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Monte Carlo in LHC Era
All experimental searches and measurements

are (in one way or another) Monte Carlo sensitive.

How will we understand BSM backgrounds?

pp→ Z + jetspp→W + jets

pp→ tt̄ + jets

Heavy resonances + QCD radiation.
Multiple scales and potentially large logarithms.



TeVatron Example
(conversations with Beate Heinemann)

 0.0035 (“LO”) 0.0023 (“NLO”)

This is important calibration for heavy flavor. 

pp̄→ Z + b / pp̄→ Z



TeVatron Example
(conversations with Beate Heinemann)

 0.0035 (“LO”) 0.0023 (“NLO”)

This is important calibration for heavy flavor. 

 0.0037 ± 0.0006 (CDF)

pp̄→ Z + b / pp̄→ Z



“LO” = Pythia
Out-of-the-Box

Two fundamentally different approaches,
each with benefits and drawbacks.

Scorecard
“NLO” = MCFM w/

Pythia UE + Had.

–   Order αs

+   All Leading Logarithms

–   Ad Hoc Bottom Mass Treatment

+   “Normalized” PS/ME merging

–   Some Angular Correlations

+   Order αs2

–   Some Leading Logarithms

+   Proper Bottom Mass Treatment

–   No PS/ME merging

+   All Angular Correlations
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Existing Tools
Merge successes of fixed-order calculations

with successes of parton showers?

PS/ME Merging
Supplement Tree-Level Matrix Elements with

Sudakov Information (CKKW, MLM, Lönnblad, ...) 

MC@NLO
Combine Loop-Level Matrix Elements with
Sudakov Information (FW, POWHEG, ...)



Traditional Approach

Dead zones?  Double counting?
Negative weights?  Ambiguities?

dσ = MC
(
|M|2 dΦ
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Traditional Approach

Dead zones?  Double counting?
Negative weights?  Ambiguities?

dσ = MC
(
|M|2 dΦ

)
Vetoed Showers, Modified Scale Choices

Subtractions, Sudakovs, Multiple Samples
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The GenEvA Framework

No dead zones, no double counting,
no negative weights, no incalculable ambiguities.

dσ = |M(µ)|2 dMC(µ)
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The GenEvA Framework

No dead zones, no double counting,
no negative weights, no incalculable ambiguities.

Calculations Algorithms

dσ = |M(µ)|2 dMC(µ)
Matching Scale



GENerate EVents Analytically
❖ Algorithmic Side

✦ “Deriving” the Master Formula

✦ A New Approach to Phase Space

❖ Calculational Side

✦ Proof-of-Concept Amplitudes

• LO/LL Merging (Analog of PS/ME Merging)

• NLO/LL Merging (Analog of MC@NLO)

• NLO/LO/LL Merging (New!)

✦ Technical Details

❖ GenEvA at the LHC



*
Ultimate Goal:

Hadronic Collisions with Heavy Resonances

Current Status:
Leptonic Collisions with Massless Partons

e+e− → n jets



There is real code....



....and it’s reasonably user-friendly.

+-----------------------------------------------------------+
|  GenEvA --- GENerate EVents Analytically                  |
+-----------------------------------------------------------+
|  Version: 0.1.104 (January 24, 2008)                      |
|  Authors: Christian Bauer, Frank Tackmann & Jesse Thaler  |
|    arXiv: 0801.4026 & 0801.4028                           |
+-----------------------------------------------------------+

     +-----  Command Line                                           
     |  GenEvA --cms 1000 --cut 10 --numStat 10000 --best 6 50 
     +----------

     +-----  Event Generation Information                              
     |                 Process: e- e+ -> j j                      
     |   Center-of-Mass Energy: 1000 GeV                          
     |          Matching Scale: 50 GeV with maximum multiplicity 6
     |           Shower Cutoff: 10 GeV                            
     |              Generation: Events are matched to NLO/LO matrix element.
     +----------

