GenEvA

A New Framework for Event Generation

Jesse Thaler (Berkeley)

with Christian Bauer and Frank Tackmann arXiv:0801.4026 [Physics] arXiv:0801. 4028 [Techniques]

Monte Carlo in LHC Era

All experimental searches and measurements are (in one way or another) Monte Carlo sensitive.

How will we understand BSM backgrounds?

$$
\begin{gathered}
p p \rightarrow W+\text { jets } \quad p p \rightarrow Z+\text { jets } \\
p p \rightarrow t \bar{t}+\text { jets }
\end{gathered}
$$

Heavy resonances +QCD radiation.
Multiple scales and potentially large logarithms.

TeVatron Example

(conversations with Beate Heinemann)

$$
p \bar{p} \rightarrow Z+b / p \bar{p} \rightarrow Z
$$

|
|
0.0023 ("NLO")
0.0035 ("LO")

This is important calibration for heavy flavor.

TeVatron Example

(conversations with Beate Heinemann)

$$
p \bar{p} \rightarrow Z+b / p \bar{p} \rightarrow Z
$$

0.0037 ± 0.0006 (CDF)

|
0.0023 ("NLO")
0.0035 ("LO")

This is important calibration for heavy flavor.

Scorecard

"NLO" = MCFM w/ Pythia UE + Had.

+ Order $\alpha_{s}{ }^{2}$
- Some Leading Logarithms
+ Proper Bottom Mass Treatment
- No PS/ME merging
+ All Angular Correlations

"LO" = Pythia Out-of-the-Box

- Order α s
+ All Leading Logarithms
- Ad Hoc Bottom Mass Treatment
+ "Normalized" PS/ME merging
- Some Angular Correlations

Two fundamentally different approaches, each with benefits and drawbacks.

Fixed-Order
 Calculations

Parton
Showers

Fixed-Order
Calculations

Fixed n-body
Phase Space

Parton
Showers

Fixed-Order
 Calculations

Fixed n-body
Phase Space

Soft Collinear

 Limit
Perturbative α_{s} Expansion

Fixed-Order Calculations

Perturbative α_{s} Expansion

Fixed n-body
Phase Space

Soft Collinear Limit

Recursive
Phase Space

Showers

Perturbative α_{s} Expansion

Fixed-Order
 Calculations

Fixed n-body
 Phase Space

Merge?

Soft Collinear Limit

> Recursive
> Phase Space

Existing Tools

Merge successes of fixed-order calculations with successes of parton showers?

PS/ME Merging

Supplement Tree-Level Matrix Elements with Sudakov Information (CKKW, MLM, Lönnblad, ...)

MC@NLO

Combine Loop-Level Matrix Elements with Sudakov Information (FW, POWHEG, ...)

Traditional Approach

$d \sigma=\mathrm{MC}\left(|\mathcal{M}|^{2} d \Phi\right)$

Dead zones? Double counting?
Negative weights? Ambiguities?

Traditional Approach

Vetoed Showers, Modified Scale Choices

$$
d \sigma=\operatorname{MC}\left(|\mathcal{M}|^{2} d \Phi\right)
$$

Dead zones? Double counting?
Negative weights? Ambiguities?

Traditional Approach

Vetoed Showers, Modified Scale Choices

$$
d \sigma=\left.M \sim(1) A\right|^{2} d \Phi
$$

Subtractions, Sudakovs, Multiple Samples

Dead zones? Double counting?
Negative weights? Ambiguities?

Perturbative α_{s} Expansion

Fixed-Order
 Calculations

Fixed n-body
 Phase Space

Soft Collinear Limit

Recursive Phase Space

Showers

Perturbative α_{s} Expansion

Fixed n-body
 Phase Space

Soft Collinear

Limit

Recursive Phase Space

Perturbative α_{s} Expansion

Soft Collinear Limit

Fixed n-body Phase Space

Recursive Phase Space

Fixed n-body Phase Space

Recursive Phase Space

Fixed n-body Phase Space

Algorithmic Merging 1

Recursive Phase Space

The GenEvA Framework

$$
d \sigma=|\mathcal{M}(\mu)|^{2} d \mathrm{MC}(\mu)
$$

No dead zones, no double counting, no negative weights, no incalculable ambiguities.

