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NLO
n Remarkable progress in NLO calculations over the past ten years. 

Goes under the name of the NLO revolution 

n In fact (at least in my mind), the revolution started in ’04 at a KITP 
workshop “Collider physics”. Core of the revolution: understanding 
of how to compute NLO corrections without Feynman diagrams 

n NLO wish-lists [ttbb,tttt, WWbb, bbbb, WWjj,W/Z+3,4,j, W+5j, 4j]
are closed chapters

n Two main directions now  
• more legs: e.g. Blackhat focuses on pure n jets or W/Z + n jets -- 

pushing the frontier of n

• more processes: towards a full automation of NLO calculations 
with codes like Helac, GoSam or MadLoop

n This progress went hand in hand with the development of merging of 
NLO and parton showers via MC@NLO (Frixione & Webber ’02) 
or POWHEG (Nason ’04)



NLO+PS

n Today, next-to-leading order parton showers (NLO+PS) have been 
realized as practical tools (POWHEG, MC@NLO, Sherpa) and are 
being today routinely used for LHC analyses

n First only processes with no associated jets in the final state, e.g. 
Drell-Yan, diboson, tt, VBF Higgs, ... 

n Now associated jet production also included, e.g. for Higgs 
production in POWHEG there is 

• inclusive Higgs production (H)

• Higgs plus one jet (HJ)

• Higgs plus two jets (HJJ) 

[same for W and Z]



NNLO
n we know Higgs and Drell-Yan since many years now (fully differential, 

with decays) 

n for QCD, 2013 is the year of NNLO: full or partial results for 
associated Higgs production, top-pairs, H+jet, dijets   [ ... ]

n these calculations pave the way to all 2 → 2 processes relevant for LHC 
physics 

n however, at the moment no method for NNLO+PS exists

n first ideas towards NNLO+PS for inclusive Higgs production presented 
in Hamilton et al. 1212.4504

n here: first practical implementation of those ideas & preliminary results
n method based on MiNLO procedure for NLO and is intimately 

connected to the merging problem. So, start discussing those. 



The observation triggering the first idea behind MiNLO was in a paper 
with K. Melnikov [0910.3671]

☛ the impact of NLO calculations is often discussed using the same
     scale choice at LO and NLO, however more advanced LO
     calculations exist that rely on the CKKW procedure for scale
     setting (see later) and inclusion of Sudakov effects

Even at NLO the scale choice is an issue and different choices can 
lead to a different picture/contrasting conclusions, so it seemed 
natural to look for an extension of the CKKW method to NLO

MiNLO
Multiscale improved NLO



good scale bad scale

Scale choice at NLO
Often a “good scale” is determined a posteriori, either by requiring 
NLO corrections to be small, or by looking where the sensitivity to the 
scale is minimized



Scale choice at NLO
Often a “good scale” is determined a posteriori, either by requiring 
NLO corrections to be small, or by looking where the sensitivity to the 
scale is minimized

Reason: bad scale ➠ large logs ➠ large NLO, large scale dependence

But we also know that large NLO  ➠  bad scale choice, since NLO 
corrections can have a “genuine” physical origin 
(new channels opening up, Sudakov logarithms, color factors, large 
gluon flux ... ) 

Furthermore, double logarithmic corrections can never be absorbed by 
a choice of scale (single log). So a “stability criterion” can be misleading.  



Scale choice at LO

LO calculations in matrix elements generators that follow the CKKW 
procedure are quite sophisticated in the scale choice: 
they use optimized/local scales at each vertex and Sudakov form factors 
at internal/external lines  

Catani, Krauss, Kuehn, Webber ’01
extension to pp collisions Krauss ’02 

Reminder: 
a Sudakov form factor encodes the probability of evolving from one 
scale to the next without branching above a resolution scale Q0



Recap of CKKW
The CKKW prescription in brief:

use the kt algorithm to reconstruct the most likely branching 
history 

evaluate each αs at the local transverse momentum of the splitting 

for each internal line between nodes at scale Qi and Qj include a 
Sudakov form factor Δij=D(Q0,Qi)/D(Q0,Qj) that encodes the 
probability of evolving from scale Qi to scale Qj without emitting. 
For external lines include the Sudakov factor Δi=D(Q0,Qi)

match to a parton shower to include radiation below Q0 



Recap of CKKW
The CKKW prescription in brief:

use the kt algorithm to reconstruct the most likely branching 
history 

evaluate each αs at the local transverse momentum of the splitting 

for each internal line between nodes at scale Qi and Qj include a 
Sudakov form factor Δij=D(Q0,Qi)/D(Q0,Qj) that encodes the 
probability of evolving from scale Qi to scale Qj without emitting. 
For external lines include the Sudakov factor Δi=D(Q0,Qi)

match to a parton shower to include radiation below Q0 

Scale choice intertwined with inclusion of Sudakov form factors 



MiNLO

Born as an extension to NLO of the CKKW procedure, 
such that the procedure to fix the scales is unbiased and 
decided a priori

In particular, the focus is on processes involving many scales (e.g. 
X+multi-jet production) and on soft/collinear branchings, i.e. on 
the region where it is more likely that associated jets are produced 