     +-----  Run Statistics                                                                                 
     |  Process:    NumGen  NumKept  NumStat StatEff   NumUnw  UnwEff      Sigma +/- dS (pb)   (error%)
     |   Global:     19771    18674  10000.3   0.536   6485.0   0.347   0.253007 +/- 0.001779  ( 0.70%)
     |       2j:      2303     2303   2303.0   1.000   2303.0   1.000   0.089849 +/- 0.001760  ( 1.96%)
     |       3j:      8480     7383   6406.3   0.868   3539.7   0.479   0.129731 +/- 0.001333  ( 1.03%)
     |       4j:      5629     5629   3351.1   0.595    905.4   0.161   0.029322 +/- 0.000462  ( 1.57%)
     |       5j:      2492     2492   1187.3   0.476    254.1   0.102   0.003693 +/- 0.000104  ( 2.81%)
     |       6j:       867      867    326.1   0.376     82.2   0.095   0.000412 +/- 0.000023  ( 5.49%)
     +----------

+-----  Thank you for running GenEvA



GenEvA Master Formula
Generic Solution to Merging Fixed-Order

Calculations with Parton Showers

dσ = |M(µ)|2 dMC(µ)
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Traditional Approach

dσ = MC
(
|M|2 dΦ

)

ECM

Partonic

Showering

Hadronization
ΛQCD

µ

(Pythia, Herwig, ...) (ALPGEN, MadEvent, ...)

?  ?  ?  ?  ?  ?  ?  ?  ?



Traditional Approach

dσ = MC
(
|M|2 dΦ

)

1. Infrared Divergences
2. Scale Dependence
3. Double Counting

Three Technical Problems



GenEvA Framework

dσ = |M(µ)|2 dMC(µ)

Three Conceptual Solutions
1. Infrared Divergences? → Merge QCD Approximations

2. Scale Dependence? → Merge Calc. with Pheno. Models

3. Double Counting? → Merge Phase Space Algorithms
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GenEvA Framework

dσ = |M(µ)|2 dMC(µ)
ECM

Partonic

Showering

Hadronization
ΛQCD

µ

Insight & Experience
(i.e. Pythia, Herwig, ...)

Pencil & Paper
(Infrared Divergences)

Keyboard & Computer
(Double Counting)

Well-Defined & Unambiguous
(Scale Dependence)
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1. Different QCD Approx.
We have Fixed Order Expansion in αs.

We have (Sub-)Leading Logarithms in Soft-Collinear Limit.

Infrared Divergences should Cancel between Trees and Loops.

Infrared divergences cancelled in definition of “amplitude”. 
Infrared scale μ̃  needed to resum αs log2 r terms.

|M|2 → |M(µ̃)|2



Partonic Calculations

|MCKKW(µ̃)|2 ! |Mtree|2 ∆(ECM, µ̃)

|MNLO
n (µ̃)|2 ! |Mtree+loop

n |2 +
∫

µ̃
|Mtree

n+1|2

|MMC@NLO(µ̃)|2 != |MNLO(µ̃)|2∆(ECM, µ̃)



2. Calculations vs. Models
Calculations Available for Finite Number of Particles.

Need Parton Shower to fill out Phase Space.

Need Hadronization Model for Detector Simulation.

µ̃→ µ

If “amplitude” has correct leading logarithms, interface
with parton shower will be smooth if μ scale is the same.



3. Phase Space Algorithms
Field Theory Calculations need Fixed Number of Final States.

Parton Showers need Variable Number of Final States.

Want Every Phase Space Point Covered Once and Only Once.

Replace two event generation frameworks with one master
framework that solves double counting by construction.

MC (dΦ)→ dMC(µ)



dσ = MC
(
|M|2 dΦ

)

dσ = |M(µ)|2 dMC(µ)

|M|2 → |M(µ̃)|2

µ̃→ µ

MC (dΦ)→ dMC(µ)

Merge QCD Approx.

Merge Calc. w/ Model

Merge Algorithms

Infrared Divergences

Scale Dependence

Double Counting



Traditional Approach

dσ = MC
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GenEvA Framework

dσ = |M(µ)|2 dMC(µ)
ECM

Partonic

Showering

Hadronization
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µ

Pencil & Paper
(Infrared Divergences)

Keyboard & Computer
(Double Counting)

Well-Defined & Unambiguous
(Scale Dependence)

Insight & Experience
(i.e. Pythia, Herwig, ...)