The GenEvA Framework

$$
d \sigma=|\mathcal{M}(\mu)|^{2}: d \mathrm{MC}(\mu)
$$

No dead zones, no double counting, no negative weights, no incalculable ambiguities.

The GenEvA Framework

$$
d \sigma=|\mathcal{M}(\mu)|^{2}: d \mathrm{MC}(\mu)
$$

No dead zones, no double counting, no negative weights, no incalculable ambiguities.

GENerate EVents Analytically

* Algorithmic Side
* "Deriving" the Master Formula
- A New Approach to Phase Space
* Calculational Side
- Proof-of-Concept Amplitudes
- LO/LL Merging (Analog of PS/ME Merging)
- NLO/LL Merging (Analog of MC@NLO)
- NLO/LO/LL Merging (New!)
- Technical Details
* GenEvA at the LHC

*

Ultimate Goal:
 Hadronic Collisions with Heavy Resonances

Current Status:
Leptonic Collisions with Massless Partons
$e^{+} e^{-} \rightarrow n$ jets

Aun

There is real code....

```
+-------------------------------------------------------------------
    GenEvA --- GENerate EVents Analytically
Version: 0.1.104 (January 24, 2008)
Authors: Christian Bauer, Frank Tackmann & Jesse Thaler
    arXiv: 0801.4026 & 0801.4028
```

 +----- Command Line
 +----- Event Generation Information
 Process: e- e+ -> j j
 Center-of-Mass Energy: 1000 GeV
 Matching Scale: 50 GeV with maximum multiplicity 6
 Shower Cutoff: 10 GeV
 Generation: Events are matched to NLO/LO matrix element.
 +----------
 | Process: | NumGen | NumKept | NumStat | StatEff | NumUnw | UnwEff | Sigma | +/- dS (pb) | (error\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Global: | 19771 | 18674 | 10000.3 | 0.536 | 6485.0 | 0.347 | 0.25300 | +/- 0.001779 | (0.70\%) |
| 2j: | 2303 | 2303 | 2303.0 | 1.000 | 2303.0 | 1.000 | 0.08984 | +/- 0.001760 | (1.96\%) |
| 3j: | 8480 | 7383 | 6406.3 | 0.868 | 3539.7 | 0.479 | 0.12973 | +/- 0.001333 | (1.03\%) |
| 4 j : | 5629 | 5629 | 3351.1 | 0.595 | 905.4 | 0.161 | 0.029322 | +/-0.000462 | (1.57\%) |
| 5j: | 2492 | 2492 | 1187.3 | 0.476 | 254.1 | 0.102 | 0.00369 | +/- 0.000104 | (2.81\%) |
| 6j: | 867 | 867 | 326.1 | 0.376 | 82.2 | 0.095 | 0.000412 | +/-0.000023 | (5.49\%) |

+----- Thank you for running GenEvA
.and it's reasonably user-friendly.

GenEvA Master Formula

Generic Solution to Merging Fixed-Order Calculations with Parton Showers

$$
d \sigma=|\mathcal{M}(\mu)|^{2} d \mathrm{MC}(\mu)
$$

General Picture

E_{CM}

Partonic

$$
\begin{gathered}
\mu \cdots-\cdots-\cdots-\cdots-\cdots \\
\text { Showering }
\end{gathered}
$$

Λ_{QCD}
Hadronization

Traditional Approach

$d \sigma=\mathrm{MC}\left(|\mathcal{M}|^{2} d \Phi\right)$

E_{CM}
Partonic

Λ_{QCD}
Hadronization

Traditional Approach

Traditional Approach

$$
d \sigma=\mathrm{MC}\left(|\mathcal{M}|^{2} d \Phi\right)
$$

Three Technical Problems

I. Infrared Divergences
2. Scale Dependence
3. Double Counting

GenEvA Framework

$d \sigma=|\mathcal{M}(\mu)|^{2} d \mathrm{MC}(\mu)$

Three Conceptual Solutions

I. Infrared Divergences? \rightarrow Merge QCD Approximations
2. Scale Dependence? \rightarrow Merge Calc. with Pheno. Models
3. Double Counting? \rightarrow Merge Phase Space Algorithms

GenEvA Framework

$d \sigma=|\mathcal{M}(\mu)|^{2} d \mathrm{MC}(\mu)$

Partonic

Λ_{QCD}
Hadronization

GenEvA Framework

COCN

GenEvA Framework

$d \sigma=|\mathcal{M}(\mu)|^{2}$
 $d \mathrm{MC}(\mu)$

Pencil \& Paper
(Infrared Divergences)
Keyboard \& Computer
(Double Counting)

Showering
Insight \& Experience
(i.e. Pythia, Herwig, ...)

