# Colored Resonances at the Tevatron: Phenomenology and Discovery



Can Kılıç
Johns Hopkins University
work done with Takemichi Okui and Raman Sundrum

#### **Outline**

- Introduction: Why colorons are interesting
- A minimal model:
  - Description: qualitative
  - Phenomenology: quantitative
- Constraints
- Looking for a colorful needle in a haystack
- Outlook and Conclusions

# INTRODUCTION THE AGE OF COLOR

The 90's and 00's:

The Tevatron Age

Run I: E<sub>CM</sub>=1.8 TeV

Run II: E<sub>CM</sub>=1.96 TeV

• The 10's (and 20's?):

The LHC Age: E<sub>CM</sub>=14 TeV

- Our greatest strength is the production of new colored states.
- Our greatest weakness is the production of old colored states.
- Discovery strategy for most BSM models lie in distinctive signatures:
  - leptons
  - heavy flavors
  - missing energy





# INTRODUCTION WHAT DREAMS MAY COME (TRUE)

Solutions to the hierarchy problem:

- New states carry EW quantum numbers
- Highly constrained by precision data
- Must be heavy, small cross section (usually 2→2).
   Background reasonable
- Many search strategies devised

Incidentals: ("Who ordered this?")

- New states can be EW singlets
- Then color is our best (only) bet
- Need large signal to beat large background (2→1 ideal)
- Search strategies based on kinematic signatures





# INTRODUCTION A BRIEF HISTORY OF COLORONS



# INTRODUCTION A MORE GENERAL MOTIVATION



- This should be familiar from  $e^+e^- \rightarrow \rho$
- Also known as  $\gamma/\rho$  mixing
- Resonant production, large cross section

# INTRODUCTION DIFFICULTIES

- Colorons proposed before in order to explain high-p<sub>T</sub> excess.
- Coming from  $q\bar{q}$  the coloron can decay back to dijets.
- O(1) BF into dijets has been excluded in the sub-TeV regime.
- O(1) coupling to  $t\bar{t}$  excluded by top production measurements.
- $\tilde{\rho} \rightarrow \tilde{\pi}\tilde{\pi}$  is allowed.

# INTRODUCTION MAIN STATEMENTS

- The coloron is a generic object that can arise in many BSM scenarios, motivated or incidental.
- One should keep an open mind in devising search strategies.
- A light coloron can be consistent with existing bounds if it carries no EW charge and is flavor blind.
- It can be detected at the Tevatron in multijets.
- The LHC will have lessened sensitivity to such a state.

# A MINIMAL MODEL QUALITATIVE DESCRIPITION

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{\psi}(i\not D - m)\psi - \frac{1}{4}H_{\mu\nu}H^{\mu\nu}$$

#### Ingredients:

- New colored fermions (EW singlets)
- Confining gauge interactions ("Hypercolor")

#### Consequences:

- QCD gauges unbroken flavor symmetry
- For G<sub>HC</sub>=SU(3) with massless hyperquarks, we can use QCD as an analog computer.
- Renormalizable, possible separation of scales from EWB or flavor physics

### A DICTIONARY

|            | QCD                                           | HYPERCOLOR          |
|------------|-----------------------------------------------|---------------------|
| Gauge      | SU(3) <sub>c</sub>                            | SU(3) <sub>HC</sub> |
| Flavor     | SU(3): broken by                              | SU(3) <sub>c</sub>  |
| (unbroken) | quark masses,                                 | No quark masses     |
|            | U(1) gauged                                   | All gauged          |
| Scale      | 1 GeV                                         | ~500 GeV            |
| Goldstones | (K) (K) (S=+1)                                | $	ilde{\pi}$        |
| Vectors    | 9=1\ Q=0\ Q=+1\    Q=0\   Q=+1\   Q=0\   S=-1 | $	ilde{ ho}$        |