GenEvA Phase Space
Understanding the Effect of the Parton Shower

dMC(µ)



Partonic Phase Space
dΦ3 dΦ4dΦ2 · · ·



The Parton Shower

⇒ ⇒

Shower Starting Scale

dΦ3 dΦ4dΦ2

µ2

· · ·



Additional Emissions

How to avoid double counting between 
2-body showered and 3-body unshowered? 

dΦ3

µ3

dΦ4dΦ2

µ2

· · ·



Monte Carlo Space

dMC is dΦ organized in terms of showered areas.
Double-counting solved by construction.

Simple to say, technically challenging to implement.

dMC2(µ) dMC3(µ) dMC4(µ)

...
...

...

· · ·



Complete Phase Space
nmax∑

n=2

dMCn(µ)⇒
∞∑

n=2

dΦn

The amplitude is a function of n-body phase space,
but influences (≥n)-body phase space through shower.

dσ =
nmax∑

n=2

|Mn(µ)|2 dMCn(µ)



What is the Shower?
Parton shower fills out phase space starting

from hard scattering matrix element.

dσ =
∣∣Mhard

2

∣∣2 dMC2(ECM)



What is the Shower?
Parton shower fills out phase space starting

from hard scattering matrix element.

dσ =
∣∣Mhard

2

∣∣2 dMC2(ECM)

There must be an equivalent description of
same physics with no shower!

dσ =
∞∑

n=2

∣∣Mshower
n

∣∣2 dΦn



What is the Shower?

There is also an equivalent description of the same
physics with part shower, part “matrix element”!

dσ =
nmax∑

n=2

∣∣Mshower
n (µ)

∣∣2 dMCn(µ)

The scale μ gives this interpolation meaning, by
capturing correct leading-logarithmic dependence.



Fluid Definition of Boundary!

ECM

Partonic

Showering

Hadronization
ΛQCD

µ
GenEvA
Framework

Traditional
Showering &
Hadronization











The GenEvA Approach

|M(µ)|2

Specified by the User



Improving Monte Carlo

dσ =
nmax∑

n=2

|Mn(µ)|2 dMCn(µ)

|Mn(µ)|2
Choose the best possible expression for

and lower μ and raise nmax as far as possible.



GenEvA Amplitudes
Comparing Different Expansions of QCD

|M(µ)|2



Terminology

LL:  Leading Logarithms
Correct Sudakov Factors in Soft/Collinear Limit

LO:  Tree-Level Matrix Elements
Correct Quantum Interference in Large Angle Limit

NLO:  Next-to-Leading Order
Everything Correct to Order αs



Tree-Level Generators
(ALPGEN, MadEvent, CompHep, Apacic, Whizard, Helac, ...) 

1 αs

α2
s α3

s α4
s

LO



1 αs

α2
s α3

s α4
s

∆ ∆

∆ ∆ ∆

Analog of PS/ME Merging
(CKKW, MLM, Lönnblad, ...) LO/LL



αsαs

Loop-Level Generators
(MCFM, NLOJet, PHOX, ...) NLO



αsαs

∆αs ∆αs

Analog of MC@NLO
(FW, POWHEG, ...) NLO/LL



αsαs

∆αs ∆αs

α2
s α3

s α4
s

∆αs ∆αs ∆αs

GenEvA Best
(New!) NLO/LO/LL



αsαs

∆αs ∆αs

α2
s α3

s α4
s

∆αs ∆αs ∆αs

Main Physics 
Novelty

of GenEvA

GenEvA Best
(New!) NLO/LO/LL



Figure of Merit?
How would you know whether we have 
actually achieved an NLO/LO/LL sample?

Normalization
The μ-dependence should scale like

Shape
A merged sample should interpolate between
the two underlying differential distributions.

No LL: αs log2 µ LO/LL: αs log µ NLO/LL: α2
s log2 µ
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Isolated Components

Non-trivial combination of five different samples.



Isolated Components

Only single-logarithmic change in total distribution.
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“Data” Comparison

GenEvA Should
Reproduce

Large Angle Tune
(Partonic Regime)

GenEvA Should Not
Reproduce

Small Angle Tune
(Showering Regime)

PRELIMINARY



GenEvA Details
Strategy to Merge Different Approximation Schemes

∣∣MA(µ)
∣∣2 vs.