Λ_{QCD}

I. Different QCD Approx.

We have Fixed Order Expansion in α_{s}.
We have (Sub-)Leading Logarithms in Soft-Collinear Limit.
Infrared Divergences should Cancel between Trees and Loops.

$$
|\mathcal{M}|^{2} \rightarrow|\mathcal{M}(\tilde{\mu})|^{2}
$$

Infrared divergences cancelled in definition of "amplitude". Infrared scale $\tilde{\mu}$ needed to resum $\alpha_{s} \log ^{2} r$ terms.

Partonic Calculations

$$
\left|\mathcal{M}^{\mathrm{CKKW}}(\tilde{\mu})\right|^{2} \simeq\left|\mathcal{M}^{\text {tree }}\right|^{2} \Delta\left(E_{\mathrm{CM}}, \tilde{\mu}\right)
$$

$\left|\mathcal{M}_{n}^{\mathrm{NLO}}(\tilde{\mu})\right|^{2} \simeq\left|\mathcal{M}_{n}^{\text {tree+loop }}\right|^{2}+\int_{\tilde{\mu}}\left|\mathcal{M}_{n+1}^{\text {tree }}\right|^{2}$
$\left|\mathcal{M}^{\mathrm{MC} @ \mathrm{NLO}}(\tilde{\mu})\right|^{2} \neq\left|\mathcal{M}^{\mathrm{NLO}}(\tilde{\mu})\right|^{2} \Delta\left(E_{\mathrm{CM}}, \tilde{\mu}\right)$

2. Calculations vs. Models

Calculations Available for Finite Number of Particles.
Need Parton Shower to fill out Phase Space.
Need Hadronization Model for Detector Simulation.

$$
\tilde{\mu} \longrightarrow \mu
$$

If "amplitude" has correct leading logarithms, interface with parton shower will be smooth if μ scale is the same.

3. Phase Space Algorithms

Field Theory Calculations need Fixed Number of Final States.
Parton Showers need Variable Number of Final States.
Want Every Phase Space Point Covered Once and Only Once.
$\mathrm{MC}(d \Phi) \rightarrow d \mathrm{MC}(\mu)$

Replace two event generation frameworks with one master framework that solves double counting by construction.

$d \sigma=\mathrm{MC}\left(|\mathcal{M}|^{2} d \Phi\right)$

Infrared Divergences

$$
|\mathcal{M}|^{2} \rightarrow|\mathcal{M}(\tilde{\mu})|^{2}
$$

Merge QCD Approx.

Scale Dependence
$\tilde{\mu} \rightarrow \mu$
Merge Calc. w/ Model

Double Counting
$\mathrm{MC}(d \Phi) \rightarrow d \mathrm{MC}(\mu)$
Merge Algorithms
$d \sigma=|\mathcal{M}(\mu)|^{2} d \mathrm{MC}(\mu)$

Traditional Approach

GenEvA Framework

$d \sigma=|\mathcal{M}(\mu)|^{2}$
 $d \mathrm{MC}(\mu)$

Pencil \& Paper
(Infrared Divergences)
Keyboard \& Computer
(Double Counting)

Showering
Insight \& Experience
(i.e. Pythia, Herwig, ...)

Λ_{QCD}

GenEvA Phase Space

Understanding the Effect of the Parton Shower

$$
d \mathrm{MC}(\mu)
$$

Partonic Phase Space

The Parton Shower

$d \Phi_{2}$
$d \Phi_{3}$
$d \Phi_{4}$

\longrightarrow

Additional Emissions

How to avoid double counting between
2-body showered and 3-body unshowered?

Monte Carlo Space

$d \mathrm{MC}_{2}(\mu)$
$d \mathrm{MC}_{3}(\mu)$
$d \mathrm{MC}_{4}(\mu)$
-••

0

dMC is $\mathrm{d} \Phi$ organized in terms of showered areas.
Double-counting solved by construction.
Simple to say, technically challenging to implement.

