CMS Results On Higgs Boson

ivek Sharma, UC San Diego KHTP, July 8th 2013

Higgs Production & Decay Processes Studied

https://twiki.cern.ch/twiki/bin/view/CMSPublicPhysicsResultsHIG

Main Decay Channels At A Glance

Channel	M _H Range (GeV)	Data Sample 7+8 TeV (fb ⁻¹)	M _H Resolution
$H \rightarrow ZZ \rightarrow 41$	110-1000	5.1 + 19.6	1-2%
Н → үү	110-150	5.1 + 19.6	1-2%
$H \rightarrow WW \rightarrow l \upsilon l \upsilon$	110-600	4.9 +19.5	20%
Η→ττ	110-145	4.9+19.6	15%
H→bb	110-135	5.0+19.0	20%
$H \rightarrow Z \gamma$	120-160	5.0+19.6	2 %

CMS Experiment at the LHC, CERN

Data recorded: 2011-May-25 08:00:19.229673 GMT(10:00: Treffingh mass resolution Run / Event: 165633 / 394010457 discovery modes

$H \rightarrow ZZ \rightarrow 4l$

- **Golden channel** : Four isolated leptons from one point in 3D space
- Benefits from excellent e/µ measurement
 - M_{4l} mass resolution \approx 1-2 %
- $\sigma \times Br(H \rightarrow ZZ \rightarrow 41)$ quite small
 - Needs highest selection efficiency possible → Efficient lepton ID over broad P_t range
- Backgrounds
 - Non-resonant pp→ ZZ→41 is largest and irreducible, has same topological signature as H → 41
 - But no narrow peak as in $H \rightarrow ZZ$
 - Z+jets,ttbar, WZ...all reducible and important at low M₄₁

Discovery of A New Boson

$H \rightarrow ZZ \rightarrow 4l$

Angular Analysis In $H \rightarrow ZZ \rightarrow 41$ (CMS)

- $H \rightarrow ZZ \rightarrow 41$ Decay kinematic fully described by 5 angles and the 2 Z masses
 - discriminates spin 0 particle from background
 - MELA: matrix element likelihood analysis
 PR(D) 81, 075022(2010)

Some discriminating variables

MELA Vs 41 Mass

Signal significance > 6 standard deviations in this channel alone

$H \not \rightarrow \gamma \gamma$

• Two inclusive analysis methods:

PRIMARY

• MVA: photons selected with a BDT. Variable in the BDT: photon kinematics, photon ID BDT score (shower shape, isolation), di-photon mass resolution. 4 BDT categories with different S/B

CROSS-CHECK

- Cut-based: photons selected with cuts. 4 categories based on: γ in Barrel/ Endcap, (un)converted γ. Each category has diff. mass resolution and S/B
- 3 VH channels (e, μ and MET tag) + VBF (2 dijet categories)

Output of BDT validated using $Z \rightarrow ee$ (where e are reconstructed as γ)

$H \rightarrow \gamma \gamma$

BDT Analysis

Cut-based

Above: Each event category is weighted by its S/(S+B) only for visualization purposes

$H \rightarrow \gamma \gamma$: Significance Of Observation

BDT Analysis

Cut-based

MVA analysis is the principal result

$H \rightarrow \gamma \gamma : MVA Result$

7+8 TeV: σ/σ_{SM} for a mass of 125.0 GeV = 0.78 $^{+0.28}_{-0.26}$

16

An Aside : $H \rightarrow Z\gamma$

- Z decays into 2 charged leptons. The BR $(H \rightarrow Z \gamma)$ is comparable to $BR(H \rightarrow \gamma\gamma)$, but BR $(Z \rightarrow ll)$ reduces sensitivity (by factor of 16)
- Search for a narrow $II\gamma$ peak on top of a falling background
- Data \rightarrow No significant excess seen over the entire search region
- Will need \sim x100 more data for an observation at SM rate

In some BSM models, decay rates in this channel could be enhanced 17

Modes With Poor Mass Resolution

Events with two energetic & isolated leptons and missing energy (due to neutrinos)

Higgs boson has spin = 0→ Leptons spatially aligned

Poor mass resolution ($\sim 20\%$) due to escaping neutrinos

$H \rightarrow WW^{(*)} \rightarrow (1\nu) (1\nu)$

- •Analysis of WW+0 jets and 1 jets categories in full 7/8 TeV data (W+2jets (VBF) channel is in progress)
- •Cut based analysis for same flavour lepton events and 2-dimensional $M_T M_{II}$ analysis for different flavour events $M_T = \sqrt{2p_T^{\ell\ell}E_T^{miss}\cos(\Delta\phi_{\ell\ell} E_T^{miss})}$

