half of the history: Matrix elements and phase space exploit angular ordering \Rightarrow soft independent emissions (\Rightarrow QED)
e.g. $\quad e^{+} e^{-} \rightarrow 2$ jets $\Rightarrow w_{p \bar{p}}\left(k_{1}, \ldots, k_{n}\right)=\frac{1}{n!} \prod_{i=1}^{n} w_{p \bar{p}}\left(k_{i}\right) \sim \frac{1}{n!} \prod_{i=1}^{n} \frac{\alpha_{s} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\theta}$

Second half of the history: The observable definition analyze the observable \& use Mellin transforms

$$
1-T \simeq \frac{1}{Q} \sum_{i=1}^{n} \frac{E_{i} \theta_{i}^{2}}{2} \quad \longrightarrow \quad \Theta(1-T<\tau)=\int \frac{d \nu}{2 \pi i \nu} e^{\nu \tau} \prod_{i=1}^{n} e^{-\nu \frac{E_{i} \theta_{i}^{2}}{2 Q}}
$$

Basics of resummation: factorization

First half of the history: Matrix elements and phase space exploit angular ordering \Rightarrow soft independent emissions (\Rightarrow QED)
e.g. $\quad e^{+} e^{-} \rightarrow 2$ jets $\Rightarrow w_{p \bar{p}}\left(k_{1}, \ldots, k_{n}\right)=\frac{1}{n!} \prod_{i=1}^{n} w_{p \bar{p}}\left(k_{i}\right) \sim \frac{1}{n!} \prod_{i=1}^{n} \frac{\alpha_{s} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\theta}$

Second half of the history: The observable definition analyze the observable \& use Mellin transforms

$$
1-T \simeq \frac{1}{Q} \sum_{i=1}^{n} \frac{E_{i} \theta_{i}^{2}}{2} \quad \longrightarrow \quad \Theta(1-T<\tau)=\int \frac{d \nu}{2 \pi i \nu} e^{\nu \tau} \prod_{i=1}^{n} e^{-\frac{E_{i} \theta_{i}^{2}}{2 Q}}
$$

THE ANSWER

$$
\Sigma(\tau) \int \frac{d \nu}{2 \pi i \nu} e^{\nu \tau} \exp \left[\int \frac{d \theta}{\theta} \frac{d E}{E} \frac{\alpha_{s}(E \theta) C_{F}}{\pi}\left(e^{-\nu \frac{E_{i} \theta_{i}^{2}}{2 Q}}-1\right)\right]
$$

An incomplete list of analytical NLL predictions

$e^{+} e^{-} \rightarrow 2$ jets

- S. Catani, G. Turnock, B. R. Webber and L. Trentadue, Thrust distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 263 (1991) 491.
- S. Catani, G. Turnock and B. R. Webber, Heavy jet mass distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 272 (1991) 368.
- S. Catani, Yu. L. Dokshitzer, M. Olsson, G. Turnock and B. R. Webber, New clustering algorithm for multi-jet cross-sections in $e^{+} e^{-}$annihiIation, Phys. Lett. B 269 (1991) 432.
- S. Catani, L. Trentadue, G. Turnock and B. R. Webber, Resummation of large logarithms in $e^{+} e^{-}$event shape distributions, Nucl. Phys. B 407 (1993) 3.
- S. Catani, G. Turnock and B. R. Webber, Jet broadening measures in $e^{+} e^{-}$annihilation, Phys. Lett. B 295 (1992) 269.
- G. Dissertori and M. Schmelling, An Improved theoretical prediction for the two jet rate in $e^{+} e^{-}$annihilation, Phys. Lett. B 361 (1995) 167. - Y. L. Dokshitzer, A. Lucenti, G. Marchesini and G. Salam, On the QCD analysis of jet broadening, JHEP 9801 (1998) 011
- S. Catani and B. R. Webber, Resummed C-parameter distribution in $e^{+} e^{-}$annihilation, Phys. Lett. B 427 (1998) 377
- S. J. Burby and E. W. Glover, Resumming the light hemisphere mass and narrow jet broadening distributions in $e^{+} e^{-}$annihilation, JHEP 0104 (2001) 029
- M. Dasgupta and G. Salam, Resummation of non-global QCD observables, Phys. Lett. B 512 (2001) 323
- C. F. Berger, T. Kucs and G. Sterman, Event shape / energy flow correlations, Phys. Rev. D 68 (2003) 014012

