### Physics Opportunities at LHCb

Matthias Neubert

Institut für Physik (THEP) Johannes Gutenberg-Universität Mainz



#### LHCb Capabilities on Resolving Flavor Puzzles in B Physics

- New Physics CP phase in B<sub>s</sub> mixing
- $sin2\beta$  from tree vs. penguins
- CP violation in  $B \rightarrow \pi K$  decays
- $\epsilon_K$  vs. sin2 $\beta$

# THE TO THE MAINZERSTRAT

#### New physics in B<sub>s</sub> mixing ?

- Main information from flavor-tagged analysis of mixing-induced CP violation in  $B_s \rightarrow J/\psi \phi$  decay
- Combined probability regions for  $\varphi_{s}\text{=}2\beta_{s}$  and  $\Delta\Gamma_{s}$





• Combined analysis (UT*fit* collab., March 2008):

### $\Delta m_{s} \oplus A_{SL}{}^{s} \oplus A_{SL}{}^{\mu\mu} \oplus \tau(B_{s}) \oplus \{\phi_{s}, \Delta\Gamma_{s}\}$

(CDF) (D0) (CDF, D0) (ALEPH, DELPHI, (CDF, D0) OPAL, CDF, D0)

## • some bayesian magic ...



#### FIRST EVIDENCE OF NEW PHYSICS IN $b \leftrightarrow s$ TRANSITIONS

 $(\mathbf{UT}fit \text{ Collaboration})$ 

M. Bona,<sup>1</sup> M. Ciuchini,<sup>2</sup> E. Franco,<sup>3</sup> V. Lubicz,<sup>2,4</sup> G. Martinelli,<sup>3,5</sup> F. Parodi,<sup>6</sup> M. Pierini,<sup>1</sup> P. Roudeau,<sup>7</sup> C. Schiavi,<sup>6</sup> L. Silvestrini,<sup>3</sup> V. Sordini,<sup>7</sup> A. Stocchi,<sup>7</sup> and V. Vagnoni<sup>8</sup>

<sup>1</sup>CERN, CH-1211 Geneva 23, Switzerland <sup>2</sup>INFN, Sezione di Roma Tre, I-00146 Roma, Italy <sup>3</sup>INFN, Sezione di Roma, I-00185 Roma, Italy

<sup>4</sup>Dipartimento di Fisica, Università di Roma Tre, I-00146 Roma, Italy

<sup>5</sup>Dipartimento di Fisica, Università di Roma "La Sapienza", I-00185 Roma, Italy

<sup>6</sup> Dipartimento di Fisica, Università di Genova and INFN, I-16146 Genova, Italy

<sup>7</sup>Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, BP 34, F-91898 Orsay Cedex, France <sup>8</sup>INFN, Sezione di Bologna, I-40126 Bologna, Italy

We combine all the available experimental information on  $B_s$  mixing, including the very recent tagged analyses of  $B_s \to J/\Psi \phi$  by the CDF and DØ collaborations. We find that the phase of the  $B_s$  mixing amplitude deviates more than  $3\sigma$  from the Standard Model prediction. While no single measurement has a  $3\sigma$  significance yet, all the constraints show a remarkable agreement with the combined result. This is a first evidence of physics beyond the Standard Model. This result disfavours New Physics models with Minimal Flavour Violation with the same significance.

#### **3.7** $\sigma$ evidence for a non-standard CP phase!



• Model-independent parameterization:

$$C_{B_s} e^{2i\phi_{B_s}} = \frac{A_s^{SM} e^{-2i\beta_s} + A_s^{NP} e^{2i(\phi_s^{NP} - \beta_s)}}{A_s^{SM} e^{-2i\beta_s}}$$







• Parameterization:

$$C_{B_s} e^{2i\phi_{B_s}} = \frac{A_s^{\mathrm{SM}} e^{-2i\beta_s} + A_s^{\mathrm{NP}} e^{2i(\phi_s^{\mathrm{NP}} - \beta_s)}}{A_s^{\mathrm{SM}} e^{-2i\beta_s}}$$

 If confirmed with more data, this would be clear evidence for new physics!

