HIGGS + 2 JET PRODUCTION AT THE LHC

Dieter Zeppenfeld Universität Karlsruhe, Germany

Seminar at KITP, Santa Barbara, March 13, 2008

- LHC goals
- Vector boson fusion
- Measurement of Higgs couplings
- Hjj production via gluon fusion
- $H \rightarrow WW$ study
- $H \rightarrow \tau \tau$ study
- Probing CP properties
- Summary

Higgs Search = search for dynamics of $SU(2) \times U(1)$ breaking

- Discover the Higgs boson
- Measure its couplings and probe mass generation for gauge bosons and fermions

Fermion masses arise from Yukawa couplings via

$$\Phi^{\dagger} \rightarrow (0, \frac{v+H}{\sqrt{2}})$$

$$\mathcal{L}_{\text{Yukawa}} = -\Gamma_d^{ij} \bar{Q}_L^{\prime i} \Phi d_R^{\prime j} - \Gamma_d^{ij*} \bar{d}_R^{\prime i} \Phi^{\dagger} Q_L^{\prime j} + \dots = -\Gamma_d^{ij} \frac{v+H}{\sqrt{2}} \bar{d}_L^{\prime i} d_R^{\prime j} + \dots$$
$$= -\sum_f m_f \bar{f} f \left(1 + \frac{H}{v} \right)$$

- Test SM prediction: $\bar{f}fH$ Higgs coupling strength = m_f/v
- Observation of $Hf\bar{f}$ Yukawa coupling is no proof that v.e.v exists

Higgs coupling to gauge bosons

Kinetic energy term of Higgs doublet field:

$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) = \frac{1}{2}\partial^{\mu}H\partial_{\mu}H + \left[\left(\frac{gv}{2}\right)^{2}W^{\mu+}W^{-}_{\mu} + \frac{1}{2}\frac{\left(g^{2}+g'^{2}\right)v^{2}}{4}Z^{\mu}Z_{\mu}\right]\left(1+\frac{H}{v}\right)^{2}$$

- *W*, *Z* mass generation: $m_W^2 = \left(\frac{gv}{2}\right)^2$, $m_Z^2 = \frac{(g^2 + g'^2)v^2}{4}$
- *WWH* and *ZZH* couplings are generated
- Higgs couples proportional to mass: coupling strength = $2 m_V^2 / v \sim g^2 v$ within SM

Measurement of *WWH* and *ZZH* couplings is essential for identification of *H* as agent of symmetry breaking: Without a v.e.v. such a trilinear coupling is impossible at tree level

Verify tensor structure of *HVV* couplings. Loop induced couplings lead to $HV_{\mu\nu}V^{\mu\nu}$ effective coupling and different tensor structure: $g_{\mu\nu} \rightarrow q_1 \cdot q_2 g_{\mu\nu} - q_{1\nu}q_{2\mu}$

Total cross sections at the LHC

Vector Boson Fusion (VBF)

[Eboli, Hagiwara, Kauer, Plehn, Rainwater, D.Z....]

Most measurements can be performed at the LHC with statistical accuracies on the measured cross sections times decay branching ratios, $\sigma \times$ BR, of order 10% (sometimes even better).

VBF signature

Characteristics:

- energetic jets in the forward and backward directions ($p_T > 20 \text{ GeV}$)
- large rapidity separation and large invariant mass of the two tagging jets
- Higgs decay products between tagging jets
- Little gluon radiation in the central-rapidity region, due to colorless *W*/*Z* exchange (central jet veto: no extra jets between tagging jets)

Example: Parton level analysis of $H \rightarrow WW$

Near threshold: *W* and *W*^{*} almost at rest in Higgs rest frame \implies use $m_{ll} \approx m_{\nu\nu}$ for improved transverse mass calculation:

$$E_{T,ll} = \sqrt{\mathbf{p}_{T,ll}^2 + m_{ll}^2}$$

$$E_T = \sqrt{\mathbf{p}_T^2 + m_{\nu\nu}^2} \approx \sqrt{\mathbf{p}_T^2 + m_{ll}^2}$$

$$M_T = \sqrt{(\mathbf{E}_T + E_{T,ll})^2 - (\mathbf{p}_{T,ll} + \mathbf{p}_T)^2}$$

