Higgs + 2 Jet Production at the LHC

Dieter Zeppenfeld
Universität Karlsruhe, Germany

Seminar at KITP, Santa Barbara, March 13, 2008

- LHC goals
- Vector boson fusion
- Measurement of Higgs couplings
- Hjj production via gluon fusion
- $H \rightarrow WW$ study
- $H \rightarrow \tau \tau$ study
- Probing CP properties
- Summary
Goals of Higgs Physics

Higgs Search = search for dynamics of \(SU(2) \times U(1) \) breaking

- Discover the Higgs boson
- Measure its couplings and probe mass generation for gauge bosons and fermions

Fermion masses arise from Yukawa couplings via

\[
\Phi^\dagger \to (0, \frac{v + H}{\sqrt{2}})
\]

\[
\mathcal{L}_{\text{Yukawa}} = -\Gamma_{d}^{ij} \bar{Q}_{L}^{i} \Phi_{d}^{j} - \Gamma_{d}^{ij\ast} \bar{d}_{R}^{i} \Phi^\dagger Q_{L}^{j} + \ldots = -\Gamma_{d}^{ij} \frac{v + H}{\sqrt{2}} \bar{d}_{L}^{i} d_{R}^{j} + \ldots
\]

\[
= -\sum_{f} m_{f} \bar{f} f \left(1 + \frac{H}{v}\right)
\]

- Test SM prediction: \(\bar{f} f H \) Higgs coupling strength = \(m_{f} / v \)
- Observation of \(Hf\bar{f} \) Yukawa coupling is no proof that v.e.v exists
Higgs coupling to gauge bosons

Kinetic energy term of Higgs doublet field:

\[(D^\mu \Phi)^\dagger (D_\mu \Phi) = \frac{1}{2} \partial^\mu H \partial_\mu H + \left[\left(\frac{g v}{2} \right)^2 W^\mu W^-_\mu + \frac{1}{2} \frac{(g^2 + g'^2)v^2}{4} Z^\mu Z_\mu \right] \left(1 + \frac{H}{v} \right)^2 \]

- W, Z mass generation: $m_W^2 = \left(\frac{g v}{2} \right)^2, m_Z^2 = \frac{(g^2 + g'^2)v^2}{4}$

- WWH and ZZH couplings are generated

- Higgs couples proportional to mass: coupling strength $= 2 m^2\nu / v \sim g^2v$ within SM

Measurement of WWH and ZZH couplings is essential for identification of H as agent of symmetry breaking: Without a v.e.v. such a trilinear coupling is impossible at tree level
Verify tensor structure of HVV couplings. Loop induced couplings lead to $HV_{\mu\nu} V^{\mu\nu}$ effective coupling and different tensor structure:

$$g_{\mu\nu} \rightarrow q_1 \cdot q_2 g_{\mu\nu} - q_1 \nu q_2 \mu$$
Total cross sections at the LHC

\[\sigma(pp \to H + X) [\text{pb}] \]

\[\sqrt{s} = 14 \text{ TeV} \]

NLO / NNLO

[Krämer ('02)]
Most measurements can be performed at the LHC with statistical accuracies on the measured cross sections times decay branching ratios, $\sigma \times \text{BR}$, of order 10% (sometimes even better).
VBF signature

Characteristics:

- energetic jets in the **forward** and **backward** directions ($p_T > 20$ GeV)
- large **rapidity separation** and large **invariant mass** of the two tagging jets
- **Higgs decay products** between tagging jets
- Little gluon radiation in the central-rapidity region, due to **colorless** W/Z exchange
 (central jet veto: no extra jets between tagging jets)
Example: Parton level analysis of $H \to WW$