DIS $1+1$ jet

- V. Antonelli, M. Dasgupta and G. Salam, Resummation of thrust distributions in DIS, JHEP 0002 (2000) 001
- M. Dasgupta and G. Salam, Resummation of the jet broadening in DIS, Eur. Phys. J. C 24 (2002) 213
- M. Dasgupta and G. Salam, Resummed event-shape variables in DIS, JHEP 0208 (2002) 032

$e^{+} e^{-}$, DY, DIS 3 jets

- A. Banfi, G. Marchesini, Y. L. Dokshitzer and GZ, QCD analysis of near-to-planar 3-jet events, JHEP 0007 (2000) 002
- A. Banfi , Y. L. Dokshitzer, G. Marchesini and GZ, Near-to-planar 3-jet events in and beyond QCD perturbation theory, Phys. Lett. B 508 (2001) 269
- A. Banfi , Y. L. Dokshitzer, G. Marchesini and GZ, QCD analysis of D-parameter in near-to-planar three-jet events, JHEP 0105 (2001) 040
- A. Banfi, G. Marchesini, G. Smye and GZ, Out-of-plane QCD radiation in hadronic Z0 production, JHEP 0108 (2001) 047
- A. Banfi, G. Marchesini, G. Smye and GZ, Out-of-plane QCD radiation in DIS with high p(t) jets, JHEP 0111 (2001) 066
- A. Banfi , G. Marchesini and G. Smye, Azimuthal correlation in DIS, JHEP 0204 (2002) 024
- C. F. Berger, T. Kucs and G. Sterman, Energy flow in interjet radiation, Phys. Rev. D 65, 094031 (2002)
~ 1 observable per article

Automated resummed predictions

The current situation can be summarized as follows

- experimental studies limited by availability of theoretical calculations
- error-prone business, many subtle effects understood on the way On the previous slide, only 4 authors, out of 21, can say that their results were always correct to the accuracy claimed [three of them quit physics...]
- there are many phenomenological applications
\Rightarrow need to automate resummations (as for fixed order)

Automated resummed predictions

The current situation can be summarized as follows

- experimental studies limited by availability of theoretical calculations
- error-prone business, many subtle effects understood on the way On the previous slide, only 4 authors, out of 21, can say that their results were always correct to the accuracy claimed [three of them quit physics...]
- there are many phenomenological applications
\Rightarrow need to automate resummations (as for fixed order)
On the other hand
- resummations exploit always the same standard factorization techniques (for matrix element and observable)
the origin of logarithms is clearly the SAME for all observables
\Leftrightarrow automating the job seems feasible

The simpler observable

(1) IDEA: Define a simpler observable

$$
V\left(k_{1}, \ldots k_{n}\right) \quad \Longrightarrow \quad V_{s}\left(k_{1}, \ldots k_{n}\right) \equiv \max \left\{V\left(k_{1}\right), \ldots, V\left(k_{n}\right)\right\}
$$

e. g.

$$
B\left(k_{1}, \ldots k_{n}\right) \equiv \sum_{i} \frac{k_{t i}}{Q} \quad \Longrightarrow \quad B_{s}\left(k_{1}, \ldots k_{n}\right) \equiv \max \left\{\frac{k_{t i}}{Q}\right\}
$$

- With just one soft-collinear emission

$$
V\left(k_{1}, \ldots k_{n}\right)=V_{s}\left(k_{1}, \ldots k_{n}\right)
$$

\Rightarrow same double logs and most of the single logs

- Simple factorization (no Mellin integrals)

$$
\Theta\left(V_{s}-v\right)=\prod_{i} \Theta\left(V_{i}-v\right)
$$

\Rightarrow analytical resummation straightforward!