Events with 0 jets and different flavour leptons (7+8 TeV Data)

$H \rightarrow WW^{(*)} \rightarrow (1 \nu) (1 \nu)$: Significance Of Result

4.0σ (5.1σ) observed (expected) significance at $m_{\rm H} \sim 125$ GeV

signal strength $\sigma/\sigma_{SM} = 0.76 \pm 0.21$

Aside: VH With H \rightarrow WW^(*)

$\mathrm{VH} \rightarrow \mathrm{V+WW} {\rightarrow} 21\ 2\nu + \mathrm{V} {\rightarrow} jj$

CMS-PAS-HIG-12-017

$WH \rightarrow WWW \rightarrow 31 3v$

CMS-PAS-HIG-13-009

WW analysis requiring two central jets

Three high p_T leptons with moderate missing transverse momentum

Limited Standard Model Higgs sensitivity (~ 3.5-4 ×SM at 125 GeV)

Higgs Decays To Leptons

 $H \rightarrow \tau \tau$

VBF candidate shown here

$H \not \rightarrow \tau \tau$

- Most promising mode for measuring Higgs coupling to leptons
- Searched for in three Higgs production modes

• And subsequent decay of τ lepton

 $-\tau \rightarrow evv, \tau \rightarrow \mu vv, \tau \rightarrow hadrons$

- Four signatures considered : $e\mu$, $\mu\mu$, $e\tau_{h}$, $\mu\tau_{h}$
- Search divided in 5 categories based on $H \rightarrow \tau \tau$ mass resolution & S/B - 0,1 Jets with high/low $P_T \tau$
- Due to missing neutrinos, Higgs signal appears as a broad excess in reconstructed τ -pair mass (Mass resolution $\approx 20\%$)
- Major backgrounds arise from ttbar ; W & Z (+jets), dibosons

Anatomy of $H \rightarrow \tau\tau$ Analysis

$H \not \rightarrow \tau \tau$

In addition : VH With H $\rightarrow \tau \tau$

Study topologies of **3 and 4 lepton** final states Use τ decay into e, μ and hadronic final states

95% CL Upper limits on $\sigma \times BR$ of 2.9 to 4.6 x SM value

Adding It All Up : $H \rightarrow \tau \tau$

Excess building up in the region of 120-130 GeV

Higgs Decay To Quarks

CMS $H \rightarrow$ bb Search In a Nutshell

- H \rightarrow bb production via gluon fusion and VBF are quite large but are buried (10⁷) under QCD production of b bbar pairs
- Most promising channel is $H \rightarrow$ bb production associated with a Vector (V=W or Z) boson

- H \rightarrow bb reconstructed as two b-tagged jets recoiling against a high P_T W/Z boson
 - Large W/Z $P_T \rightarrow$ smaller background & better di-jet mass resolution
 - Use b-jet energy regression \rightarrow improved H \rightarrow bb mass resolution
- Events separated into categories , based on S/N (5 channels x 2 $P_T(V)$ bins = 10)
- Use **data control regions** to constrain major backgrounds (V + jets, ttbar etc)
- Use MVA methods to discriminate between signal & background.

VH; $H \rightarrow bb$

M_{bb} for all categories and 7+8 TeV

VBF; $H \rightarrow bb$

All H \rightarrow bb Modes Combined

Combine the results of the VBF and VH processes for $H\rightarrow bb$

95% CL limit observed (expected) at 125 GeV: 1.79 (0.89) Significance observed (expected) at 125 GeV : 2.1σ (2.2 σ) Signal strength at 125 GeV: $\mu = 0.97 \pm 0.48$ 32

Searches For tt+H $\rightarrow \gamma \gamma \&$ tt+H \rightarrow bb Combined

Observed 95% CL limit on σ/σ_{SM} at 125 GeV: 3.3 Expected 95% CL limit on σ/σ_{SM} at 125 GeV: 3.1 Sensitivity to 1-2 × SM within reach with full data set/all channels!