Complete Phase Space

$$
\sum_{n=2}^{n_{\max }} d \mathrm{MC}_{n}(\mu) \Rightarrow \sum_{n=2}^{\infty} d \Phi_{n}
$$

$$
d \sigma=\sum_{n=2}^{n_{\max }}\left|\mathcal{M}_{n}(\mu)\right|^{2} d \mathrm{MC}_{n}(\mu)
$$

The amplitude is a function of n-body phase space, but influences ($\geq \mathrm{n}$)-body phase space through shower.

What is the Shower?

Parton shower fills out phase space starting from hard scattering matrix element.

$$
d \sigma=\left|\mathcal{M}_{2}^{\mathrm{hard}}\right|^{2} d \mathrm{MC}_{2}\left(E_{\mathrm{CM}}\right)
$$

What is the Shower?

Parton shower fills out phase space starting from hard scattering matrix element.

$$
d \sigma=\left|\mathcal{M}_{2}^{\mathrm{hard}}\right|^{2} d \mathrm{MC}_{2}\left(E_{\mathrm{CM}}\right)
$$

There must be an equivalent description of same physics with no shower!

$$
d \sigma=\sum_{n=2}^{\infty}\left|\mathcal{M}_{n}^{\text {shower }}\right|^{2} d \Phi_{n}
$$

What is the Shower?

There is also an equivalent description of the same physics with part shower, part "matrix element"!

$$
d \sigma=\sum_{n=2}^{n_{\max }}\left|\mathcal{M}_{n}^{\text {shower }}(\mu)\right|^{2} d \mathrm{MC}_{n}(\mu)
$$

The scale μ gives this interpolation meaning, by capturing correct leading-logarithmic dependence.

The GenEvA Approach

Showering
Λ_{QCD}
Hadronization
Traditional
Showering \& Hadronization

Improving Monte Carlo

$$
d \sigma=\sum_{n=2}^{n_{\max }}\left|\mathcal{M}_{n}(\mu)\right|^{2} d \mathrm{MC}_{n}(\mu)
$$

Choose the best possible expression for

$$
\left|\mathcal{M}_{n}(\mu)\right|^{2}
$$

and lower μ and raise $n_{\max }$ as far as possible.

GenEvA Amplitudes

Comparing Different Expansions of QCD

$$
|\mathcal{M}(\mu)|^{2}
$$

Terminology

LL: Leading Logarithms

Correct Sudakov Factors in Soft/Collinear Limit

LO: Tree-Level Matrix Elements

Correct Quantum Interference in Large Angle Limit
NLO: Next-to-Leading Order Everything Correct to Order α_{s}

L○ Tree-Level Generators (ALPGEN, MadEvent, CompHep,Apacic, Whizard, Helac, ...)

LO/LL Analog of PS/ME Merging (CKKW, MLM, Lönnblad, ...)

NLO Loop-Level Generators (MCFM, NLOJet, PHOX, ...)

NLO/LL Analog of MC@NLO (FW, POWHEG, ...)

NLO/LO/LL GenEvA Best (New!)

NLO/LO/LL GenEvA Best (New!)

Figure of Merit?

How would you know whether we have actually achieved an NLO/LO/LL sample?

Normalization

The μ-dependence should scale like
No LL: $\alpha_{s} \log ^{2} \mu \quad$ LO/LL: $\alpha_{s} \log \mu \quad$ NLO/LL: $\alpha_{s}^{2} \log ^{2} \mu$

Shape

A merged sample should interpolate between the two underlying differential distributions.

Cross Section Scaling

Baseline Shower

2 jet
3 jet
4+ jet

LO/LL Calculation

LO/LL answer is smaller than either approximation.

LO/LL Calculation

LO/LL answer is smaller than either approximation.

NLO/LL Calculation

A "Goldilocks" Interpolation

NLO/LO/LL Calculation

Interpolates between PS/ME Merging and MC@NLO!

NLO/LO/LL Calculation

Interpolates between PS/ME Merging and MC@NLO!

Isolated Components

Non-trivial combination of five different samples.

Isolated Components

Only single-logarithmic change in total distribution.