### DICTIONARY, cont'd

|                        | QCD                                                                                                                                | HYPERCOLOR                                                                                                                                                                                                  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kinetic                | $\overline{e}iD\!\!\!/e - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$                                                                         | $\overline{q}i\widetilde{D}q - \frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu}$                                                                                                                                          |
| Mixing/<br>Production  | $-\frac{1}{4}\rho_{\mu\nu}\rho^{\mu\nu} + \frac{m_{\rho}^2}{2}\rho_{\mu}\rho^{\mu} + \frac{\varepsilon}{2}\rho_{\mu\nu}F^{\mu\nu}$ | $-\frac{1}{4}\tilde{\rho}^{a}_{\mu\nu}\tilde{\rho}^{a\mu\nu} + \frac{m_{\tilde{\rho}}^{2}}{2}\tilde{\rho}^{a}_{\mu}\tilde{\rho}^{a\mu} + \frac{\tilde{\varepsilon}}{2}\tilde{\rho}^{a}_{\mu\nu}G^{a\mu\nu}$ |
| Strong sector<br>Decay | $-ig_{\rho\pi\pi}\rho^{\mu}(\pi^{-\stackrel{\leftrightarrow}{D}}_{\mu}\pi^{+})$                                                    | $-g_{\tilde{\rho}\tilde{\pi}\tilde{\pi}}f^{abc}\tilde{\rho}^a_{\mu}\tilde{\pi}^b\partial^{\mu}\tilde{\pi}^c$                                                                                                |
| Goldstones<br>Decay    | $-\frac{e^2 \epsilon^{\mu\nu\rho\sigma}}{32\pi^2 f_{\pi}} \pi^0 F_{\mu\nu} F_{\rho\sigma}$                                         | $-\frac{3g_3^2 \epsilon^{\mu\nu\rho\sigma}}{16\pi^2 f_{\tilde{\pi}}} \operatorname{tr} \left[ \tilde{\pi} G_{\mu\nu} G_{\rho\sigma} \right]$                                                                |

#### MOVING ON UP - I

| QCD                                                            | HYPERCOLOR                                                                                                                                                                      |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Lambda_{ m QCD} \sim m_{ ho}$                                | $\Lambda_{ m HC} \sim m_{	ilde{ ho}}$                                                                                                                                           |
| $f_{\pi} \simeq 92  \mathrm{MeV}$                              | $f_{\tilde{\pi}} \simeq 92 \mathrm{GeV} \frac{m_{\tilde{\rho}}}{10^3 m_{\rho}}$                                                                                                 |
| $g_{ ho\pi\pi}\simeq 6$ ( $\Gamma_{ ho	o\pi\pi}=149{ m MeV}$ ) | $g_{\tilde{\rho}\tilde{\pi}\tilde{\pi}} = g_{\rho\pi\pi}$ $(f^{abc}\rho^a_\mu\pi^b\partial^\mu\pi^c = i\rho^\mu(\pi^{-}\overset{\leftrightarrow}{\partial}_\mu\pi^+) + \cdots)$ |
|                                                                | determines $\Gamma_{\widetilde{ ho}  ightarrow \widetilde{\pi} \widetilde{\pi}}$                                                                                                |

#### MOVING ON UP - II

| QCD                                                                                                                         | HYPERCOLOR                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $-e\varepsilon\rho_{\mu}\overline{e}\gamma^{\mu}e$ $\varepsilon \simeq 0.06$ $(\Gamma_{\rho\to e^+e^-} = 7.04 \text{ keV})$ | $-g_3 	ilde{arepsilon}  	ilde{ ho}_\mu^a  \overline{q} \gamma^\mu T^a q$ $	ilde{arepsilon} = rac{g_3}{e} arepsilon \simeq 0.2$ $\sigma_{prod}$ fixed $\Gamma_{	ilde{ ho} 	o q ar{q}} / \Gamma_{	ilde{ ho} 	o 	ilde{\pi} 	ilde{\pi}}$ fixed by $	ilde{arepsilon} / g_{	ilde{ ho} 	ilde{\pi} 	ilde{\pi}}$ |

#### **MOVING ON UP - III**

| QCD                                                                                       | HYPERCOLOR                                                                                                                                        |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $=\frac{1}{\pi^{\pm}}$                                                                    | $\frac{g}{	ilde{\pi}}$                                                                                                                            |
| $c m_{\rho}^2 f_{\pi}^2 \operatorname{Tr} \left[ \Sigma^{\dagger} Q \Sigma Q \right] \to$ | $c  m_{\tilde{\rho}}^2  f_{\tilde{\pi}}^2  \sum_{\tilde{a}} \operatorname{Tr} \left[ \tilde{\Sigma}^{\dagger} T^a \tilde{\Sigma} T^a \right] \to$ |
| $m_{\pi^{\pm}}^2 - m_{\pi^0}^2$                                                           | $\frac{m_{\tilde{\pi}}^2}{m_{\tilde{\rho}}^2} = 3 \frac{g_3^2}{e^2} \frac{m_{\pi^{\pm}}^2 - m_{\pi^0}^2}{m_{\rho}^2}$                             |
|                                                                                           | $m_{\tilde{\pi}} \simeq 0.3 m_{\tilde{\rho}}$                                                                                                     |