Near threshold: W and W^* almost at rest in Higgs rest frame \implies use $m_{ll} \approx m_{\nu\nu}$ for improved transverse mass calculation:

$$E_{T,ll} = \sqrt{p_{T,ll}^2 + m_{ll}^2}$$

$$E_T = \sqrt{\not{p}_T^2 + m_{\nu\nu}^2} \approx \sqrt{\not{p}_T^2 + m_{ll}^2}$$

$$M_T = \sqrt{(E_T + E_{T,ll})^2 - (\not{p}_{T,ll} + \not{p}_T)^2}$$

Observe Jacobian peak below $M_T = m_H$

Transverse mass distribution for $m_H = 115$ GeV and $H \to WW^* \to e^\pm \mu^\mp \not{p}_T$
in collinear approximation, the decay lepton has the same direction as the τ, i.e. $p_{\ell,i}^\mu = x_i \cdot p_{\tau,i}^\mu$

\Rightarrow the energy fractions x_1, x_2 of the decay leptons can be reconstructed by solving the equation:

$$\vec{p}_T = \left(\frac{1}{x_1} - 1\right) \vec{p}_{1,T} + \left(\frac{1}{x_2} - 1\right) \vec{p}_{2,T}$$

the invariant tau pair mass is then given by

$$m_{\tau\tau}^2 = \frac{2 p_{\ell,1} \cdot p_{\ell,2}}{x_1 x_2} = \frac{m_{\ell\ell}^2}{x_1 x_2}$$
Weak Boson Fusion: $H \rightarrow \tau \tau$

Mass can be reconstructed in collinear approximation

$x^{\tau} = \text{momentum fraction carried by tau decay products}$

$\sigma_M = \text{11 to 12 GeV}$

$\star \text{significance} > 5 \text{ for } 30 \text{ fb}^{-1}$ and $M_H = 110 \text{ to } 140 \text{ GeV (} \tau \tau \rightarrow e\mu, \tau \tau \rightarrow l l, \tau \tau \rightarrow l \text{ had)}}$

$\star \text{background estimate: } \sim 10\%$

for $M_H > 125 \text{ GeV}$ from side bands

for $M_H > 125 \text{ GeV}$ from normalisation of $Z \rightarrow \tau \tau$ peak
$\int L \, dt = 30 \text{ fb}^{-1}$
(no K-factors)

ATLAS

$\begin{align*}
&\text{Signal significance} \\
&\frac{S}{\sqrt{B}}
\end{align*}$

- $H \rightarrow \gamma\gamma$
- $ttH (H \rightarrow bb)$
- $H \rightarrow ZZ^{(*)} \rightarrow 4l$
- $H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$
- $qqH \rightarrow qq WW^{(*)}$
- $qqH \rightarrow qq \tau\tau$

Total significance
Assumed errors in fits to couplings:

- **QCD/PDF uncertainties**
 - $\pm 5\%$ for VBF
 - $\pm 20\%$ for gluon fusion

- **Luminosity/acceptance uncertainties**
 - $\pm 5\%$
LHC rates for partonic process \(pp \rightarrow H \rightarrow xx \) given by \(\sigma(pp \rightarrow H) \cdot BR(H \rightarrow xx) \)

\[
\sigma(H) \times BR(H \rightarrow xx) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \times \frac{\Gamma_p \Gamma_x}{\Gamma},
\]

Measure products \(\Gamma_p \Gamma_x / \Gamma \) for combination of processes (\(\Gamma_p = \Gamma(H \rightarrow pp) \))

Problem: rescaling fit results by common factor \(f \)

\[
\Gamma_i \rightarrow f \cdot \Gamma_i, \quad \Gamma \rightarrow f^2 \Gamma = \sum_{obs} f \Gamma_i + \Gamma_{rest}
\]

leaves observable rate invariant \(\implies \) no model independent results at LHC

Loose bounds on scaling factor:

\[
f^2 \Gamma > \sum_{obs} f \Gamma_x \quad \implies \quad f > \sum_{obs} \frac{\Gamma_x}{\Gamma} = \sum_{obs} BR(H \rightarrow xx)(= \mathcal{O}(1))
\]

Total width below experimental resolution of Higgs mass peak (\(\Delta m = 1 \ldots 20 \text{ GeV} \))

\[
f^2 \Gamma < \Delta m \quad \implies \quad f < \sqrt{\frac{\Delta m}{\Gamma}} < \mathcal{O}(10 - 40)
\]
Fit LHC data within constrained models