Combination Of All Higgs Measurements

Higgs Boson Mass : Likelihood Scan

H →ZZ→4I: $m_H = 125.8 \pm 0.5$ (stat.) ±0.2 (syst.) GeV H →γγ: $m_H = 125.4 \pm 0.5$ (stat.) ±0.6 (syst.) GeV

 $m_{H} = 125.7 \pm 0.3^{(stat)} \pm 0.3^{(syst)} \text{ GeV}$ = 125.7 ± 0.4 GeV

Low Mass Modes

For a mass of $m_H = 125.7 \text{ GeV}$

Decay	Expected	Observed	
ZZ	7.1 σ	6. 7 σ	
γγ	3.9 σ	3.2 σ	
WW	5.3 σ	3.9 σ	
bb	2.2 σ	2.1 σ	
ττ	2.6 σ	2.8 σ	

bb: includes VH and VBF WW: includes ggF, VH, VBF

Measured Cross Sections Compared With SM

Combined signal strength: $\mu = 0.80 \pm 0.14$

Vector Boson Vs Fermion Coupling

2-dimensional view: test production modes in various decay channels

Many more statistically limited tests described in CMS-PAS-HIG-13-005

Signal Strength for Different Production Modes

Likelihood scans of $\mu = \sigma / \sigma_{SM}$, using all decay channels

gg Fusion

VBF

VH

Data in good agreement with expectation About 2σ significance for the VBF channel

Custodial Symmetry Test

Modify the SM Higgs boson couplings to the W and Z bosons by introducing two scaling factors κ_W and κ_Z and perform combinations to assess if $\lambda_{WZ} = \kappa_W / \kappa_Z = 1$ for $m_H = 125.7$ GeV

95% CL interval for λ_{WZ} : [0.62,1.19]

Spin/Parity Hypothesis Tests

Spin/parity hypothesis tests: $H \rightarrow ZZ \rightarrow 41$ channel

Kinematic discriminant built to describe the kinematics of production and decay of different J^P state of a Higgs-like resonance

Combination For Spin 0^+ Vs 2^+_{mgg} Test

Combined results from WW and ZZ channel testing 2^{+}_{mgg}

Expected results with μ=1 ZZ WW Comb
6.8% 1.4% 0.2%
Observed results at measured μ ZZ WW Comb
1.4% 14% 0.6%

The observation is compatible with the SM Higgs expectations of 0^+ . The data disfavours the $2^+_m(gg)$ hypothesis with a CLs value of 0.6%

Can use the $\gamma\gamma$ events to distinguish $0^+/2^+_{mgg}$ The present $\gamma\gamma$ data does not have the power for a significant hypothesis test

Summary

- New Resonance observed with $M = 125.7 \pm 0.4 \text{ GeV}$
- Its spin/parity is compatible with a 0⁺ state and not with (simple) 0⁻ or spin 2 states
- The couplings to bosons and fermions are consistent with SM predictions, but these are tested so far up to ~20-30% precision only
- From all properties investigated, within the limited statistics, the resonance looks consistent with the SM Higgs boson
- Additional statistics forthcoming in the 2015 run will provide a sharper portrait.

Spares

Most Results With Full 7 & 8 TeV Data

Higgs Production & Decay

Low Mass Higgs Decay

At $M_{\rm H}$ = 125 GeV, only ~11 % of decay (H \rightarrow gg, cc) undetectable

Cross Sections for Key SM Background Processes

Backgrounds up to 5 orders of magnitude larger than signal !

Need to measure these cross sections & properties

Key Standard Model Processes

Good understanding of detector, simulation + accurate theory predictions →Good knowledge of the backgrounds to the Higgs analyses →Whenever possible, measure backgrounds from data control regions

$H \rightarrow \gamma \gamma$

- Even though Br (H $\rightarrow \gamma\gamma$) $\approx 10^{-3}$
 - $-\,$ its a discovery channel in $110 < M_{\rm H} < 150~GeV$

- Search for a narrow peak with two isolated high E_T photons over a continuous di-photon background spectrum
- Background is large and composed of
 - Reducible: One or more misidentified (fake) photon (e.g. γ +jets)

• Irreducible: both photons are real

4th July Results

Decay mode/combination	Expected (σ)	Observed (σ)
$\gamma\gamma$	2.8	4.1
ZZ	3.8	3.2
$\tau \tau + bb$	2.4	0.5
$\gamma\gamma + ZZ$	4.7	5.0
$\gamma\gamma + ZZ + WW$	5.2	5.1
$\gamma\gamma + ZZ + WW + \tau\tau + bb$	5.8	5.0

Yields By Data Set

	mass-fit-MVA	cut-based
	(at $m_H = 125 \text{GeV}$)	(at $m_H = 124.5 \text{GeV}$)
7 TeV	$1.69^{+0.65}_{-0.59}$	$2.27^{+0.80}_{-0.74}$
8 TeV	$0.55_{-0.27}^{+0.29}$	$0.93^{+0.3 ilde{4}}_{-0.30}$
7 + 8 TeV	$0.78^{+0.28}_{-0.26}$	$1.11^{+0.32}_{-0.30}$

1.5 sigma

Table 4: The values of the best fit signal strength for the different datasets and analyses.