## Coloron Decay



### Constraints on $\tilde{\rho}$

- Dijet resonance searches
- ullet tt production
- Multi-jet studies
   Run I (105 pb<sup>-1</sup>)
   Severe cuts
- Global searches



### Constraints on $\pi$

- $gg \to \tilde{\pi}$  is loop suppressed
  - $-Sp\bar{p}S$ :

$$\sigma(p\bar{p} \to \tilde{\pi}) \simeq 21 \, \mathrm{pb}$$

for  $m_{\tilde{\pi}} = 100 \, \mathrm{GeV}$ 

– Tevatron Run I:

$$\sigma(p\bar{p} \to \tilde{\pi}) \simeq 4.8 \mathrm{~pb}$$
  
for  $m_{\tilde{\pi}} = 250 \mathrm{~GeV}$ 

- Pair production
- How light?



#### Other Sources of Constraints

- LEP direct searches
- Precision Electroweak  $\frac{m_{\tilde{
  ho}}}{\tilde{arepsilon}} \geq 450 \; \mathrm{GeV}$
- FCNC
- Compositeness
- Other states: Lightest Hyper-Baryon Stable if  $U(1)_{HB}$  is exact Same quantum numbers as a gluino Straightforward to break  $U(1)_{HB}$

### Search Strategy

- Signal  $\tilde{\rho} \to \tilde{\pi}\tilde{\pi} \to gggg$ Background: QCD 4j
- Effect of PDF's
- Margin of error
- Two benchmarks:

$$m_{\tilde{\rho}} = 350 \text{ GeV} \text{ and } m_{\tilde{\pi}} = 100 \text{ GeV}$$
  
 $m_{\tilde{\rho}} = 600 \text{ GeV} \text{ and } m_{\tilde{\pi}} = 180 \text{ GeV}$ 



### Case I: Lighter Coloron

Event generation:

parton level: MadEvent

shower/hadronization: Pythia

detector simulation: PGS

cone jets:  $\Delta R = 0.7$ 

• Signal: 1fb<sup>-1</sup>, 3.6 pb after cuts

Background: 2fb<sup>-1</sup>, 66 pb after cuts

Pairing:

signal: 2.7 pb after cuts

background: 21 pb after cuts

• Significance estimate  $\chi^2 = \sum_{bins} \left(\frac{n_s}{\sqrt{n_b}}\right)^2$ 

# The Result: Significance of Excess is 32.3σ



### Model Independent Search

- Without pairing:
   Sensitive to alternative
   models but smaller
   significance
- Signal in the lower bins  $S/\sqrt{B}$  is 13.4 $\sigma$  (8.3 $\sigma$  for bins above 400 GeV)
- Caveats: Cannot impose harder cuts without losing signal



#### Case II: Heavier Coloron

- Light coloron discoverable despite low trigger efficiency, larger background
- Signal: 1fb<sup>-1</sup>, 0.36 pb Background: 2fb<sup>-1</sup>, 0.99 pb (after cuts)
- Pairing:

signal: 0.27 pb

background: 0.38 pb

- Significance: 17.2σ
- 10.8σ for less modeldependent search, excess shape is more reliable than before.





#### **OUTLOOK AND CONCLUSIONS**

- Colorons are generic physics objects appearing in various contexts.
- Model with QCD analog experimentally allowed for masses as light as few hundred GeV.
- Search strategy in multijet channel at the Tevatron looks promising for a range of parameters.
- Prospects for the LHC:
  - pp machine: PDF's for signal vs. background
  - higher luminosity and trigger thresholds
  - other states in the model
- Variations of the model:
  - direct couplings to quarks
  - less minimal flavor structure
  - LHC regime: better prospects than minimal model
  - additional states: heavy colored fermions

### **BACKUP SLIDES**

- **S** EEKING
- **H** ADRONIC
- **R** ESONANCES
  - N
- M ULTIJET
- P EAKS



## Search Plot Without Coloring Lighter Coloron



### Search Plot Without Coloring Heavier Coloron