- $\frac{g_{H\tau\tau}}{g_{Hbb}} = \text{SM value}$
- $\frac{g_{HWW}}{g_{HZZ}} = \text{SM value}$
- no exotic channels

With 200 fb$^{-1}$ measure partial width with 10–30% errors, couplings with 5–15% errors
Distinguishing the MSSM Higgs sector from the SM

Alternative: compare data to predictions of specific models
Example: \(m_H^{\text{max}}\) scenario of LEP analyses

Consider modest \(m_A\):

- decoupling almost complete for \(hWW\) and \(h\gamma\gamma\) (effective) vertices
- enhanced \(hbb\) and \(h\tau\tau\) couplings compared to SM increases total width of \(h\)

\[\Rightarrow\]

- \(\approx\) SM rates for \(h\to\tau\tau\) in VBF
- suppressed \(h\to\gamma\gamma\) and \(h\to WW\) rates in VBF

3σ-effects or more at small \(m_A\)
How to distinguish VBF and gluon fusion?

Double real corrections to $gg \to H$ can “fake” VBF

- we need to investigate the phenomenology of these two processes and understand the differences that can be exploited to distinguish between gluon fusion and VBF

- derive cuts to be applied to enhance VBF with respect to gluon fusion.
 - Measure HWW and HZZ coupling

- derive cuts to be applied to enhance gluon fusion with respect to VBF.
 - Measure effective Hgg coupling or Htt coupling

Dieter Zeppenfeld
Hjj production
15
Diagrams for gg fusion with finite m_t effects

\[q Q \rightarrow q Q H \quad q g \rightarrow q g H \quad g g \rightarrow g g H \]

plus crossed processes. In total 61 independent diagrams. [DelDuca, Kilgore, Oleari, Schmidt, DZ (2001)]
Applied cuts for LHC predictions

The cross section diverges in **collinear** and **soft** regions

- **INCLUSIVE cuts** to define $H + 2$ jets

 \[p_{Tj} > 20 \text{ GeV} \quad |\eta_j| < 5 \quad R_{jj} = \sqrt{(\eta_{j_1} - \eta_{j_2})^2 + (\phi_{j_1} - \phi_{j_2})^2} > 0.6 \]

- **VBF cuts** to enhance VBF over gluon fusion

 In addition to the previous ones, we impose

 \[|\eta_{j_1} - \eta_{j_2}| > 4.2 \quad \eta_{j_1} \cdot \eta_{j_2} < 0 \quad m_{jj} > 600 \text{ GeV} \]

 - the two tagging jets must be well separated in rapidity
 - they must reside in opposite detector hemispheres
 - they must possess a large dijet invariant mass.

LHC cross sections below calculated with CTEQ6L1 pdfs and fixed $\alpha_s = 0.12$

Expect factor ≈ 1.5 to 2 scale uncertainty due to $\sigma \sim \alpha_s^4$
Total cross section with cuts as function of m_H

INCLUSIVE cuts

- solid $m_t=175$ GeV
- dots $m_t \to \infty$
- dashes WBF

WBF cuts

- solid $m_t=175$ GeV
- dots $m_t \to \infty$
- dashes WBF

Large top mass limit ok for total cross section provided $m_H \lesssim m_t$
Transverse momentum: Large top mass limit ok provided $p_{T,j} \lesssim m_t$
Dijet invariant mass: Large top mass limit ok throughout
New calculation: pseudoscalar Higgs production

$pp \rightarrow AjjX$ including top and bottom loops + interference [Michael Kubocz, diploma thesis]
New elements in the calculation

- \(AQQ \) vertices given by \(-\frac{m_b}{\nu} \gamma_5 \tan \beta \) and \(-\frac{m_t}{\nu} \gamma_5 \frac{1}{\tan \beta} \)
- Interference of top and bottom loops
- Can simulate CP violation in the Higgs sector: \(a + ib \gamma_5 \) coupling to top and bottom

Inclusive cuts

- \(m_t = 175 \) GeV
- \(m_b \tan \beta = 4.4 \) GeV

VBF cuts

- \(m_t = 175 \) GeV
- \(m_b \tan \beta = 4.4 \) GeV

\(\sigma \) vs \(m_A \) [GeV]
Gluon Fusion as a signal channel

Heavy quark loop induces effective Hgg vertex:

- **CP – even**:
 \[
 i \frac{m_Q}{v} \rightarrow \mathcal{L}_{\text{eff}} = \frac{\alpha_s}{12\pi v} H G^a_{\mu\nu} G^{\mu\nu,a}
 \]

- **CP – odd**:
 \[
 - \frac{m_Q}{v} \gamma_5 \rightarrow \mathcal{L}_{\text{eff}} = \frac{\alpha_s}{8\pi v} A G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} = \frac{\alpha_s}{16\pi v} A G^a_{\mu\nu} G^a_{\alpha\beta} \varepsilon^{\mu\nu\alpha\beta}
 \]

Azimuthal angle between tagging jets probes difference

- Use gluon fusion induced Φjj signal to probe structure of Hgg vertex
- Measure size of coupling (requires NLO corrections for precision)
- Find **cuts** to enhance gluon fusion over VBF and other backgrounds

⇒ Study by **Gunnar Klämke** in $m_Q \rightarrow \infty$ limit (hep-ph/0703202)
Gluon fusion signal and backgrounds

Signal channel (LO):
- \(pp \rightarrow Hjj \) in gluon fusion with \(H \rightarrow W^+W^- \rightarrow l^+l^-\nu\bar{\nu}, (l = e, \mu) \)
- \(m_H = 160 \text{ GeV} \)

Dominant backgrounds:
- \(W^+W^- \)-production via VBF (including Higgs-channel): \(pp \rightarrow W^+W^- jj \)
- Top-pair production: \(pp \rightarrow t\bar{t}, t\bar{t}j, t\bar{t}jj \) (N. Kauer)
- QCD induced \(W^+W^- \)-production: \(pp \rightarrow W^+W^- jj \)

Applied inclusive cuts (minimal cuts):
- 2 tagging-jets
 \[p_{Tj} > 30 \text{ GeV}, \quad |\eta_j| < 4.5 \]
- 2 identified leptons
 \[p_{Tl} > 10 \text{ GeV}, \quad |\eta_l| < 2.5 \]
- Separation of jets and leptons
 \[\Delta \eta_{jj} > 1.0, \quad R_{jl} > 0.7 \]

\begin{tabular}{|c|c|}
\hline
process & \(\sigma \) [fb] \\
\hline
GF \(pp \rightarrow H + jj \) & 115.2 \\
VBF \(pp \rightarrow W^+W^- + jj \) & 75.2 \\
\quad \(pp \rightarrow t\bar{t} \) & 6832 \\
\quad \(pp \rightarrow t\bar{t} + j \) & 9518 \\
\quad \(pp \rightarrow t\bar{t} + jj \) & 1676 \\
QCD \(pp \rightarrow W^+W^- + jj \) & 363 \\
\hline
\end{tabular}
Separation of VBF Hjj signal from QCD background is much easier than separation of gluon fusion Hjj signal.
• **b-tagging** for reduction of top-backgrounds.
 - \((\eta, p_T)\) - dependent tagging-efficiencies (60% - 75%) with 10% mistagging - probability

• selection cuts:

 \[p_{Tl} > 30 \text{ GeV}, \quad M_{ll} < 75 \text{ GeV}, \quad M_{ll} < 0.44 \cdot M_{TWW}, \quad R_{ll} < 1.1, \]

 \[M_{TWW} < 170 \text{ GeV}, \quad p_T > 30 \text{ GeV} \]

 \[M_{TWW} = \sqrt{(E_T + E_{Tll})^2 - (\vec{p}_{Tll} + \vec{p}_T)^2} \]

![Graphs showing distributions of various observables for signal, VBF, tt+Jets, and QCD-WW](image_url)
Results