∣∣MB(µ)
∣∣2



Nested Mergings
µ

Theory A

∣∣MBest(µ)
∣∣2 =

∣∣MA(µ)
∣∣2



Nested Mergings

∣∣MBest(µ)
∣∣2 =

∣∣MA(µ)
∣∣2 ×

∣∣MB(µ′)
∣∣2

|MA(µ′)|2

Theory B

µµ′

A



Nested Mergings

∣∣MBest(µ)
∣∣2 =

∣∣MA(µ)
∣∣2 ×

∣∣MB(µ′)
∣∣2

|MA(µ′)|2

Theory B

µµ′

A

Inverse 
“Parton Shower” 
to “Unresolve” 

Partons



Nested Mergings

∣∣MBest(µ)
∣∣2 =

∣∣MA(µ)
∣∣2 ×

∣∣MB(µ′)
∣∣2

|MA(µ′)|2
×

∣∣MC(µ′′)
∣∣2

|MB(µ′′)|2

Theory C

µµ′
µ′′

AB



NLO/LO/LL

C: NLO/LL      B: LO/LL      A: Shower

Theory C

µµ′
µ′′

AB

(MC@NLO) (PS/ME Merging)



Putting it all together...

C: NLO/LL      B: LO/LL      A: Shower

+
Hadronization

PDFs
+

Secondaries
+

Beam Remnants
+

Pileup
+

= ΛQCD  

Theory C

µµ′
µ′′

AB

(MC@NLO) (PS/ME Merging)



Shower Subtlety

Same four-vectors are determined by multiple shower 
histories.  Dominant history is the most singular one.

=



LO/LL Merging

In singular regions of phase space:

∣∣Mshower
n (µ)

∣∣2 =
∑

i

Qi∆i(µ)
Splitting Functions

Sudakovs

∣∣Mtree
n

∣∣2 →
∑

j

Qj

Interference terms in tree-level matrix element 
with Sudakovs from shower “matrix element”?

Shower Histories



LO/LL Merging

Shower doesn’t factorize, but in singular regions:

Equivalent to CKKW in singular regions.

∣∣∣MLO/LL
n (µ)

∣∣∣
2

=
∣∣Mtree

n

∣∣2
∑

i

Qi∑
j Qj

∆i(µ)

∣∣∣MLO/LL
n (µ)

∣∣∣
2
!

∣∣Mtree
n

∣∣2 ∆dom(µ)

Qdom∑
j Qj

→ 1
Qother∑

j Qj
→ 0



NLO/LL Merging

As shown by POWHEG, turn NLO calculation
into “shower” with novel “splitting function”.

By construction, cross section is correct to NLO.

σ2(µ) = σNLO∆R(µ)

dσ3(t)
dt

= σNLOR(t)∆R(t)

=
dσtree

3 (t)
dt

+O(α2
s)



GenEvA Outlook
Hadronic Collisions, Heavy Resonances,

Advanced Matrix Elements



The GenEvA Framework

No dead zones, no double counting,
no negative weights, no incalculable ambiguities.

dσ = |M(µ)|2 dMC(µ)
Matching Scale

Calculations Algorithms



GenEvA IL or CH

Proper Fact./Renorm. Scale Treatment
Parton Distribution Functions

ISR/FSR Interference
 

Proper Mass Treatment
Interface with p⊥ Showers

ISR/FSR Double Counting
Resonance/Showerer

dσ = |M(µ)|2 dMC(µ)

To be relevant for the LHC, we need...

Calculations Algorithms

These are technical issues, not conceptual ones.
Consequence of μ appearing in both calculations and algorithms.



Theory Challenge

NNLO/NLO/LO/NLL/LL
Describe NiLO observables accurate to NiLO and
NjLL observables accurate to NjLL, simultaneously?

SCET Matrix Elements
Subleading-logarithmic treatment of multiple scales?

∣∣MBest(µ)
∣∣2



Preliminary SCET Work
(Matrix Elements from Matthew Schwartz)
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dσ
|M(µ)|2 dMC(µ)



Backup Slides
In Case You Were Wondering...