Resummation of V_{s}

Fix a Born event and emit a soft gluon k collinear to a given hard leg ℓ. We parametrize

$$
V_{s}(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)
$$

$k_{t} \quad \Rightarrow \quad$ transverse momentum wrt the leg
$\eta \quad \Rightarrow \quad$ rapidity wrt the leg
$\phi \quad \Rightarrow$ azimuthal angle

- Σ_{s} known given the (automatically determined) quantities $a_{\ell}, b_{\ell}, d_{\ell}, g_{\ell}(\phi)$, just exponentiating naively the one-gluon result

This account for all double logs and single-logs due to
\checkmark hard collinear effects
\checkmark soft, large angle emission
\checkmark inclusive gluon splitting

Multiple emission properties

The computation of Σ_{s} is based on a veto on single-emissions

$$
V\left(k_{1}, \ldots k_{n}\right)<v \quad \Longrightarrow \quad V_{s} \equiv \max \left[V\left(k_{1}\right), \ldots, V\left(k_{n}\right)\right]<v
$$

One then needs to relate the observable to all secondary emissions, i.e. account for the observable specific mismatch between $V\left(k_{1}, \ldots k_{n}\right)$ and V_{s}

- Physically one needs accurate understanding of the kinematics
- Mathematically this translates into performing Mellin integrals

We call these multiple emission effects.
How can these observable-specific effects be computed generally?

Multiple emission effects

Aim: compute the mismatch between $\Sigma_{s}\left(v_{s}\right)$ and $\Sigma(v)$
The two distributions are related by a simple convolution

$$
\frac{D(v)}{v}=\int \frac{d v_{s}}{v_{s}} D_{s}\left(v_{s}\right) P\left(v \mid v_{s}\right) \quad D(v) \equiv \frac{d \Sigma}{d L} \quad L=\operatorname{Lnv}
$$

- $P\left(v \mid v_{s}\right)$ is the probability to have v given v_{s}

Since

$$
\begin{array}{ll}
-D_{s}\left(v_{s}\right)=e^{-R\left(v_{s}\right)} & \Rightarrow \text { known analytically } \\
\leqslant v \sim v_{s} & \Rightarrow \text { same LL structure }
\end{array}
$$

\Leftrightarrow expand and get $\quad D_{s}\left(v_{s}\right)=_{N L L} D_{s}(v) e^{-R^{\prime} \ln \left(v / v_{s}\right)} \quad R^{\prime} \equiv d R / d L$

$$
\Leftrightarrow D(v)=_{N L L} D_{s}(v) \mathcal{F}\left(R^{\prime}\right) \quad \mathcal{F}\left(R^{\prime}\right)=\int \frac{d v_{s}}{v_{s}} e^{-R^{\prime} \ln \left(v / v_{s}\right)} v P\left(v \mid v_{s}\right)
$$

How to compute $\mathcal{F} \Leftrightarrow P\left(v \mid v_{s}\right)$ generally?

Fix a Born configuration and generate decreasing soft-collinear (SC) emissions according to phase space
(1) set $v\left(k_{1}\right)=v_{s}$ [START FROM: $V_{s}=v_{s}$]
(2) generate a formally infinite number of SC emissions according to an independent emission pattern uniform in $\ln k_{t}, \eta, \phi$ such that on average the density of emissions per unit $\ln V$ from leg ℓ is R_{ℓ}^{\prime}
\Rightarrow Finally compute $V\left(k_{1}, k_{2}, \ldots k_{n}\right) \equiv v$
This gives the weighted probability of having $V=v$ given $V_{s}=v_{s}$ and allows so the computation of \mathcal{F} in a completely general way

Banfi , Salam, GZ JHEP 0201 (2002) 018
http://www.ippp.dur.ac.uk/zzander/numsum.html

$$
\Sigma(v)=_{N L L} \sum_{\text {sub. }} \int[d \Phi]_{\text {hard }} \Sigma_{s}(v) \cdot \mathcal{F}\left(R^{\prime}\right)
$$

Banfi , Salam, GZ hep-ph/0304148
\checkmark Analytical resummation for the "easy" Σ_{s} : pure $L L$ and NLL terms

$$
\Sigma_{s}(v)=\prod_{\ell=1}^{n_{i n c}} \underbrace{f_{\ell}\left(v^{\frac{2}{a+b_{\ell}}} \mu_{F}^{2}\right)}_{\text {pdfs }} \otimes \prod_{\ell=1}^{N} \underbrace{J_{\ell}(L)}_{\text {jet function }} \cdot \underbrace{S(T(L / a))}_{\text {soft }}
$$