<table>
<thead>
<tr>
<th>process</th>
<th>σ [fb]</th>
<th>events/ 30 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF $pp \to H + jj$</td>
<td>31.5</td>
<td>944</td>
</tr>
<tr>
<td>VBF $pp \to W^+W^- + jj$</td>
<td>16.5</td>
<td>495</td>
</tr>
<tr>
<td>$pp \to t\bar{t}$</td>
<td>23.3</td>
<td>699</td>
</tr>
<tr>
<td>$pp \to t\bar{t} + j$</td>
<td>51.1</td>
<td>1533</td>
</tr>
<tr>
<td>$pp \to t\bar{t} + jj$</td>
<td>11.2</td>
<td>336</td>
</tr>
<tr>
<td>QCD $pp \to W^+W^- + jj$</td>
<td>11.4</td>
<td>342</td>
</tr>
<tr>
<td>Σ backgrounds</td>
<td>113.5</td>
<td>3405</td>
</tr>
</tbody>
</table>

$\Rightarrow S/\sqrt{B} \approx 16.2$ for 30 fb$^{-1}$
Higgs + 2 Jets in Gluon Fusion, $H \rightarrow \tau \tau \rightarrow \ell^+ \ell^- \nu \bar{\nu}$

- this channel has not been studied so far
- interesting for SM Higgs (≈ 120 GeV) and SUSY scenario with large $\tan \beta$ ($m_H \approx m_A \gtrsim 150$ GeV)
- $\sigma \times BR$ of ≈ 50 fb looks promising (SM)
- has potential for study of Higgs CP-properties

Studied so far (by Gunnar Klämke):
- Study of signal and SM backgrounds for $m_H = 120$ GeV case (simple cut based analysis)
- same for one MSSM scenario $m_A = 200$ GeV, $\tan \beta = 50$

Questions:
- How many signal and background events are there after cuts (what’s the statistical significance)
- What are the prospects of CP-measurements via jet-jet azimuthal angle correlation
The detector has a finite resolution. The measured jet energy and missing transverse energy have large uncertainties. Parameterization (from CMS NOTE 2006/035, CMS NOTE 2006/036):

Jets:

\[
\frac{\Delta E_j}{E_j} = \left(\frac{a}{E_{Tj}} \oplus \frac{b}{\sqrt{E_{Tj}}} \oplus c \right)
\]

<table>
<thead>
<tr>
<th>(\eta_j)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_j < 1.4)</td>
<td>5.6</td>
<td>1.25</td>
<td>0.033</td>
</tr>
<tr>
<td>(1.4 < \eta_j < 3)</td>
<td>4.8</td>
<td>0.89</td>
<td>0.043</td>
</tr>
<tr>
<td>(\eta_j > 3)</td>
<td>3.8</td>
<td>0</td>
<td>0.085</td>
</tr>
</tbody>
</table>

Leptons:

\[
\frac{\Delta E_\ell}{E_\ell} = 2\%
\]

Missing \(p_T \):

\[
\Delta \not{p}_x = 0.46 \cdot \sqrt{\sum E_{Tj}}
\]
SM Higgs with 120 GeV mass

inclusive cuts

\[p_{T,\text{jets}} > 30 \text{ GeV}, \quad p_{T,\ell} > 10 \text{ GeV}, \quad |\eta_j| < 4.5, \quad |\eta_\ell| < 2.5, \quad \Delta\eta_{jj} > 1.0, \quad \Delta R_{j\ell} > 0.7, \]

cross sections for inclusive cuts for signal and background

<table>
<thead>
<tr>
<th>process</th>
<th>(\sigma) [fb]</th>
<th>events / 600 fb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF (pp \rightarrow H + jj \rightarrow \tau\tau jj)</td>
<td>11.283</td>
<td>6770</td>
</tr>
<tr>
<td>GF (pp \rightarrow A + jj \rightarrow \tau\tau jj)</td>
<td>25.00</td>
<td>15002</td>
</tr>
<tr>
<td>VBF (pp \rightarrow H + jj \rightarrow \tau\tau jj)</td>
<td>5.527</td>
<td>3316</td>
</tr>
<tr>
<td>QCD (pp \rightarrow Z + jj \rightarrow \tau\tau jj)</td>
<td>1652.8</td>
<td>991700</td>
</tr>
<tr>
<td>VBF (pp \rightarrow Z + jj \rightarrow \tau\tau jj)</td>
<td>15.70</td>
<td>9418</td>
</tr>
<tr>
<td>(pp \rightarrow t\bar{t})</td>
<td>6490</td>
<td>3893900</td>
</tr>
<tr>
<td>(pp \rightarrow t\bar{t} + j)</td>
<td>9268</td>
<td>5560890</td>
</tr>
<tr>
<td>(pp \rightarrow t\bar{t} + jj)</td>
<td>1629</td>
<td>977263</td>
</tr>
<tr>
<td>QCD (pp \rightarrow W^+W^- + jj)</td>
<td>334.2</td>
<td>200540</td>
</tr>
<tr>
<td>VBF (pp \rightarrow W^+W^- + jj)</td>
<td>24.78</td>
<td>14871</td>
</tr>
</tbody>
</table>
Distributions

