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LHC is coming!
What signatures do we expect?
What can we learn?

Approaches
New models, new signatures, …
New techniques, new tools, …

Done with “old’’
 

theories? ---
 

No
Weak scale supersymmetry

… New classes of signatures
in well-motivated, simple setups



Outline

•
 

Supersymmetry
 

and flavor 

•
 

Flavorful SUSY: simple demonstration

•
 

Superparticle
 

spectrum

•
 

LHC signatures --
 

probing the origin of flavor

Based on work with
Michele Papucci

 

and Daniel Stolarski
arXiv:0712.2074, arXiv:0802.2582

cf. also Feng, Lester, Nir, Shadmi, arXiv:0712.0674



Weak scale supersymmetry
Stabilizing the weak scale

Gauge coupling unification

Candidate for dark matter
R parity  →

 
stable LSP
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Most of the SSM parameter region is excluded

A common solution

Flavor universality:
(at a scale where these masses are generated)

e.g. mSUGRA, gauge mediation, gaugino

 

mediation, …

EDM for

 

e-, n, Hg, …

or

Problem of FCNC and CP

(mq,l 
2)ij ~ mSUSY

2,   (au,d,e )ij ~ mSUSY

FCNC: K-K, μ eγ, …

(mq,l 
2)ij ~ δij (or «

 
mSUSY

2),   
(au,d,e )ij ~ (yu,d,e )ij (or «

 
mSUSY

 

)

~ ~

~~



Flavor shows an interesting pattern already in the SM

No conclusive understanding of its origin yet

Do we need to go to flavor universality?
… Physics responsible for the SM flavor structure

may address the problem of flavor and CP in SUSY

Do we understand flavor?

(Earlier) attempts:
•

 

Flavor symmetry: Dine, Leigh, Kagan; Pouliot

 

Seiberg; Pomarol, Tomassini; Barbieri, Hall, Dvali, 
Raby, Romanino; Nir, Seiberg, Leurer, Grossman, Feng, Shadmi; Kaplan, Schmaltz; King, Ross, 
Velasco-Sevilla, Vives, Antusch, Milansky; Hall, Murayama, Carone; …
•

 

Higher dimensions / strong dynamics: Kaplan, Tait; Hall, Nomura; Abe, Choi, Jeong, Okumura; 
Nelson, Strassler; Kobayashi, Terao; …



Constraints from flavor tightened in the past years

Need to avoid all these bounds “naturally’’

Constraints tightened

Ciucini, Masiero, Paradisi, 
Silvestrini, Vempati, Vives

 

(’07)

PDG (’06)



•
 

Simple Froggatt-Nielsen (U(1) flavor symmetry)

•
 

Pure alignment (ΔmQ
2/mQ

2

 

~ 1)

Need “almost’’
 

flavor universality?
eliminate anything interesting at the LHC?

Need complicated model building?

Not trivial to avoid the bounds

Q1
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), Q3

 

(q3

 

), ε(-1) sinθC

 

~ ε|q1-q2|

ΔmQ
2

 

= |(mQ
2)11

 

-(mQ
2)22

 

|

too large

mQ
2

 

= muL
2

 

= mdL
2

super-CKM basis

K-K:  |sinθdL 
| < 0.01

D-D:  |sinθuL 
| < 0.1

sinθuL 
-sinθdL 

= sinθC
contradiction:

… need approximate degeneracy ~O(0.1)
cf. Feng, Lester, Nir, Shadmi

~ ~ ~

~ ~ ~

1st

 

two generation

… need to be < O(10-4)



Consider the following simple setup (models later):
•

 
SSM arises at some high scale M* (≥

 
Munif

 

)
•

 
Every field Φ

 
carries a suppression factor εΦ

for all (non-gauge) interactions

εΦ
 

are generation dependent

→ The origin of the SM flavor structure

SUSY can still be “flavorful’’

(↔ enhancement of εΦ-2

 

in

 

ZΦ

 

)

(εHu omitted for simplicity)



Relevant operators:

Scaling:

SUSY breaking parameters

Gauginos:

Matter:

Higgses:

Note:

 

O(1) coefficients omitted,

 

e.g. 

(A=1,2,3)

(Φ=Q,U,D,L,E)



Soft SUSY parameters at M*

MSUSY

 

= FX /M*

We have set

 

κHu ~ κHd ~ κH and ηHu ~ ηHd ~ ηH for simplicity

The Yukawa
 

couplings

Flavor violation correlated with the Yukawa
 

structure

: flavor nonuniversal
(O(1) coefficients omitted)

e.g.