- soft and collinear emission \Rightarrow jet function $J_{\ell}(L)$ (all LL Sudakov suppression and some NLL terms)
- hard collinear splitting \Rightarrow evolution of the pdfs
- soft large angle
\Rightarrow QCD coherence and geometry dependence in S
the observable-dependent "difficult" \mathcal{F} is computed numerically but is by construction a pure NLL function

Requirements on the observable

For the observable to be resummed automatically it should
x vanish in the Born limit and be positive defined
\boldsymbol{x} behave as $V(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)$ for 1 SC gluon along leg ℓ
x be infrared and collinear safe
x be continuously global ($a_{\ell}=a \forall$ hard legs ℓ)
x exponentiate (no JADE)

Requirements on the observable

For the observable to be resummed automatically it should
x vanish in the Born limit and be positive defined
\boldsymbol{x} behave as $V(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)$ for 1 SC gluon along leg ℓ
x be infrared and collinear safe
x be continuously global ($a_{\ell}=a \forall$ hard legs ℓ)
x exponentiate (no JADE)
While this might seem a long list

- practically the limiting condition is the requirement of globalness
[all other conditions are satisfi ed by all observables resummed so far]

Requirements on the observable

For the observable to be resummed automatically it should
x vanish in the Born limit and be positive defined
\boldsymbol{x} behave as $V(k) \simeq d_{\ell}\left(\frac{k_{t}}{Q}\right)^{a_{\ell}} e^{-b_{\ell} \eta} g_{\ell}(\phi)$ for 1 SC gluon along leg ℓ
x be infrared and collinear safe
x be continuously global ($a_{\ell}=a \forall$ hard legs ℓ)
x exponentiate (no JADE)
While this might seem a long list

- practically the limiting condition is the requirement of globalness [all other conditions are satisfi ed by all observables resummed so far]
- the essential feature of the program is the ability to perform all checks automatically
[use arbitrary precision to take asymptotic limits]
Bailey, RNR Technical Report RNR-94-013

Exponentiation

Some observables have exponentiating double (and single) logs

$$
\mathrm{P}(v)=1-X \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} v+\frac{1}{2} X^{2}\left(\frac{\alpha_{s} C_{F}}{\pi}\right)^{2} \ln ^{4} v+\cdots \Rightarrow e^{-X \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} v}
$$

Exponentiation

Some observables have exponentiating double (and single) logs

$$
\mathrm{P}(v)=1-X \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} v+\frac{1}{2} X^{2}\left(\frac{\alpha_{s} C_{F}}{\pi}\right)^{2} \ln ^{4} v+\cdots \Rightarrow e^{-X \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} v}
$$

others do not, e.g. Jade-algorithm jet rates:

$$
\mathrm{P}_{\mathrm{Jade} 2-\mathrm{jet}}\left(y_{\mathrm{cut}}\right)=1-\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} y_{\mathrm{cut}}+\frac{1}{2} \cdot \frac{5}{6}\left(\frac{\alpha_{s} C_{F}}{\pi}\right)^{2} \ln ^{4} y_{\mathrm{cut}}+\ldots
$$

Brown and Stirling, Phys.Lett.B 252 (1990)

Exponentiation

Some observables have exponentiating double (and single) logs

$$
\mathrm{P}(v)=1-X \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} v+\frac{1}{2} X^{2}\left(\frac{\alpha_{s} C_{F}}{\pi}\right)^{2} \ln ^{4} v+\cdots \Rightarrow e^{-X \frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} v}
$$

others do not, e.g. Jade-algorithm jet rates:

$$
\mathrm{P}_{\mathrm{Jade} 2-\mathrm{jet}}\left(y_{\mathrm{cut}}\right)=1-\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} y_{\mathrm{cut}}+\frac{1}{2} \cdot \frac{5}{6}\left(\frac{\alpha_{s} C_{F}}{\pi}\right)^{2} \ln ^{4} y_{\mathrm{cut}}+\ldots
$$

Brown and Stirling, Phys.Lett.B 252 (1990)

- No one jet knows how to resum Double Logs, let alone what matrix-element ingredients are needed to achieve NLL accuracy!