Observe Jacobian peak below $M_T = m_H$

Transverse mass distribution for $m_H = 115 \text{ GeV}$ and $H \rightarrow WW^* \rightarrow e^{\pm} \mu^{\mp} \not p_T$

in collinear approximation, the decay lepton has the same direction as the τ , i.e. $p_{\ell,i}^{\mu} = x_i \cdot p_{\tau,i}^{\mu}$ \Rightarrow the energy fractions x_1, x_2 of the decay leptons can be reconstructed by solving the equation:

$$\vec{p}_T = \left(\frac{1}{x_1} - 1\right) \vec{p}_{1,T} + \left(\frac{1}{x_2} - 1\right) \vec{p}_{2,T}$$

the invariant tau pair mass is then given by

$$m_{\tau\tau}^2 = \frac{2p_{\ell,1} \cdot p_{\ell,2}}{x_1 x_2} = \frac{m_{\ell\ell}^2}{x_1 x_2}$$

80

80

0

 $\sigma_{M} = 11$ to 12 GeV

*background estimate: ~10%
for M_H>125 GeV from side bands

for $M_H > 125$ GeV from normalisation of $Z \rightarrow \tau \tau$ peak

Markus Schumacher, Bonn University

ON $H \rightarrow \tau \tau \rightarrow e\mu 30 \text{ fb}^{-1}$

Higgs Physics at LHC WIN03

12

Lake Geneva, Wisconsin

Higgs discovery potential

Statistical and systematic errors at LHC

Assumed errors in fits to couplings:

- QCD/PDF uncertainties
 - $\pm 5\%$ for VBF
 - $\pm 20\%$ for gluon fusion
- luminosity/acceptance uncertainties

- ±5%

Measuring Higgs couplings at LHC

LHC rates for partonic process $pp \rightarrow H \rightarrow xx$ given by $\sigma(pp \rightarrow H) \cdot BR(H \rightarrow xx)$

$$\sigma(H) \times BR(H \rightarrow xx) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \cdot \frac{\Gamma_p \Gamma_x}{\Gamma},$$

Measure products $\Gamma_p \Gamma_x / \Gamma$ for combination of processes ($\Gamma_p = \Gamma(H \rightarrow pp)$) Problem: rescaling fit results by common factor *f*

$$\Gamma_i \rightarrow f \cdot \Gamma_i$$
, $\Gamma \rightarrow f^2 \Gamma = \sum_{obs} f \Gamma_i + \Gamma_{rest}$

leaves observable rate invariant \implies no model independent results at LHC Loose bounds on scaling factor:

$$f^{2}\Gamma > \sum_{obs.} f\Gamma_{x} \implies f > \sum_{obs.} \frac{\Gamma_{x}}{\Gamma} = \sum_{obs.} BR(H \rightarrow xx) (= \mathcal{O}(1))$$

Total width below experimental resolution of Higgs mass peak ($\Delta m = 1...20$ GeV)

$$f^2 \Gamma < \Delta m \implies f < \sqrt{\frac{\Delta m}{\Gamma}} < \mathcal{O}(10 - 40)$$

Fit LHC data within constrained models

With 200 fb⁻¹ measure partial width with 10–30% errors, couplings with 5–15% errors

Distinguishing the MSSM Higgs sector from the SM

Alternative: compare data to predictions of specific models Example: m_H^{max} scenario of LEP analyses

Consider modest m_A :

- decoupling almost complete for hWW and $h\gamma\gamma$ (effective) vertices
- enhanced *hbb* and $h\tau\tau$ couplings compared to SM increases total width of *h*
- \approx SM rates for $h \rightarrow \tau \tau$ in VBF
- suppressed $h \rightarrow \gamma \gamma$ and $h \rightarrow WW$ rates in VBF

 3σ -effects or more at small m_A

How to distinguish VBF and gluon fusion?

Double real corrections to $gg \rightarrow H$ can "fake" VBF

 \implies we need to investigate the phenomenology of these two processes and understand the differences that can be exploited to distinguish between gluon fusion and VBF

- \implies derive cuts to be applied to enhance VBF with respect to gluon fusion. Measure *HWW* and *HZZ* coupling
- \implies derive cuts to be applied to enhance gluon fusion with respect to VBF. Measure effective *Hgg* coupling or *Htt* coupling

Diagrams for gg fusion with finite *m*_t **effects**

plus crossed processes. In total 61 independent diagrams. [DelDuca, Kilgore, Oleari, Schmidt, DZ (2001)]

Applied cuts for LHC predictions

The cross section diverges in collinear and soft regions

• INCLUSIVE cuts to define H + 2 jets

$$p_{Tj} > 20 \text{ GeV} \qquad |\eta_j| < 5 \qquad R_{jj} = \sqrt{(\eta_{j_1} - \eta_{j_2})^2 + (\phi_{j_1} - \phi_{j_2})^2} > 0.6$$

• VBF cuts to enhance VBF over gluon fusion In addition to the previous ones, we impose

$$|\eta_{j_1} - \eta_{j_2}| > 4.2$$
 $\eta_{j_1} \cdot \eta_{j_2} < 0$ $m_{jj} > 600 \text{ GeV}$

- the two tagging jets must be well separated in rapidity
- they must reside in opposite detector hemispheres
- they must possess a large dijet invariant mass.