Two observations
1. A generic NLO cross-section has the form 

Adopting CKKW scales at LO, this becomes naturally  

and the scale choices µR’ and µR’’ are irrelevant for the scale cancelation

2. Sudakov corrections included at LO via the CKKW procedure lead 
to NLO corrections that need to be subtracted to preserve NLO 
accuracy 
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The original MiNLO

1. Find the CKKW n clustering scales Q1< ... < Qn. Fix the hard scale of 
the process Q to the system invariant mass after clustering. Set Q0 to Q1 
(inclusive on radiation below Q1)

2. Evaluate the n coupling constants at the scales Qi (times a factor to 
probe scale variation)

3. Set µR in the virtual to the geometric average of these scales and µF to 
the softest scale Q1

4. Include Sudakov form factors for Born and virtual terms, and for the 
real term after the first branching

5. Subtract the NLO bit present in the CKKW Sudakov of the Born

6. The (n+1)th power of αs in the real and virtual is evaluated at the 
arithmetic average of the n αs in the Born term (since corrections can be 
thought of as additive at each vertex, but other choices possible)



MiNLO in one equation
Example: take e.g. HJ

In POWHEG it is customary to discuss the B function, which is related 
to the differential NLO cross-section, for a given Born kinematics, 
integrated over radiation variables. For “normal” HJ it is given by 

With MiNLO this function becomes 
Q0=qTQ=MH

Δ(Q0,Q0)=1
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Properties of MiNLO
MiNLO satisfies the following requirements

the result is accurate at NLO, i.e. the scale dependence is NNLO

the accuracy in the Sudakov region depends on the observable and 
the form of the Sudakov used 

the smooth behaviour of the CKKW scheme in the singular regions 
is preserved 

X+n-jet cross-sections are finite even without jet cuts (do not need 
generation cuts or Born suppression factors)

 X+n-jet cross-sections reproduce the inclusive cross-section 
accurate to LO (and better, see later)

the procedure is simple to implement in any NLO calculation, i.e. 
the improvement requires only a very modest amount of work 



RUN: µ = HT

FXD: µ = MH

First MiNLO results

• MiNLO mimics POWHEG all the way down to very small pT,H 
where standard H+j NLO calculations diverge

• MiNLO uncertainty band compatible with POWHEG all the way 
down to low transverse momenta

• MiNLO more compatible with fixed rather than running scales 
(surprising? No, running scale misses Sudakov) 



H+2jets

• without cuts impossible to compare to standard NLO 
• again, MiNLO uncertainty band compatible with POWHEG all 

the way down to low transverse momenta

Observation: NLO+PS calculations upgraded with MiNLO describes 
also inclusive distributions very well. How well really ...? 



☛ What is the accuracy of the MiNLO+PS calculation when looking at
     inclusive quantities? 

✗  in the original MiNLO formulation terms neglected are O(αs3/2), 
    so almost NLO, but not quite ...  

MiNLO & merging



☛ What is the accuracy of the MiNLO+PS calculation when looking at
     inclusive quantities? 

✗  in the original MiNLO formulation terms neglected are O(αs3/2), 
    so almost NLO, but not quite ...  

MiNLO & merging

☛ Can one modify the MiNLO procedure to guarantee NLO accuracy
     for also inclusive quantities?

✔ yes, our explicit study of the case of H/V+jet shows that this is
     possible. This requires some changes that were part of the
     freedom in the formulation of MiNLO 



☛ What is the accuracy of the MiNLO+PS calculation when looking at
     inclusive quantities? 

✗  in the original MiNLO formulation terms neglected are O(αs3/2), 
    so almost NLO, but not quite ...  

MiNLO & merging

☛ Can one modify the MiNLO procedure to guarantee NLO accuracy
     for also inclusive quantities?

✔ yes, our explicit study of the case of H/V+jet shows that this is
     possible. This requires some changes that were part of the
     freedom in the formulation of MiNLO 

☛ Can one also solve the general case? The facts that 
- the simplest MiNLO already works well (see also later ...)
- the HJ/VJ case could be solved in a relatively simple way
  make us confident that this is possible  



The proof
Here I’ll only sketch the idea (two versions of full proof in 1212.4504) 
Consider for simplicity the explicit case of H and H+j

The HJ-MiNLO formula reads

with
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The idea is to compare this with the NNLL resummation (including 
finite parts to achieve NLO accuracy for Higgs production, i.e. NLO(0)) 
and just see what is missing in the MiNLO formula



The proof
NNLLΣ Higgs qT resummation at fixed rapidity can be written as 

Integrating in qT one gets

i.e. the formula is NLO(0) accurate if O(αs) corrections to the 
coefficient functions are included and Rf is LO(1) accurate

Now, need to show that if the derivative is taken explicitly, and some 
higher orders are neglected, NLO(0) accuracy is maintained.
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The proof
Taking the derivative one gets
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B1

The proof
Taking the derivative one gets
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B2B1

The proof
Taking the derivative one gets
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B2B1

The proof
Taking the derivative one gets
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A1B2B1

The proof
Taking the derivative one gets
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A1B2B1

The proof
Taking the derivative one gets

σ0
1
q2
T

�
αs, α2

s, α3
s, α4

s, αsL, α2
sL, α3

sL, α4
sL

�
expS (Q, qT )

... ...