Any automated approach to NLL resummation has better be able to establish whether an observables exponentiates

Exponentiation: r-IRS safety I

Consider n emissions $k_{1}\left(\lambda_{1}\right), \ldots k_{n}\left(\lambda_{n}\right)$ such that the soft-collinear limit corresponds to $\lambda_{i} \rightarrow 0$ and $V\left(k_{i}\right)=\lambda_{i}$. Then Normal IRC safety implies

$$
\lim _{\epsilon \rightarrow 0} V\left(k_{1}\left(\lambda_{1}\right), \ldots k_{n}\left(\lambda_{n}\right), k_{n+1}\left(\epsilon \lambda_{n+1}\right)\right)=V\left(k_{1}\left(\lambda_{1}\right), \ldots k_{n}\left(\lambda_{n}\right)\right)
$$

Exponentiation: r-IRS safety I

Consider n emissions $k_{1}\left(\lambda_{1}\right), \ldots k_{n}\left(\lambda_{n}\right)$ such that the soft-collinear limit corresponds to $\lambda_{i} \rightarrow 0$ and $V\left(k_{i}\right)=\lambda_{i}$. Then
Normal IRC safety implies

$$
\lim _{\epsilon \rightarrow 0} V\left(k_{1}\left(\lambda_{1}\right), \ldots k_{n}\left(\lambda_{n}\right), k_{n+1}\left(\epsilon \lambda_{n+1}\right)\right)=V\left(k_{1}\left(\lambda_{1}\right), \ldots k_{n}\left(\lambda_{n}\right)\right)
$$

Recursive IRC safety adds two conditions
(a) $\lim _{\epsilon^{\prime} \rightarrow 0} V\left(k_{1}\left(\epsilon^{\prime} \lambda_{1}\right), \ldots k_{n}\left(\epsilon^{\prime} \lambda_{n}\right)\right) / \epsilon^{\prime}=$ const. $(\neq 0)$
the SC scaling properties of V should be the same with just one or many emissions
(b) $\lim _{\epsilon \rightarrow 0} \lim _{\epsilon^{\prime} \rightarrow 0} V\left(k_{1}\left(\epsilon^{\prime} \lambda_{1}\right), \ldots k_{n}\left(\epsilon^{\prime} \lambda_{n}\right), k_{n+1}\left(\epsilon \epsilon^{\prime} \lambda_{n+1}\right)\right) / \epsilon^{\prime}=$ same const.
i. e. the addition of a relatively much softer/more collinear parton should not change asymptotically the limit

This condition is the formal requirement for exponentiation

Exponentiation: r-IRS safety II

The condition of IRS safety allows one to translate

- a restriction on an ensemble of emissions $\Rightarrow V\left(k_{1}, \ldots k_{n}\right)<v$ into
- a restriction on individual emissions $\Rightarrow V\left(k_{i}\right)<v$ (modulo NLL terms in \mathcal{F})

Exponentiation: r-IRS safety II

The condition of IRS safety allows one to translate

- a restriction on an ensemble of emissions $\Rightarrow V\left(k_{1}, \ldots k_{n}\right)<v$ into
- a restriction on individual emissions $\Rightarrow V\left(k_{i}\right)<v$ (modulo NLL terms in \mathcal{F})

The condition of
recursive IRC safety for exponentiation of infrared logarithms
is the analogue of the condition of

- IRC safety needed for fixed order predictions to be well-defined

Exponentiation: r-IRS safety II

The condition of IRS safety allows one to translate

- a restriction on an ensemble of emissions $\Rightarrow V\left(k_{1}, \ldots k_{n}\right)<v$ into
- a restriction on individual emissions $\Rightarrow V\left(k_{i}\right)<v$ (modulo NLL terms in \mathcal{F})

The condition of
recursive IRC safety for exponentiation of infrared logarithms
is the analogue of the condition of

- IRC safety needed for fixed order predictions to be well-defined

Example of observables NOT satisfying the condition

- Jet rates in Jade-algorithm
- Combinations of "usual" event shapes $\tau \cdot B_{T}, B_{T}^{3} /(1-\tau), y_{3 D} \cdot C \ldots$