LHC cross sections below calculated with CTEQ6L1 pdfs and fixed $\alpha_s = 0.12$ Expect factor ≈ 1.5 to 2 scale uncertainty due to $\sigma \sim \alpha_s^4$

Total cross section with cuts as function of *m*_{*H*}

Large top mass limit ok for total cross section provided $m_H \lesssim m_t$

Distributions and $m_t \rightarrow \infty$ **limit**

Transverse momentum: Large top mass limit ok provided $p_{T,j} \lesssim m_t$ Dijet invariant mass: Large top mass limit ok throughout

New calculation: pseudoscalar Higgs production

 $pp \rightarrow AjjX$ including top and bottom loops + interference [Michael Kubocz, diploma thesis]

New elements in the calculation

- AQQ vertices given by $-\frac{m_b}{v}\gamma_5 \tan\beta$ and $-\frac{m_t}{v}\gamma_5 \frac{1}{\tan\beta}$
- Interference of top and bottom loops
- Can simulate CP violation in the Higgs sector: $a + ib\gamma_5$ coupling to top and bottom

Gluon Fusion as a signal channel

Heavy quark loop induces effective *Hgg* vertex:

$$\begin{aligned} \mathbf{CP} - \mathbf{even}: & i\frac{m_Q}{v} \to \mathcal{L}_{eff} = \frac{\alpha_s}{12\pi v} H \ G^a_{\mu\nu} G^{\mu\nu,a} \\ \mathbf{CP} - \mathbf{odd}: & -\frac{m_Q}{v} \gamma_5 \to \mathcal{L}_{eff} = \frac{\alpha_s}{8\pi v} A \ G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} = \frac{\alpha_s}{16\pi v} A \ G^a_{\mu\nu} G^a_{\alpha\beta} \varepsilon^{\mu\nu\alpha\beta} \end{aligned}$$

Azimuthal angle between tagging jets probes difference

- Use gluon fusion induced Φ_{jj} signal to probe structure of Hgg vertex
- Measure size of coupling (requires NLO corrections for precision)
- Find **cuts** to enhance gluon fusion over VBF and other backgrounds

 \implies Study by Gunnar Klämke in $m_Q \rightarrow \infty$ limit (hep-ph/0703202)

Gluon fusion signal and backgrounds

Signal channel (LO):

- $pp \rightarrow Hjj$ in gluon fusion with $H \rightarrow W^+W^- \rightarrow l^+l^- \nu \bar{\nu}$, $(l = e, \mu)$
- $m_H = 160 \,\mathrm{GeV}$

dominant backgrounds:

- W^+W^- -production via VBF (including Higgs-channel): $pp \rightarrow W^+W^-jj$
- top-pair production: $pp \rightarrow t\bar{t}, t\bar{t}j, t\bar{t}jj$ (N. Kauer)
- QCD induced W^+W^- -production: $pp \rightarrow W^+W^-jj$

applied inclusive cuts (minimal cuts):

• 2 tagging-jets

 $p_{Tj} > 30 \,\text{GeV}, \qquad |\eta_j| < 4.5$

• 2 identified leptons

 $p_{Tl} > 10 \, {
m GeV}, \qquad |\eta_l| < 2.5$

• separation of jets and leptons

 $\Delta \eta_{jj} > 1.0$, $R_{jl} > 0.7$

process	σ [fb]
$\text{GF } pp \to H + jj$	115.2
$VBF \ pp \rightarrow W^+W^- + jj$	75.2
$pp ightarrow tar{t}$	6832
$pp ightarrow tar{t}+j$	9518
$pp ightarrow tar{t} + jj$	1676
$QCD \ pp \rightarrow W^+W^- + jj$	363

Characteristic distributions

Separation of VBF *Hjj* signal from QCD background is much easier than separation of gluon fusion *Hjj* signal

Selection continued

- b-tagging for reduction of top-backgrounds. (CMS Note 06/014)
 - (η , p_T) dependent tagging-efficiencies (60% 75%) with 10% mistagging probability
- <u>selection cuts:</u>

 $p_{Tl} > 30 \,\text{GeV}, \qquad M_{ll} < 75 \,\text{GeV}, \qquad M_{ll} < 0.44 \cdot M_T^{WW}, \qquad R_{ll} < 1.1,$