Reweighting (Simple)

Φ

σ(Φ)

P(Φ)

w(Φ) =
σ(Φ)

P(Φ)



Reweighting (Jacobian)

Φ

σ(Φ)

P(Σ)J(Σ)

w(Φ) =
σ(Φ)

P(Σ)J(Σ)Σ

P(Σ)

P(Σ)J(Σ)

Φ

⇒→



Reweighting (Not 1-1)

Φ

σ(Φ)

∑
i
P(Σi)J(Σi)

Σ1

P(Σ1)

Σ2

P(Σ2)
w(Φ) =

σ(Φ)
∑

i
P(Σi)J(Σi)Φ
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Reweighting (GenEvA)
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MadEvent Comparison

process MadEvent GenEvA process MadEvent GenEvA

LO 3 (fb) 216.71 ± 0.21 216.77 ± 0.22 LO 5 (ab) 2542 ± 3 2543 ± 3

uūg 86.62 ± 0.13 86.60 ± 0.18 uūggg 912 ± 2 912 ± 2

dd̄g 21.75 ± 0.07 21.55 ± 0.10 dd̄ggg 227.5 ± 0.9 228.3 ± 0.8

ss̄g 21.63 ± 0.06 21.73 ± 0.10 uūdd̄g 33.8 ± 0.2 34.3 ± 0.4

cc̄g 86.71 ± 0.13 86.70 ± 0.18 uūuūg 25.6 ± 0.2 25.7 ± 0.3

LO 4 (fb) 36.44 ± 0.04 36.49 ± 0.04 LO 6 (ab) 67.9 ± 0.3 68.0 ± 0.2

uūgg 14.00 ± 0.03 14.00 ± 0.02 uūgggg 22.41 ± 0.09 22.29 ± 0.12

dd̄gg 3.504 ± 0.013 3.511 ± 0.011 uūuūgg 1.117 ± 0.006 1.14 ± 0.03

uūdd̄ 0.175 ± 0.001 0.180 ± 0.003 uūuūuū 0.005 ± 0.001− 0.005 ± 0.001

uūuū 0.132 ± 0.001 0.132 ± 0.002 uūdd̄ss̄ 0.019 ± 0.001− 0.020 ± 0.005

TABLE I: Comparison of total cross sections between GenEvA and MadEvent. Both programs agree

within statistical uncertainties (0.001− indicates an error too small to be reported by MadEvent).
In MadEvent, the relative uncertainty on each sample is roughly constant, whereas in GenEvA, less
populated channels are allowed to have higher relative uncertainty. This happens because the

ratio of various subprocesses is given in GenEvA by the QCD symmetry structures, and no extra
integration time is spend determining the ratio between different channels.

it breaks the reversibility of further truncation. That is, once truncation-prime is applied,
the probability for obtaining a set of four-vectors is extremely convoluted, and once can no
longer use the argument in Sec. 3D that reweighting can occur after hadronization.

7. RESULTS

In this section, we verify the GenEvA algorithm by comparing to simple, known tree-level
matrix elements. For this purpose, we use MadGraph [55] to get numerical Fortran HELAS
[56] routines for e+e− → n jets with 2 ≤ n ≤ 6. Because we are using the same matrix
element engine as MadEvent [8], we expect and observe that the two programs give identical
distributions. We then show rudimentary results on the LO/LL cross sections, with a more
thorough discussion given in the companion paper [1]. Finally, MadEvent offers a useful
benchmark to compare the efficiency of the GenEvA algorithm. We find that the GenEvA
efficiency is at or above MadEvent levels, and that GenEvA is more efficient at distributing
logarithmically-improved results than tree-level results.