CAESAR: conquering resummations

Computer Automated Expert Semi-Analytical Resummer

© currently limited to global observables

- tested against all known global, exponentiable event shapes
- results from an early version used by the LEP-QCD-WG for fits of α_{s}
- can be applied to
- 2 \& 3 jets in $e^{+} e^{-}$
- $[1+1] \&[1+2]$ jets in $D I S$
- Drell-Yan +1 jet
- hadron-hadron dijet events [\Leftarrow first resummations]

Observables in hadronic dijet production

Cut around the beam $|\eta|<\eta_{0}$
\rightarrow Problems with globalness \langle

Observables in hadronic dijet production

Cut around the beam $|\eta|<\eta_{0}$
\rightarrow Problems with globalness \vdots

Directly global observables: $\eta_{0}>1$
x Transverse thrust

$$
T_{T}=\frac{1}{E_{T}} \max _{\bar{n}_{T}} \sum_{i}\left|\vec{p}_{t i} \cdot \vec{n}_{T}\right|
$$

x Thrust minor

$$
T_{m}=\frac{1}{E_{T}} \sum_{i}\left|p_{i}^{o u t}\right|
$$

Predictions valid as long as

$$
|\log v|<\left(a+b_{\ell}\right)\left|\eta_{0}\right|
$$

Observables in hadronic dijet production

Cut around the beam $|\eta|<\eta_{0}$
\Leftrightarrow Problems with globalness \vdots

Directly global observables: $\eta_{0}>1$ Indirectly global observables: $\eta_{0}=\mathcal{O}(1)$
x Transverse thrust

$$
T_{T}=\frac{1}{E_{T}} \max _{\vec{n}_{T}} \sum_{i}\left|\vec{p}_{t i} \cdot \vec{n}_{T}\right|
$$

x Thrust minor

$$
T_{m}=\frac{1}{E_{T}} \sum_{i}\left|p_{i}^{\text {out }}\right|
$$

Predictions valid as long as

$$
|\log v|<\left(a+b_{\ell}\right)\left|\eta_{0}\right|
$$

x Transverse thrust

$$
T_{T}=\frac{1}{E_{T, \eta_{0}}}\left(\max _{\vec{n}_{T}\left|\eta_{i}\right|<\eta_{0}}\left|\vec{p}_{t i} \cdot \vec{n}_{T}\right|-\left|\sum_{\left|\eta_{i}\right|<\eta_{0}} \vec{p}_{t i}\right|\right)
$$

x Thrust minor

$$
T_{m}=\frac{1}{E_{T, \eta_{0}}}\left(\sum_{\left|\eta_{i}\right|<\eta_{0}}\left|p_{i}^{\text {out }}\right|+\left|\sum_{\left|\eta_{i}\right|<\eta_{0}} \vec{p}_{t i}\right|\right)
$$

Predictions valid as usual, but \mathcal{F} diverges at $R^{\prime}=R_{c}^{\prime}$

Sample output: the indirectly global thrust minor

x Tests on the observable

Test	result
check number of jets	T
observable positive	T
global	T
continuously global	T
additive	F
exponentiate	T
eliminate subleading effects	T
opt. probe region exists	T

x Single emission properties

$\operatorname{leg} \ell$	a_{ℓ}	b_{ℓ}	$g_{\ell}(\phi)$	d_{ℓ}	$\left\langle\ln g_{\ell}(\phi)\right\rangle$
1	1	0	tabulated	2.0000	-0.2201
2	1	0	tabulated	2.0000	-0.2201
3	1	0	$\sin (\phi)$	2.0000	$-\operatorname{Ln}(2)$
4	1	0	$\sin (\phi)$	2.0000	$-\operatorname{Ln}(2)$

- Tables and plots generated automatically by CAESAR

$\mathcal{F}\left(R^{\prime}\right)$ for the indirectly global thrust minor

The multiple emission function $\mathcal{F}\left(R^{\prime}\right)$

Different result for different colour configurations

The indirectly global thrust minor

Dijets events at Tevatron run II regime

- run II regime $\sqrt{s}=1.96 \mathrm{TeV}$
> cut on jet transverse energy $\mathrm{E}_{T}>50 \mathrm{GeV}$ and on rapidity $|\eta|<1$