Superparticle
 

masses obtain flavor universal pieces
by RGE, possible additional, e.g. GMSB, contributions…

(Other RG effects can be absorbed by redef. of ηA , ηH and tanβ)

Mass insertion parameters

are given by

and similarly for the d-type q and charged l sectors (and ν

 

sector for LL)

Low energy flavor and CP

model-indep. 
parameterization…

~ ~ ~

(X,Y = L,R ; f = u,d,e)



Factors εΦ
 

are chosen to reproduce flavor of q and l
Here we take

where
 

ε
 

~ O(0.05 –
 

0.1)
This gives

αq , αl , αβ

 

~ O(1): freedoms unfixed by the q and l data

Choices of εΦ

with



Relevant constraints:

Bounds are strong for W = (X/M*

 

)(Yukawa) operators

ζ
 

can be small: technically natural, (anomalous) symmetry, …

Constraints satisfied in wide regions

Quark sector:

Lepton sector:

Flavor conserving:

For ζ

 

~ 1 MSUSY

 

> 5 TeV

 

for y ~ 1

MSUSY

 

> 1.5 TeV

 

for y ~ 4π

~ ~

~

~

K-K, D-D, 
B-B, sin2β, 
b sγ

μ eγ

n and e EDM
Gabbiani

 

et al (’96)  
Masiero

 

et al (’07)
e.g.

mq ~ 500 GeV

 
ml ~ 200 GeV

~
~

from μ eγ and e EDM



For ζ
 

«
 

1 and others ~ O(1)

for mq = 500 GeV
 

and ml = 200 GeV

A wide parameter region is open
even for light superparticles

Supersymmetry
 

can very well be “flavorful’’
---

 
and can lead to “drastic’’

 
effects at the LHC

weakly coupled (y ~ 1):

strongly coupled (y ~ 4π):

~

~

~

~ ~ assumed Higgs sector does not have

 

CP
e.g. arg(b) = arg(μ) or |b| «

 

|μ|2



A variety of ways of obtaining the pattern considered
higher dimensions, strong dynamics, flavor symmetry, …

–

 

Spacetime

 

enlarged to 5D

–

 

Higgs and SUSY fields
localized on the same brane

–

 

Yukawa

 

and SUSY 
both controlled by wavef. 
at the brane

 

→
 

εΦ

–

 

Dangerous W = (X/M*

 

)(Yukawa) ops. killed by U(1)PQ

–

 

Gauge med. (naturally ~ grav

 

med.) provides universal contributions
–

 

Combined with grand unification
–

 

…

Explicit Realizations

Example:

Extensions:
~ Munif

-1

EW, SUSY



It is not entirely trivial

There are other flavor violating contributions

All these corrections under control
… can reproduce the patterns discussed

At the leading order,

brane

 

kinetic term (flavor)        canonical normalization
Kähler

 

4-point terms        radiative

 

corrections (flavor)

bulk gauge loop (flavor)

e.g.



Nontrivial flavor structure at TeV
 

… focus on RH
 

ei

If no intrinsic flavor violation (flavor universal), then

at ~ TeV
 

in the basis (ye )ij = (ye )ii δij

(i) interaction eigenstates
 

= mass eigenstates
(ii) mass ordering of ei anticorrelated

 
with that of ei

These are not true for the present case:

Superparticle
 

Spectrum
~

~

Ie : Iμ

 

: Iτ

 

~ (ye )11
2

 

: (yμ

 

)22
2

 

: (yτ

 

)33
2

(Ie,μ,τ

 

> 0)



Flavorful effects propagate to the weak scale

For the present parameterization

(i) interaction eigenstates
 

≠
 

mass eigenstates
(ii) mass ordering of ei not strictly related with that of ei

Any of eR

 

, μR

 

, τR

 

can be the lightest ---
 

“large’’
 

effect
Mass splitting much larger (e.g. O(1) splitting for τR

 

for εE3

 

~ O(1))

Ke : Kμ

 

: Kτ

 

~ (ye )11
2

 

: (yμ

 

)22
2

 

: (yτ

 

)33
2

 

for (ae )ij

 

~ (ye

 

)ij

flavor universal RGE effect intrinsic flavor violation

flavor universal negative either sign

~
~ ~ ~

~



Phenomenology at colliders
 

depends 
strongly on the LSP/NLSP species

Lightest sfermion
 

→ one of eR,i ≡
 

lR
Lightest ino

 
→ B

Gravitino: G
Mass ordering between lR

 

, B, G model dependent

The case with a single scale M*

m3/2

 

falls in the same range for many other cases, too
Models with gauge med. ~ grav

 

med. with Mmess

 

~ Munif

 

,

 

…

LSP/NLSP

Most likely

(e.g. gaugino

 

mass generation, universal contributions, …)

~ 10-2

~ ~
~

~
~ ~ ~



Typical superparticle
 

spectrum  
Overall pattern

SM + Higgs Sfermion SSM inos Gravitino

h0

Z

A0
H±
H0

eL

 