"Data" Comparison

GenEvA Details

Strategy to Merge Different Approximation Schemes

$$
\left|\mathcal{M}^{\mathrm{A}}(\mu)\right|^{2} \text { vs. }\left|\mathcal{M}^{\mathrm{B}}(\mu)\right|^{2}
$$

Nested Mergings

$$
\left|\mathcal{M}^{\text {Best }}(\mu)\right|^{2}=\left|\mathcal{M}^{\mathrm{A}}(\mu)\right|^{2}
$$

Nested Mergings

$$
\left|\mathcal{M}^{\mathrm{Best}}(\mu)\right|^{2}=\left|\mathcal{M}^{\mathrm{A}}(\mu)\right|^{2} \times \frac{\left|\mathcal{M}^{\mathrm{B}}\left(\mu^{\prime}\right)\right|^{2}}{\left|\mathcal{M}^{\mathrm{A}}\left(\mu^{\prime}\right)\right|^{2}}
$$

Nested Mergings

$$
\left|\mathcal{M}^{\mathrm{Best}}(\mu)\right|^{2}=\left|\mathcal{M}^{\mathrm{A}}(\mu)\right|^{2} \times \frac{\left|\mathcal{M}^{\mathrm{B}}\left(\mu^{\prime}\right)\right|^{2}}{\left|\mathcal{M}^{\mathrm{A}}\left(\mu^{\prime}\right)\right|^{2}}
$$

Nested Mergings

$\left|\mathcal{M}^{\text {Best }}(\mu)\right|^{2}=\left|\mathcal{M}^{\mathrm{A}}(\mu)\right|^{2} \times \frac{\left|\mathcal{M}^{\mathrm{B}}\left(\mu^{\prime}\right)\right|^{2}}{\left|\mathcal{M}^{\mathrm{A}}\left(\mu^{\prime}\right)\right|^{2}} \times \frac{\left|\mathcal{M}^{\mathrm{C}}\left(\mu^{\prime \prime}\right)\right|^{2}}{\left|\mathcal{M}^{\mathrm{B}}\left(\mu^{\prime \prime}\right)\right|^{2}}$

NLO/LO/LL

C:NLO/LL B:LO/LL A:Shower (MC@NLO)

Putting it all together...

Shower Subtlety

Same four-vectors are determined by multiple shower histories. Dominant history is the most singular one.

LO/LL Merging

In singular regions of phase space:

Interference terms in tree-level matrix element with Sudakovs from shower "matrix element"?

LO/LL Merging

$$
\left|\mathcal{M}_{n}^{\mathrm{LO} / \mathrm{LL}}(\mu)\right|^{2}=\left|\mathcal{M}_{n}^{\mathrm{tree}}\right|^{2} \sum_{i} \frac{Q_{i}}{\sum_{j} Q_{j}} \Delta_{i}(\mu)
$$

Shower doesn't factorize, but in singular regions:

$$
\begin{gathered}
\frac{Q_{\text {dom }}}{\sum_{j} Q_{j}} \rightarrow 1 \quad \frac{Q_{\text {other }}}{\sum_{j} Q_{j}} \rightarrow 0 \\
\left|\mathcal{M}_{n}^{\mathrm{LO} / \mathrm{LL}}(\mu)\right|^{2} \simeq\left|\mathcal{M}_{n}^{\text {tree }}\right|^{2} \Delta_{\mathrm{dom}}(\mu)
\end{gathered}
$$

Equivalent to CKKW in singular regions.

$$
\begin{aligned}
& \text { NLO/LL Merging } \\
& \sigma_{2}(\mu)=\sigma_{\mathrm{NLO}} \Delta_{R}(\mu) \\
& \begin{array}{r}
\frac{d \sigma_{3}(t)}{d t}= \\
\sigma_{\mathrm{NLO}} R(t) \Delta_{R}(t) \\
=\frac{d \sigma_{3}^{\mathrm{tree}}(t)}{d t}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{array}
\end{aligned}
$$

As shown by POWHEG, turn NLO calculation into "shower" with novel "splitting function". By construction, cross section is correct to NLO.

GenEvA Outlook

Hadronic Collisions, Heavy Resonances, Advanced Matrix Elements

The GenEvA Framework

$$
d \sigma=|\mathcal{M}(\mu)|^{2}: d \mathrm{MC}(\mu)
$$

No dead zones, no double counting, no negative weights, no incalculable ambiguities.