Results

process	σ [fb]	events/ 30fb^{-1}
$GF pp \to H + jj$	31.5	944
$VBF pp \rightarrow W^+W^- + jj$	16.5	495
$pp ightarrow tar{t}$	23.3	699
$pp \rightarrow t\bar{t} + j$	51.1	1533
$pp ightarrow tar{t} + jj$	11.2	336
QCD $pp \rightarrow W^+W^- + jj$	11.4	342
Σ backgrounds	113.5	3405

\Rightarrow S/ $\sqrt{B} \approx$ 16.2 for 30 fb⁻¹

Higgs + 2 Jets in Gluon Fusion, $H \rightarrow \tau \tau \rightarrow \ell^+ \ell^- \nu \bar{\nu}$

- this channel has not been studied so far
- interesting for SM Higgs ($\approx 120 \text{ GeV}$) and SUSY scenario with large tan β ($m_H \approx m_A \gtrsim 150 \text{ GeV}$)
- x-section times branching ratio of ≈ 50 fb looks promising (SM)
- has potential for study of Higgs CP-properties

- Study of signal and SM backgrounds for $m_H = 120$ GeV case (simple cut based analysis)
- same for one MSSM scenario $m_A = 200$ GeV, tan $\beta = 50$ Questions:
- How many signal and background events are there after cuts (what's the statistical significance)
- What are the prospects of CP-measurements via jet-jet azimuthal angle correlation

finite detector resolution

The detector has a finite resolution. The measured jet energy and missing transverse energy have large uncertainties. Parameterization (from CMS NOTE 2006/035, CMS NOTE 2006/036):

Jets :

$$\frac{\Delta E_j}{E_j} = \left(\frac{a}{E_{Tj}} \oplus \frac{b}{\sqrt{E_{Tj}}} \oplus c\right)$$

	а	b	С
$\eta_j < 1.4$	5.6	1.25	0.033
$1.4 < \eta_j < 3$	4.8	0.89	0.043
$\eta_j > 3$	3.8	0	0.085

Leptons :

$$\frac{\Delta E_{\ell}}{E_{\ell}} = 2\%$$

Missing p_T :

SM Higgs with 120 GeV mass

inclusive cuts

 $p_{T,jets} > 30\,{
m GeV}\,, \quad p_{T,\ell} > 10\,{
m GeV}\,, \quad |\eta_j| < 4.5\,, \quad |\eta_\ell| < 2.5\,, \quad \Delta\eta_{jj} > 1.0\,, \quad \Delta R_{j\ell} > 0.7\,,$

cross sections for inclusive cuts for signal and background

process	σ [fb]	events / 600fb^{-1}
$GF pp \rightarrow H + jj \rightarrow \tau \tau jj$	11.283	6770
$\text{GF } pp \to A + jj \to \tau \tau jj$	25.00	15002
$VBF pp \rightarrow H + jj \rightarrow \tau \tau jj$	5.527	3316
QCD $pp \rightarrow Z + jj \rightarrow \tau \tau jj$	1652.8	991700
$VBF \ pp \rightarrow Z + jj \rightarrow \tau\tau jj$	15.70	9418
$pp ightarrow tar{t}$	6490	3893900
$pp \rightarrow t\bar{t} + j$	9268	5560890
$pp \rightarrow t\bar{t} + jj$	1629	977263
QCD $pp \rightarrow W^+W^- + jj$	334.2	200540
VBF $pp \rightarrow W^+W^- + jj$	24.78	14871

Distributions

selection cuts

a b-veto was applied to reduce the top backgrounds.

 $R_{\ell\ell} < 2.4$, $p_T > 30 \,\text{GeV}$, $m_{\ell\ell} < 80 \,\text{GeV}$, $110 \,\text{GeV} < m_{\tau\tau} < 135 \,\text{GeV}$, $0 < x_i < 1$

process	σ [fb]	events / 600fb^{-1}
$\text{GF } pp \rightarrow H + jj \rightarrow \tau \tau jj$	4.927	2956
GF $pp \rightarrow A + jj \rightarrow \tau \tau jj$	11.43	6860
$\text{VBF } pp \rightarrow H + jj \rightarrow \tau \tau jj$	2.523	1514
QCD $pp \rightarrow Z + jj \rightarrow \tau \tau jj$	27.62	16573
VBF $pp \rightarrow Z + jj \rightarrow \tau \tau jj$	0.475	285
$pp ightarrow tar{t}$	3.86	2316
$pp ightarrow tar{t} + j$	8.84	5306
$pp ightarrow tar{t} + jj$	3.8	2283
QCD $pp \rightarrow W^+W^- + jj$	1.48	887
$VBF \ pp \rightarrow W^+W^- + jj$	0.147	88
Σ backgrounds	48.84	29300

for cp-even higgs: $S/\sqrt{B} \approx 17$ (600 fb⁻¹) this corresponds to: $S/\sqrt{B} \approx 5$ (50 fb⁻¹) for cp-odd higgs: $S/\sqrt{B} \approx 40$ (600 fb^{-1}) this corresponds to: $S/\sqrt{B} \approx 5$ (10 fb^{-1})