dilepton invariant mass

reconstructed $\tau\tau$ invariant mass

Dieter Zeppenfeld
Hjj production
30
a b-veto was applied to reduce the top backgrounds.

\[R_{\ell\ell} < 2.4, \quad \not{p}_T > 30 \text{ GeV}, \quad m_{\ell\ell} < 80 \text{ GeV}, \quad 110 \text{ GeV} < m_{\tau\tau} < 135 \text{ GeV}, \quad 0 < x_i < 1 \]

<table>
<thead>
<tr>
<th>process</th>
<th>σ [fb]</th>
<th>events / 600 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF $pp \rightarrow H + jj \rightarrow \tau\tau jj$</td>
<td>4.927</td>
<td>2956</td>
</tr>
<tr>
<td>GF $pp \rightarrow A + jj \rightarrow \tau\tau jj$</td>
<td>11.43</td>
<td>6860</td>
</tr>
<tr>
<td>VBF $pp \rightarrow H + jj \rightarrow \tau\tau jj$</td>
<td>2.523</td>
<td>1514</td>
</tr>
<tr>
<td>QCD $pp \rightarrow Z + jj \rightarrow \tau\tau jj$</td>
<td>27.62</td>
<td>16573</td>
</tr>
<tr>
<td>VBF $pp \rightarrow Z + jj \rightarrow \tau\tau jj$</td>
<td>0.475</td>
<td>285</td>
</tr>
<tr>
<td>$pp \rightarrow t\bar{t}$</td>
<td>3.86</td>
<td>2316</td>
</tr>
<tr>
<td>$pp \rightarrow t\bar{t} + j$</td>
<td>8.84</td>
<td>5306</td>
</tr>
<tr>
<td>$pp \rightarrow t\bar{t} + jj$</td>
<td>3.8</td>
<td>2283</td>
</tr>
<tr>
<td>QCD $pp \rightarrow W^+W^- + jj$</td>
<td>1.48</td>
<td>887</td>
</tr>
<tr>
<td>VBF $pp \rightarrow W^+W^- + jj$</td>
<td>0.147</td>
<td>88</td>
</tr>
<tr>
<td>Σ backgrounds</td>
<td>48.84</td>
<td>29300</td>
</tr>
</tbody>
</table>

for cp-even higgs: \(S/\sqrt{B} \approx 17 \) (600 fb$^{-1}$)
for cp-odd higgs: \(S/\sqrt{B} \approx 40 \) (600 fb$^{-1}$)

this corresponds to: \(S/\sqrt{B} \approx 5 \) (50 fb$^{-1}$)
this corresponds to: \(S/\sqrt{B} \approx 5 \) (10 fb$^{-1}$)
Tensor structure of the HVV coupling

Most general HVV vertex $T^{\mu\nu}(q_1, q_2)$

Physical interpretation of terms:

SM Higgs $ \mathcal{L}_I \sim HV_{\mu} V^{\mu} \rightarrow a_1$

loop induced couplings for neutral scalar

CP even $ \mathcal{L}_{eff} \sim HV_{\mu\nu} V^{\mu\nu} \rightarrow a_2$

CP odd $ \mathcal{L}_{eff} \sim HV_{\mu\nu} \tilde{V}^{\mu\nu} \rightarrow a_3$

Must distinguish a_1, a_2, a_3 experimentally

The $a_i = a_i(q_1, q_2)$ are scalar form factors
Tell-tale signal for non-SM coupling is azimuthal angle between tagging jets