Out-of plane radiation in DIS [1+2] jet events

Dijets events at Hera

Kinematical variables: $\sqrt{s}=300 \mathrm{GeV} \quad Q=36.7 \mathrm{GeV} \quad x_{B}=0.056$
Cuts: $y_{c u t}=0.1 \quad \eta_{\max }=3$
\Rightarrow Scale choice and PDFs: $\alpha_{s}\left(M_{Z}\right)=0.118 \quad \mu_{F}=\mu_{R}=P_{T} \quad$ PDFS: CTEQ6M

Out-of plane radiation in DIS [1+2] jet events

Dijets events at Hera

Kinematical variables: $\sqrt{s}=300 \mathrm{GeV} \quad Q=36.7 \mathrm{GeV} \quad x_{B}=0.056$
Cuts: $y_{c u t}=0.1 \quad \eta_{\max }=3$
Scale choice and PDFs: $\alpha_{s}\left(M_{Z}\right)=0.118 \quad \mu_{F}=\mu_{R}=P_{T} \quad$ PDFS: CTEQ6M

NP-shift: Banfi , Dokshitzer, Marchesini, GZ, hep-ph/0111157

Comparison with usual MCs

Monte Carlo event generators (Herwig, Pythia ...) do already embody many resummation ingredients (parton showering).

Comparison with usual MCs

Monte Carlo event generators (Herwig, Pythia ...) do already embody many resummation ingredients (parton showering).

However is it difficult to extract a clean answer

- subleading effects always present and hard to estimate
- resummation mixed up with other physics (non-perturbative cut-offs)
- uncertainties have a variety of origins (approximated matrix elements, choice of scales, cutoffs ...)
- matching of 3-jet events at NLO is beyond today's possibilities

Comparison with usual MCs

Monte Carlo event generators (Herwig, Pythia ...) do already embody many resummation ingredients (parton showering).

However is it difficult to extract a clean answer

- subleading effects always present and hard to estimate
- resummation mixed up with other physics (non-perturbative cut-offs)
- uncertainties have a variety of origins (approximated matrix elements, choice of scales, cutoffs ...)
- matching of 3-jet events at NLO is beyond today's possibilities

Our predictions
e do not contain subleading Logs \Rightarrow matching feasible
e purely perturbative, any hadronization model can be apply on top
e allow studies of factorization, renormalization scale dependencies
e are limited to a precise, well-defined class of observables

Conclusions \& outlook

Main result: rigorous procedure to perform resummation semi-analytically
Banfi, Salam, GZ hep-ph/0304148

Conclusions \& outlook

Main result: rigorous procedure to perform resummation semi-analytically
x Input needed
Banfi, Salam, GZ hep-ph/0304148
e Born process and the number of hard jets (legs)
e definition the observable via a computer routine

Conclusions \& outlook

Main result: rigorous procedure to perform resummation semi-analytically
x Input needed
e Born process and the number of hard jets (legs)
e definition the observable via a computer routine
x Most relevant applications

- Theoretical: criterion of recursive infrared and collinear safety
- Experimental: first NLL predictions in hadronic dijet events
http://home.fnal.gov/̌zanderi/Caesar.html

Conclusions \& outlook

Main result: rigorous procedure to perform resummation semi-analytically
x Input needed
e Born process and the number of hard jets (legs)
e definition the observable via a computer routine
x Most relevant applications

- Theoretical: criterion of recursive infrared and collinear safety
- Experimental: first NLL predictions in hadronic dijet events
x Work in progress
- release CAESAR v1.0

Conclusions \& outlook

Main result: rigorous procedure to perform resummation semi-analytically
x Input needed
e Born process and the number of hard jets (legs)
e definition the observable via a computer routine
x Most relevant applications

- Theoretical: criterion of recursive infrared and collinear safety
- Experimental: first NLL predictions in hadronic dijet events
x Work in progress
- release CAESAR v1.0
\times To-do list and wish list
- automated matching of NLL with NLO (JET++)
- extension non-global observables and inclusion of mass effects