, μL

 

, τL

eR

 

, μR

 

, τR

χ±
1,2

 

, χ0
2,3,4

G

q g

NOT determined 
which is the lightest NOT determined 

which is the lightest

χ0
1

 

≈

 

B

~ ~ ~

~~ ~

~ ~

~
~



Rich signatures for general “flavorful’’
 

SUSY
Classify into 3 cases:

(a) mG < mlR

 

< mB

NLSP is lR

 

decaying into G with

which for 10-2mλ,q,l < m3/2

 

< mλ,q,l is longer than ~ 100 sec
•

 

stable charged tracks inside the main detector
•

 

late decay of lR

 

in a stopper detector

(b) mlR

 

< mB , mG

lR

 

is the LSP → stable charged tracks

(c) mB , mG < mlR

 

or mB < mlR

 

< mG

lR

 

decays into B + l inside the main detector
•

 

missing energy events

LHC Signatures

~ ~ ~

~~~

~

~ ~

~ ~ ~~

~

~ (cosmological problem?)

~ ~ ~ ~ ~
~ ~



Stable lR
 

(in fact, both cases (a) and (b))

•
 

Mass measured very precisely ≈
 

O(0.1-1%)
 

(for 0.6 < β

 

< 0.8)
•

 
Events fully reconstructed

Flavor measurement

2 isolated leptons + 2 NLSP’s
 

(+ jets)
 

flavor measurement

Measurements of the the

 

NNLSP flavor and 
the NLSP-NNLSP mass difference also seem possible

Case (a): Long-lived lR

l

l

lR

lR

typically B
٭

Most of leptons have the same flavor as the NLSP, sometimes differ

2 hard leptons + 2 (relatively) soft leptons + 2 NLSP’s

~

~

~

~

~

… Physics that can be
done at an early stage



Late decay of lR
 

may be measured
•

 
NLSP stopped within the detector for β

 
< 0.4

–

 

Look for particles that do not point back to the interaction area

•
 

NLSP stopped in the rock just outside the detector
–

 

Some of the decay products will re-enter the detector

–

 

Use tracker to determine where the NLSP stopped

•
 

Build a large stopper detector outside the main detector
–

 

NLSP’s

 

trapped
–

 

Decay products measured

Late decay of long-lived lR
~

(low statistics, cosmic neutrino backgroud, …)

extract pieces of the rock
and study the decay in a quiet environment

~

De Roeck, Ellis, Giannotti, 
Moortgat, Olive, Pape

Hamaguchi, Kuno, Nakaya, Nojiri; 
Feng, Smith



A stopper detector can
measure decay products

•

 

Conventional scenario 
only consider a τR

 

NLSP

•

 

NLSP in flavorful SUSY
could be eR

 

or μR

→ spectacular 
monochromatic e or μ

•

 

make it easy to measure
–

 

the mass of G
–

 

the lifetime of NLSP
→ test supergravity

 

relations

•

 

Flavor mixing angles can be measured

 

… sensitivity of O(10-2)

Physics at a stopper detector

Hamaguchi, Nojiri, de Roeck, hep-ph/0612060

need to include a magnetic field for μ

Buchmuller, Hamaguchi, 
Ratz, Yanagida

cf. Hamaguchi, Ibarra

~

~~

~



χ0
1

 

lighter than lR: case (c)

All eR,i decay promptly  →
 

missing energy

Intrinsic flavor violation still measured
–

 
MT2

 

in Drell-Yan
 

production

–
 

Multiple edges in flavor-tagged Mll distribution

… warrants further study

In all cases (a,b,c), detailed study of q, l masses
probing the origin of the flavor structure

Case (c): Neutralino
 

(N)LSP

•

 

issue of statistics, …

•

 

need sizable flavor violating couplings
•

 

eR,i must be produced by χ0
2

 

decay …

 

small Br
•

 

eL,i flavor structure can be studied if meL,i 
< mχ0

2

cf. Bartl, Hidaka, Hohenwarter-Sodek, Kernreiter, 
Majerotto, Prpd; Bayatian

 

et al …

~
~

~

~ ~

~ ~



Conclusions
•

 
Despite stringent constraints from low energy, 

supersymmetry
 

may well be “flavorful’’
Simple scaling is enough to satisfy essentially

all the low energy flavor and CP constraints

•
 

Rich phenomenology at colliders
Both cases can be studied at the LHC

for stable charged tracks and missing energy
–

 

Events fully reconstructed  →

 

precision (flavor) measurement
–

 

Rich physics at a stopper detector

•
 

Direct window to the mechanism of flavor
•

 
Better to be prepared for the possibility

… can be realized explicitly

e.g. software, analysis, detector design, …
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