Tensor structure of the *HVV* **coupling**

Most general *HVV* vertex $T^{\mu\nu}(q_1, q_2)$

$$T^{\mu\nu} = a_1 g^{\mu\nu} + a_2 (q_1 \cdot q_2 g^{\mu\nu} - q_1^{\nu} q_2^{\mu}) + a_3 \varepsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}$$

The $a_i = a_i(q_1, q_2)$ are scalar form factors

Physical interpretation of terms:

SM Higgs
$$\mathcal{L}_I \sim H V_\mu V^\mu \longrightarrow a_1$$

loop induced couplings for neutral scalar

CP even
$$\mathcal{L}_{eff} \sim HV_{\mu\nu}V^{\mu\nu} \longrightarrow a_2$$

CP odd
$$\mathcal{L}_{eff} \sim HV_{\mu\nu}\tilde{V}^{\mu\nu} \longrightarrow a_3$$

Must distinguish a_1 , a_2 , a_3 experimentally

Tell-tale signal for non-SM coupling is azimuthal angle between tagging jets

Dip structure at 90° (CP even) or $0/180^{\circ}$ (CP odd) only depends on tensor structure of HVV vertex. Very little dependence on form factor, LO vs. NLO, Higgs mass etc.

Define azimuthal angle between jet momenta j_+ and j_- via

$$\varepsilon_{\mu\nu\rho\sigma}b^{\mu}_{+}j^{\nu}_{+}b^{\rho}_{-}j^{\sigma}_{-} = 2p_{T,+}p_{T,-}\sin(\phi_{+}-\phi_{-}) = 2p_{T,+}p_{T,-}\sin\Delta\phi_{jj}$$

- $\Delta \phi_{ii}$ is a parity odd observable
- $\Delta \phi_{jj}$ is invariant under interchange of beam directions $(b_+, j_+) \leftrightarrow (b_-, j_-)$

Work with Vera Hankele, Gunnar Klämke and Terrance Figy: hep-ph/0609075

Signals for CP violation in the Higgs Sector

Position of minimum of $\Delta \phi_{jj}$ distribution measures relative size of CP-even and CP-odd couplings. For

 $a_1 = 0,$ $a_2 = d \sin \alpha,$ $a_3 = d \cos \alpha,$

 \implies Minimum at $-\alpha$ and $\pi - \alpha$

$\Delta \Phi_{jj}$ -Distribution in gluon fusion: WW case

Fit to Φ_{jj} -distribution with function $f(\Delta \Phi) = N(1 + A\cos[2(\Delta \Phi - \Delta \Phi_{max})] - B\cos(\Delta \Phi))$

fit of the background only : $A = 0.069 \pm 0.044$ and $\Delta \Phi_{max} = 64 \pm 25$ (mean values of 10 independent fits of data for $L = 30 f b^{-1}$ each)

$\Delta \Phi_{jj}$ -Distribution: CP violating case

CP-mixture: equal CP-even and CP-odd contributions $A = 0.153 \pm 0.037$ $\Delta \Phi_{max} = 45.6 \pm 7.3$

Dieter Zeppenfeld Hjj production 37

$H \rightarrow \tau \tau$ case: $\Delta \Phi_{jj}$ -distribution with backgrounds

Fit to Φ_{jj} -distribution with function $f(\Delta \Phi) = N(1 + A\cos[2(\Delta \Phi)] - B\cos(\Delta \Phi))$

Summary

- Higgs + 2 Jet events at the LHC provide very useful information on Higgs couplings
- Order 200 fb⁻¹ of LHC data allow to probe Higgs couplings at the 10% level
- Beside VBF, gluon fusion is a second copious source of $\Phi j j$ events at the LHC
- Full one-loop calculations are available for quark-loop induced *Hjj* and *Ajj* production, including CP-even CP-odd interference and finite quark mass effects
- For $m_H = 160$ GeV and dominant decay $H \rightarrow WW$ the gluon fusion induced signal at the LHC is visible above backgrounds. $H \rightarrow \tau \tau$ is somewhat more challenging
- CP-violation in the Higgs sector is observable via the shape of the azimuthal angle distribution $d\sigma/d\Delta\phi_{jj}$