Dip structure at 90° (CP even) or $0/180^\circ$ (CP odd) only depends on tensor structure of HVV vertex. Very little dependence on form factor, LO vs. NLO, Higgs mass etc.
Azimuthal angle distribution and Higgs CP properties

Kinematics of Hjj event:

Define azimuthal angle between jet momenta j_+ and j_- via

$$\epsilon_{\mu\nu\rho\sigma} b_+^{\mu} j_+^{\nu} b_-^{\rho} j_-^{\sigma} = 2 p_{T,+} p_{T,-} \sin(\phi_+ - \phi_-) = 2 p_{T,+} p_{T,-} \sin \Delta \phi_{jj}$$

- $\Delta \phi_{jj}$ is a parity odd observable
- $\Delta \phi_{jj}$ is invariant under interchange of beam directions $(b_+, j_+) \leftrightarrow (b_-, j_-)$

Work with Vera Hankele, Gunnar Klämke and Terrance Figy: hep-ph/0609075
Signals for CP violation in the Higgs Sector

Position of minimum of $\Delta \phi_{jj}$ distribution measures relative size of CP-even and CP-odd couplings. For

$$a_1 = 0, \quad a_2 = d \sin \alpha, \quad a_3 = d \cos \alpha,$$

\Rightarrow Minimum at $-\alpha$ and $\pi - \alpha$

mixed CP case: $a_2 = a_3, a_1 = 0$

pure CP-even case: a_2 only

pure CP odd case: a_3 only
ΔΦ_{jj}-Distribution in gluon fusion: WW case

Fit to Φ_{jj}-distribution with function $f(\Delta \Phi) = N(1 + A \cos[2(\Delta \Phi - \Delta \Phi_{max})] - B \cos(\Delta \Phi))$

- **CP-even**
 - $A = 0.100 \pm 0.039$
 - $\Delta \Phi_{max} = 5.8 \pm 15.3$

- **CP-odd**
 - $A = 0.199 \pm 0.034$
 - $\Delta \Phi_{max} = 93.7 \pm 5.1$

Fit of the background only:
- $A = 0.069 \pm 0.044$ and $\Delta \Phi_{max} = 64 \pm 25$

(mean values of 10 independent fits of data for $L = 30 \text{ fb}^{-1}$ each)

Signal
- VBF
- t\bar{t}+Jets
- QCD-WW

$L = 300 \text{ fb}^{-1}$

$(\Delta \eta_{jj} > 3.0)$
$\Delta \Phi_{jj}$-Distribution: CP violating case

CP-mixture: equal CP-even and CP-odd contributions

$A = 0.153 \pm 0.037$

$\Delta \Phi_{max} = 45.6 \pm 7.3$
$H \rightarrow \tau \tau$ case: $\Delta \Phi_{jj}$-distribution with backgrounds

Fit to Φ_{jj}-distribution with function $f(\Delta \Phi) = N(1 + A \cos[2(\Delta \Phi)] - B \cos(\Delta \Phi))$

Fit of the background only: -0.043 ± 0.016

\Rightarrow significance for CP-even vs. CP-odd ≈ 8

$A = 0.004 \pm 0.015$

$A = -0.161 \pm 0.014$

$L = 600 \text{ fb}^{-1}$

($\Delta \eta_{jj} > 3.0$)
Summary

- Higgs + 2 Jet events at the LHC provide very useful information on Higgs couplings
- Order 200 fb$^{-1}$ of LHC data allow to probe Higgs couplings at the 10% level
- Beside VBF, gluon fusion is a second copious source of $Φjj$ events at the LHC
- Full one-loop calculations are available for quark-loop induced Hjj and Ajj production, including CP-even CP-odd interference and finite quark mass effects
- For $m_H = 160$ GeV and dominant decay $H → WW$ the gluon fusion induced signal at the LHC is visible above backgrounds. $H → ττ$ is somewhat more challenging
- CP-violation in the Higgs sector is observable via the shape of the azimuthal angle distribution $dσ/dΔφ_{jj}$