A. Comparison with MadEvent

We can now compare the output of GenEvA with that of MadEvent [8] using the same
HELAS [56]/MadGraph [55] matrix elements. We consider the process e+e− → n partons,12

12 For simplicity, we are only including the diagrams with e+e− → γ∗ → partons. An intermediate Z-boson

could easily be included.
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MadEvent Comparison
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MadEvent Comparison
ηeff Teff (msec) T0.9 (msec)

GenEvA LO 3 0.789 0.57 0.62

GenEvA LO/LL inc. 3 0.965 0.47 < 0.47

MadEvent 3 0.982 2.6 < 2.6

MadEvent uūg 0.994 3.0 < 3.0

GenEvA LO 4 0.525 1.7 2.2

GenEvA LO/LL inc. 4 0.713 1.3 1.5

MadEvent 4 0.809 11.1 11.4

MadEvent uūgg 0.752 5.4 5.7

GenEvA LO 5 0.390 10.0 15

GenEvA LO/LL inc. 5 0.557 8.6 10.8

MadEvent 5 0.843 62 64

MadEvent uūggg 0.833 27 27

GenEvA LO 6 0.298 160 250

GenEvA LO/LL inc. 6 0.396 150 230

MadEvent 6 0.809 1900 2300

MadEvent uūgggg 0.784 330 350

TABLE II: Comparison of the speed and efficiency between GenEvA and MadEvent. ηeff is the

statistical efficiency as defined in Eq. (16), and Teff is the time required to create one statistical
event. T0.9 is the time to create one statistical event on a partially unweighted sample with
ηthresh(w0) = 0.9 as defined in Eq. (18). Note that GenEvA performs better on Sudakov-improved

(LO/LL) results than on tree-level (LO) matrix elements. GenEvA is competitive with MadEvent

for both statistical and unweighting speeds, though in some channels GenEvA is a factor of a few
faster, despite the fact that GenEvA’s efficiencies are low because it is a fixed-grid algorithm.

Note that we have not shown comparisons of the unweighting efficiencies between GenEvA
and MadEvent. As argued in Sec. 2C, unweighting efficiencies are sensitive to the exponential
tails of the weight distribution. Depending on how long one runs the two programs, one may
or may not sample these tails, giving widely varying unweighting efficiencies during a run
and between different runs. The solution to this problem in MadEvent is to allow very high
weight events to be discarded from the unweighted event sample, making sure that only a
predetermined small fraction of the total cross section is lost. This works as long as it is
assumed that removing the very high weight events does not bias any particular region of
phase space. The fixed grid nature of GenEvA means that very high weight events are likely
to come from similar regions of phase space, so this unweighting strategy is not feasible for
GenEvA. Therefore, there is no reasonable comparison possible for unweighting efficiencies.

As we discussed above, the fact that GenEvA is using a parton shower as a phase space
generator makes it ideal to distribute events according to logarithmically-improved partonic
calculations. This is because the parton shower contains the correct double-logarithmic be-
havior, such that the resulting weights are very uniform, giving rise to a high statistical
efficiency. To see this, consider the weight function given in Eq. (86). Since the splitting
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GenEvA Efficiency
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FIG. 20: Comparison of the statistical efficiencies ηeff between GenEvA LO and LO/LL samples for
3- to 6-parton matrix elements. As the matching scale µ =

√
tmatch is lowered, the efficiency of the

LO/LL sample stays roughly constant, while the efficiency of the LO sample drops dramatically.

number of high weight events. The change in efficiency is shown even more dramatically in
Fig. 20, which compares the statistical efficiency between the LO/LL and LO samples as
the matching scale µ is changed. For the LO/LL samples, the efficiency is nearly constant
as µ varies, while the LO samples exhibit a sharp decrease in efficiency for µ → 0.

Thus, GenEvA is faster at distributing resummed results than tree-level results. We note
that the efficiency of GenEvA could improve further with the use of a more realistic internal
parton shower. For example, tree-level matrix elements include the effect of color coherence
which is absent in the virtuality-ordered shower currently used in GenEvA. If a p⊥-ordered
shower could be implemented as discussed in Sec. 8C, then the leading color coherence
effects would already be captured by the phase space generator, which should lead to more
uniform weights.

8. CONCLUSIONS

We have shown how to construct a phase space generator from a parton shower. The
resulting GenEvA algorithm uses a very different strategy compared to more conventional
approaches. Most available generators use a non-recursive, multi-channel, adaptive-grid
algorithm to distribute events in phase space directly according to a desired distribution,
which are often tree-level matrix elements. In contrast, GenEvA uses a parton shower to
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More Interpolations
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More Components
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