> see also: Lenz, Nierste (2006)



• Capabilities of LHCb:

| Luminosity          | 0.5 fb <sup>-1</sup> | <mark>2 fb<sup>-1</sup></mark> | 10 fb <sup>-1</sup> |
|---------------------|----------------------|--------------------------------|---------------------|
|                     | (~2009)              | (~2010)                        | (~2013)             |
| σ(2β <sub>s</sub> ) | 0.046                | 0.021                          | 0.009               |



# THE ANNES GUTANNES GUTANNES MAINZERSITAT

#### New physics in rare B decays (I)?

- CP violation in interference of mixing and decays in neutral B decays into CP eigenstates
- Time-dependent CP asymmetry provides direct access to angles of the unitarity triangle:

$$B^{0} \longleftrightarrow \overline{B}^{0}$$

$$A_{\rm CP}(t) = \frac{\Gamma(\bar{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\bar{B}^0(t) \to f) + \Gamma(B^0(t) \to f)} = \sin 2(\beta - \varphi_A) \sin(\Delta m t)$$

- Consider modes with  $\phi_A$ = 0 and compare results for sin2  $\beta$  from tree- and loop-dominated processes

Grossman, Worah (1996)



#### $(\sin 2\beta)_{\text{tree}}$ vs. $(\sin 2\beta)_{\text{penguin}}$





### $(\sin 2\beta)_{\text{tree}}$ vs. $(\sin 2\beta)_{\text{penguin}}$



- Present accuracy:  $\sigma(\sin 2\beta_{\phi Ks}) = 0.17$
- LHCb capability with 10 fb<sup>-1</sup>:

 $\sigma(\sin 2\beta_{\phi Ks}) = 0.10$ 

 $\Rightarrow$  Super-B factory!



### $(\sin 2\beta_s)_{tree}$ vs. $(\sin 2\beta_s)_{penguin}$

- But LHCb can do analogous test using B<sub>s</sub> decays
- Compare sin2 $\beta_s$  values extracted from  $B_s \rightarrow J/\psi \phi$ vs.  $B_s \rightarrow \phi \phi$





| Luminosity                           | <mark>2 fb<sup>-1</sup></mark><br>(~2010) | 10 fb⁻¹<br>(~2013) |
|--------------------------------------|-------------------------------------------|--------------------|
| $\sigma$ (2 $\beta_{s}^{\phi\phi}$ ) | 0.11                                      | 0.04               |



# THE AND THE MAINZERSITAT

#### New physics in rare B decays (II) ?

- Belle and Babar observe large difference in direct CP asymmetries between B<sup>±</sup>→K<sup>±</sup>π<sup>0</sup> and B<sup>0</sup>→K<sup>±</sup>π<sup>-+</sup> decays (Belle paper in Nature, March 2008): "this large deviation in direct CP violation between charged and neutral B meson decays could be an indication of new sources of CP violation"
- World-average experimental data:

 $A_{CP}(B^- \rightarrow K^- \pi^0) = + 0.050 \pm 0.025$  $A_{CP}(B^0 \rightarrow K^- \pi^+) = - 0.097 \pm 0.012$ 

LHCb capability:  $\sigma(A_{CP}(B^0 \rightarrow K^-\pi^+)) = 0.0014$  with 10 fb<sup>-1</sup>

#### A "πK puzzle" ?

• Amplitude interference:

$$\sqrt{2} A(B^{-} \rightarrow K^{-} \pi^{0}) = P - (T + C) e^{-i\gamma} + P_{EW}$$
$$A(B^{0} \rightarrow K^{-} \pi^{+}) = P - T e^{-i\gamma}$$

• QCD predictions (model independent):

 $P_{EW} = f_{real}(m_t/m_W) (T + C)$ 

 $\arg(C/T) = O[\alpha_s(m_b), \Lambda_{QCD}/m_b]_{R}$ 

U-spin symmetry and Fierz relations Fleischer (1996); MN, Rosner (1998)

QCD factorization, SCET Beneke, Buchalla, MN, Sachrajda (1999-2001) Bauer, Rothstein, Stewart (2005)

CP asymmetries predicted to have same sign ! (and similar magnitude)

→ test of theoretical assumptions requires Super-B factory

# THE ANNUAL THE MAINZERSTRAT

#### A crack in the unitarity triangle ?

- Using improved determinations of lattice matrix elements, find slight stress between CP violation measurements in K ( $\epsilon_{\rm K}$ ) and B<sub>d</sub> mixing (sin2 $\beta$ )
- Result independent of |V<sub>ub</sub>|