GenEvA IL or CH

To be relevant for the LHC, we need...

$$
\text { Calculations }: \text { Algorithms }
$$

These are technical issues, not conceptual ones.
Consequence of μ appearing in both calculations and algorithms.

Theory Challenge

$$
\left|\mathcal{M}^{\text {Best }}(\mu)\right|^{2}
$$

SCET Matrix Elements

Subleading-logarithmic treatment of multiple scales?

NNLO/NLO/LO/NLL/LL

Describe NiLO observables accurate to NiLO and NiLL observables accurate to NiLL, simultaneously?

Preliminary SCET Work

(Matrix Elements from Matthew Schwartz)

Backup Slides

In Case You Were Wondering...

Reweighting (Simple)

Reweighting (Jacobian)

Reweighting (Not I-I)

Reweighting (GenEvA)

MadEvent Comparison

process	MadEvent	GenEvA	process	MadEvent	GenEvA
LO 3 (fb)	216.71 ± 0.21	216.77 ± 0.22	LO 5 (ab)	2542 ± 3	2543 ± 3
$u \bar{u} g$	86.62 ± 0.13	86.60 ± 0.18	$u \bar{u} g g g$	912 ± 2	912 ± 2
$d \bar{d} g$	21.75 ± 0.07	21.55 ± 0.10	$d \bar{d} g g g$	227.5 ± 0.9	228.3 ± 0.8
$s \bar{s} g$	21.63 ± 0.06	21.73 ± 0.10	$u \bar{u} d \bar{d} g$	33.8 ± 0.2	34.3 ± 0.4
$c \bar{c} g$	86.71 ± 0.13	86.70 ± 0.18	$u \bar{u} u \bar{u} g$	25.6 ± 0.2	25.7 ± 0.3
LO 4 (fb)	36.44 ± 0.04	36.49 ± 0.04	LO 6 (ab)	67.9 ± 0.3	68.0 ± 0.2
$u \bar{u} g g$	14.00 ± 0.03	14.00 ± 0.02	$u \bar{u} g g g g$	22.41 ± 0.09	22.29 ± 0.12
$d \bar{d} g g$	3.504 ± 0.013	3.511 ± 0.011	$u \bar{u} u \bar{u} g g$	1.117 ± 0.006	1.14 ± 0.03
$u \bar{u} d \bar{d}$	0.175 ± 0.001	0.180 ± 0.003	$u \bar{u} u \bar{u} u \bar{u}$	$0.005 \pm 0.001^{-}$	0.005 ± 0.001
$u \bar{u} u \bar{u}$	0.132 ± 0.001	0.132 ± 0.002	$u \bar{u} d \bar{d} s \bar{s}$	$0.019 \pm 0.001^{-}$	0.020 ± 0.005

MadEvent Comparison

 Inv. Mass between $4^{\text {th }} \& 5^{\text {th }}$ Hardest Partons (GeV)
 Inv. Mass between $2^{\text {nd }} \& 3^{\text {rd }}$ Hardest Partons (GeV)

MadEvent Comparison

	$\eta_{\text {eff }}$	$T_{\text {eff }}(\mathrm{msec})$	$T_{0.9}(\mathrm{msec})$
GenEvA LO 3	0.789	0.57	0.62
GenEvA LO/LL inc. 3	0.965	0.47	<0.47
MadEvent 3	0.982	2.6	<2.6
MadEvent $u \bar{u} g$	0.994	3.0	<3.0
GenEvA LO 4	0.525	1.7	2.2
GenEvA LO/LL inc. 4	0.713	1.3	1.5
MadEvent 4	0.809	11.1	11.4
MadEvent $u \bar{u} g g$	0.752	5.4	5.7
GenEvA LO 5	0.390	10.0	15
GenEvA LO/LL inc. 5	0.557	8.6	10.8
MadEvent 5	0.843	62	64
MadEvent $u \bar{u}$ ggg	0.833	27	27
GenEvA LO 6	0.298	160	250
GenEvA LO/LL inc. 6	0.396	150	230
MadEvent 6	0.809	1900	2300
MadEvent $u \bar{u}$ gggg	0.784	330	350

GenEvA Efficiency

More Interpolations

More Components

Differential Scaling

Differential Scaling