C1 ⊗ C1 ⊗A1A1B2B1

The proof
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Q. e. d.
Conclusion:  

☛ The original MiNLO prescription is less than NLO accurate in
     the description of inclusive quantities, in that it neglects O(αs3/2)
     terms

☛ achieve NLO accuracy from HJ also for inclusive Higgs
     observables by 
✔  including the B2 term in the Sudakov form factors 

✔  taking the scale in the coupling constant in the real, virtual and
     subtraction terms equal to the Higgs transverse momentum

Provided this is done, the HJ describes both H and H+j at 
NLO, i.e. merging of H and HJ is effectively achieved without 
doing any merging!
NB: thus unlike other approaches, no merging scale is introduced 



Phenomenology

☛ Excellent agreement in both in central value and in size of
     uncertainty bands (less so in W/Z)

Higgs (MH=125 GeV) rapidity of the LHC (8 TeV). Use 
MSTW8NLO, bands are “7-scale” variation, hfact = 100 GeV in H



Higgs pt

☛ overall good agreement over the whole region

☛ pt,H described only at LO accuracy at high pt,H in the H generator,
    (evident from the uncertainty band getting larger)

We looked at many more distributions, see 1212.4504 for more.



MiNLO-VJJ vs data
We recently implemented Wjj/Zjj in POWHEG, and compared the 
WJJ/ZJJ-MiNLO generators against ATLAS data from 0 to 5 jets. 

Campbell, Ellis, Nason, Zanderighi 1303.5447
Wjj also in Frederix et al. 1110.5502; Zjj in Re 1204.5433 

Results out of the box. Nothing has been tuned here. 
Agreement really good. 



MiNLO-VJJ vs data

We looked at all ATLAS distributions in 1201.1276 (Wjj) and 
1111.2690 (Zjj) and always found a similar good agreement. 
These results are very encouraging in terms of extending the merging 
to more complex processes. 



POWHEG@NNLO

Back to the main question: 

How can one use MiNLO to upgrade POWHEG to NNLO? 



POWHEG@NNLO
Consider the case of Higgs production
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POWHEG@NNLO

Since HJ-MINLO is NLO accurate, it follows that 

Thus, reweighing HJ-MINLO results with this factor one obtains 
NNLO+PS accuracy, exactly in the same way as MC@NLO or 
POWHEG are NLO+PS accurate  
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Variants
It is also possible to split 

with h a function interpolating between 1 and 0, e.g.  

And one can reweight only part of the cross-section: 
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Validation 

In the following: LHC 8 TeV, MH=125.5 GeV, MSTW8nn PDFs. 

All plots preliminary! 



Validation 

The uncertainty from varying h(q;pt★) in the profile function is formally
O(αs

5) in physical distributions and much smaller then the uncertainty 
from other missing higher orders in HNNLO 
(in the following will use pt★ =0.7MH, and q=pt,H) 

Reweighting using different profile functions -- compared to HNNLO 
scale-uncertainty  



Validation 

It makes no difference. Having reweighted the hardest emission events 
to NNLO, the parton shower has negligible impact on rapidity spectrum 

Should one rescale Les Houches events or events after parton shower? 



Validation 
After promoting PWG+PYT to NNLO, uncertainty bands in HNNLO 
and MINLO-NNLOPS are comparable

What about other distributions ... ? 



Validation 
E.g. look at Higgs transverse momentum 

At small pt, fixed order (HJ-MINLO NLO, or HNNLO) diverge, at 
high pt agreement between all predictions



Validation 
Comparison to HqT (NNLO+NNLL) at scale MH with 7-scale bands

pt★ =0.7MH

pt★ =∞

NNLOPS
HqT

NNLOPS
HqT

NNLOPS
HqT

NNLOPS
HqT



Validation 
Comparison to HqT (NNLO+NNLL) at scale MH/2 with 7-scale bands

pt★ =0.7MH

pt★ =∞

HqT
NNLOPS

HqT
NNLOPS

HqT
NNLOPS

HqT
NNLOPS



Conclusions
MiNLO born as a simple procedure to assign scales and Sudakov form 
factors in NLO calculations to account for distinct kinematical scales.

Key features

results well-behaved in Sudakov region, where standard NLO 
calculations break down

away from the Sudakov regions, results are accurate at NLO 

procedure simple to implement in NLO calculations, just try it out ...

HJ, WJ, ZJ NLO calculations upgraded with (new) MiNLO 
reproduce NLO results also for inclusive distributions, i.e. merging 
achieved without doing merging 

MiNLO provides a simple way to upgrade POWHEG to NNLO 

first validation results shown here. Phenomenology in progress. 



A useful integral
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i.e. each log “counts” as a square-root of 1/αs after integration over a 
transverse momentum when a Sudakov weight is present 