Lunghi, Soni (2008) see also: Buras, Guadagnoli (2008)

# THE TO THE WALL AND THE MAINZENSITAT

#### A crack in the unitarity triangle ?

- Possible explanation in terms of new CP-violating effects in K and/or  $B_{\rm d}$  mixing
- Precise measurement of γ could add important information
- LHCb capability: (with 10 fb<sup>-1</sup>)

σ(γ)~(2-3)<sup>o</sup> ∣



#### If any of these effects are real ...

- Hints at O(1) new physics effects in mixing amplitudes and rare decay amplitude
- Requires large, O(1) new CP-violating phases



Check at ATLAS/CMS!

#### Not a Minimal Flavor Violation scenario !

Anticipating Physics at the LHC, KITP



#### Other Opportunities at LHCb

- $B_s \rightarrow \mu^+ \mu^-$  decay (probing large tan $\beta$ )
- Radiative decays  $B_d \rightarrow K^* \mu^+ \mu^-$  and  $B_s \rightarrow \phi \gamma$
- D mixing
- Exotic searches



#### Rare decay $B_s \rightarrow \mu^+ \mu^-$

 Sensitive probe of scalar boson exchange (vector boson exchange helicity suppressed)



- Huge enhancement of rate possible in models with large  $tan\beta$
- Best present bound (CDF):

 $Br(B_s \rightarrow \mu^+ \mu^-) < 5.8 \cdot 10^{-8} @ 95\% CL$ 



#### Rare decay $B_s \rightarrow \mu^+ \mu^-$

#### • Projections for LHCb:





#### Rare decay $B_s \rightarrow \mu^+ \mu^-$

Important impact on CMSSM parameter space





#### Radiative decay $B_d \rightarrow K^* \mu^+ \mu^-$

• Zero of forward-backward asymmetry sensitive to Wilson coefficients in effective Hamiltonian



• With 10 fb<sup>-1</sup>, precision on zero  $\sigma(s_0)=0.27 \text{ GeV}^2$ 



### Radiative decay $B_s \rightarrow \phi \gamma$

- LHCb will collect 11k (68k) events of  $B_s \rightarrow \phi \gamma$ ( $B_d \rightarrow K^* \gamma$ ) per 2 fb<sup>-1</sup>
  - 1% sensitivity to CP asymmetry
  - < 0.2 sensitivity to suppressed γ polarization fraction
- With 10 fb<sup>-1</sup>, time-dependent CP asymmetry (sensitive to photon polarization) can be measured to  $\sigma(S_{\phi\gamma})$ =0.05

### D mixing

• LHCb performance with 10 fb<sup>-1</sup> (~2013):

 $\sigma(x'^2) = 0.06 \cdot 10^{-3}$   $\sigma(y') = 0.7 \cdot 10^{-3}$ at present: ±0.20  $+2.8 \\ -3.7$ 

- Performance on CP violation under study
  - preliminary result: >8.10<sup>6</sup> flavor-tagged D $\rightarrow$ K<sup>+</sup>K<sup>-</sup> decays with 10 fb<sup>-1</sup> (Belle has 10<sup>5</sup> decays with 540 fb<sup>-1</sup>)

#### Searches for exotics

• Possibility of Higgs discovery via highly displaced vertices from decays of new neutral particles, e.g.:



- MSSM with an additional scalar Chang, Fox, Weiner (2005)
- hidden-valley models

Strassler, Zurek (2006)

- SUSY with R-parity violation and light neutralino (in this case, also reach for superpartner searches up to 1 TeV squark masses) Kaplan, Rehermann (2007)
- LHCb particularly well suited for such studies

# THE ANNES GUIDENNES MAINZENSITAT

#### Summary

- LHCb experiment offers significant reach to physics beyond SM
- Capability to definitively settle question of new CP phases in  $B_s$  mixing, and shed light on possible new physics effects in rare  $B_s$  and  $B_d$  decays
- Broad range of other important measurements in B<sub>s</sub>, B<sub>d</sub>, and D physics, including precise determination of unitarity triangle parameters
- Possibly, significant reach in Higgs/SUSY searches via displaced vertices