Overlap Between Cut Based & BDT Event Samples

Higgs Properties from $H \rightarrow \gamma \gamma$

CMS-PAS-HIG-13-016

Upper limit on the Higgs width

- •Dominated by experimental resolution
- •Breit-Wigner + Gaussian fit

•Observed (exp) upper limit = 6.9 (5.9) GeV 95%

Additional Higgs-like states:

- •Take SM 125 GeV as part of the background
- •Search for additional Higgses
- •Largest excess: 136.5 GeV with $2.9\sigma(<2\sigma \text{ after LEE})$

Search for near mass degenerate states

Two signals with relative strength x mass difference Δm
Perform a 2D scan

 No signal at 95% C for ∆m> 4 GeV

$H \rightarrow WW^{(*)} \rightarrow (1\nu) (1\nu)$

- •Analysis of WW+0 jets and 1 jets categories
- (W+2jets (VBF) channel is in progress)
- •Cut based analysis for same flavour lepton events and 2-dimensional $M_T M_{II}$ analysis for different flavour events $M_T = \sqrt{2p_T^{\ell\ell}E_T^{miss}\cos(\Delta\phi_{\ell\ell} E_T^{miss})}$

$H \rightarrow WW^{(*)} \rightarrow (e \nu) (\mu \nu)$ Shape Analysis

Events with 0 jets and different flavour leptons (7+8 TeV Data)

A significant excess is observed

$H \rightarrow WW^{(*)} \rightarrow (l \nu) (l \nu)$ Shape Analysis

•Exclusion at 95% CL in the mass range 128-600 GeV

•Large excess in the low mass region

•When including M_H =125 GeV as part of the background, no significant excess is seen over the entire mass range

$H \rightarrow \tau\tau$ Search Strategy

• Search divided in 5 categories based on $H \rightarrow \tau \tau$ mass resolution & S/B

All categories are fit simultaneously

Backgrounds in $H \rightarrow$ bb Search

Reducible backgrounds:

- QCD (strongly suppressed by lepton isolation and Pt)
- V+udscg,V+bb @ low p_T and mass
- $W(\rightarrow lv)W(\rightarrow jj)$
- ttbar and single top $(\rightarrow Wb)$

Irreducible backgrounds:

- V+bb (a) high p_T and mass
- $ZZ(\rightarrow bb), W(lv)Z(\rightarrow bb)$

Important discriminating variables

- Mass resolution (separation of VH from VV)
- b-tagging \rightarrow suppression of V+light quarks
- Back-to-back topology
- Additional jet activity in the event (ttbar) 59

ttH; H \rightarrow bb

Data compatible with background expectations

Limit on $\sigma \times BR$: Exp:5.2 Obs:5.8 for $m_H = 125 \text{ GeV}$

60

m_H (GeV)

ttH; H $\rightarrow \gamma \gamma$

- In ttbar \rightarrow dileptons, ullethadronic final states
- Search for $H \rightarrow \gamma \gamma$ in it •
- Sensitivity σ .BR ~ 5.3.SM • for 125 GeV

30

25

Combination of the ttH $\rightarrow \gamma \gamma$ with ttH \rightarrow bb

Observed 95% CL limit on σ/σ_{SM} at 125 GeV: 3.3 Expected 95% CL limit on σ/σ_{SM} at 125 GeV: 3.1 Sensitivity to 1-2 × SM within reach with full data set/all channels!

Summary of scalar couplings tests

63

φ→ττ

♦→bb

No significant excess seen - analysis excludes region of MSSM parameter space consistent with Tevatron excess.

Charged Higgs In Top Decays

66

High Mass Higgs Search

High mass Higgs searches with SM channels WW, ZZ updated with 2012 Statistics

Sensitivity reaches now up to $\sim 1 \text{ TeV}$

Interpretation of the data in e.g EW-singlet models; Benchmark models proposed by the LHC XS WG:

See CMS-PAS-13-008 CMS-PAS-13-014

