Jet cross sections at NNLO accuracy

Thomas Gehrmann, Universität Zürich

Jet cross sections at hadron colliders

Precision observable at the Tevatron

Measure strong coupling constant

Jet cross sections at hadron colliders

ATLAS 2010 results

- On track to a multiple-differential high-precision measurement
- Limiting factor in interpretation will be theory accuracy

0.13

Jet cross sections at hadron colliders

CMS 2011 results

- uncertainty on NLO prediction comparable to spread from partons
- need improved theory for precise extraction of parton distributions from jets

NNLO corrections to $e^+e^- \rightarrow 3$ jets

 $\alpha_s(M_Z) = 0.1175 \pm 0.0020 \,(\text{exp}) \pm 0.0015 \,(\text{theo})$

Ingredients to jet production at NNLO

Two-loop matrix elements

(C.Anastasiou, E.W.N. Glover, C. Oleari, M. Tejeida-Yeomans; Z. Bern, L. Dixon, A. De Freitas)

Explicit infrared poles from loop integrals

One-loop matrix elements

(Z. Kunszt, A. Signer, Z. Trocsanyi)

- Explicit infrared poles from loop integral
- Implicit infrared poles from real radiation

Tree-level matrix elements

Implicit infrared poles from real radiation

Two-loop matrix elements

- Generation of diagrams (QGRAF: P. Noguiera, FORM: J. Vermaseren)
 - Expressed in terms of two-loop Feynman integrals

Reduction to master integrals

Integration-by-parts identities

 $\int \frac{d^d k}{(2\pi)^d} \frac{d^d l}{(2\pi)^d} \frac{\partial}{\partial a^{\mu}} \left[b^{\mu} f(k,l,p_i) \right] = 0 \quad \text{with } a^{\mu} = k^{\mu}, l^{\mu}; b^{\mu} = k^{\mu}, l^{\mu}, p_i^{\mu}$

- Complemented by Lorentz invariance and symmetry
- Solution based on lexicographic ordering (S. Laporta)
 - AIR (C.Anastasiou, A. Lazopoulos)
 - FIRE (A. Smirnov)
 - Reduze (A. von Manteuffel, C. Studerus)

Two-loop matrix elements

Master integrals from differential equations

- Differentiate integrand with respect to masses and momenta
- Apply integration-by-parts identities

Integrate differential equations and match boundary

Two-loop matrix elements for jet production

• Analytic $2 \rightarrow 2$ results for processes with jets

- Di-jet production (C.Anastasiou, E.W.N. Glover, C. Oleari, M. Tejeida-Yeomans; Z. Bern, L. Dixon, A. De Freitas)
- Vector-boson-plus-jet production

 (L. Garland, E.W.N. Glover, A. Koukoutsakis, E. Remiddi, L. Tancredi, E. Weihs, TG)
- Higgs-boson-plus-jet production (E.W.N. Glover, M. Jaquier, A. Koukoutsakis, TG)

Top quark pair production

- Numerical representation (P. Bärnreuther, M. Czakon)
- Analytical work ongoing (C. Studerus, A. von Manteuffel et al.)

• Next frontier: automation and $2 \rightarrow 3$

- Unitarity-based methods (P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro)
- Classification of integral basis (H. Johansson, D. Kosower, K. Larsen)

Real radiation at NNLO: factorization

Single unresolved radiation at one loop

- One-loop correction to collinear splitting factors (Z. Bern, V. Del Duca, W. Kilgore, C. Schmidt)
- One-loop correction to soft eikonal factor (S. Catani, M. Grazzini)
- Double unresolved radiation factors at tree level (J. Campbell, E.W.N. Glover; S. Catani, M. Grazzini)
 - Double soft
 - Soft/Collinear
 - Triple collinear
 - Double single collinear

Require method to extract singular contributions

Real radiation at NNLO: methods

Sector decomposition

(T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello)

- pp → H, pp → V, including decays (C. Anastasiou, K. Melnikov, F. Petriello; S. Bühler, F. Herzog, A. Lazopoulos, R. Müller)
- ▶ **q**_T-subtraction (S. Catani, M. Grazzini)
 - ▶ pp → H, pp → V, pp → $\gamma \gamma$, pp → VH (S. Catani, L. Cieri, D. de Florian, G. Ferrera M. Grazzini, F.Tramontano)

Sector-improved subtraction schemes

(M. Czakon; R. Boughezal, K. Melinkov, F. Petriello)

▶ $pp \rightarrow t\bar{t}$ (M. Czakon, P. Fiedler, A. Mitov)

- ▶ $pp \rightarrow H+j$ (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze)
- Antenna subtraction (A. Gehrmann-De Ridder, E.W.N. Glover, TG)
 - ► $e^+e^- \rightarrow 3j$ (A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG; S. Weinzierl)

▶ $pp \rightarrow 2j$ (A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)

NNLO Infrared Subtraction

Structure of NNLO cross section

$$d\sigma_{NNLO} = \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^{R} - \mathrm{d}\sigma_{NNLO}^{S} \right) + \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{MF,1} + \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\sigma_{NNLO}^{V,2} + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^{S} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} + \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\sigma_{NNLO}^{MF,2}$$

- ▶ Real and virtual contributions: $d\sigma_{NNLO}^{R}$, $d\sigma_{NNLO}^{V,1}$, $d\sigma_{NNLO}^{V,2}$
- Subtraction term for double real radiation: $\mathrm{d}\sigma^S_{NNLO}$
- Subtraction term for one-loop single real radiation: $d\sigma_{NNLO}^{VS,1}$
- Mass factorization terms: $d\sigma_{NNLO}^{MF,1}, d\sigma_{NNLO}^{MF,2}$
- Each line finite and free of poles
 - \rightarrow numerical implementation

Antenna subtraction

Subtraction terms constructed from antenna functions

Antenna function contains all emission between two partons

Phase space factorization

 $d\Phi_{m+1}(p_1, \dots, p_{m+1}; q) = d\Phi_m(p_1, \dots, \tilde{p}_I, \tilde{p}_K, \dots, p_{m+1}; q) \cdot d\Phi_{X_{ijk}}(p_i, p_j, p_k; \tilde{p}_I + \tilde{p}_K)$

Integrated subtraction term

$$\mathcal{X}_{ijk} = \int d\Phi_{X_{ijk}} X_{ijk}$$

Antenna functions

Colour-ordered pair of hard partons (radiators)

- Hard quark-antiquark pair
- Hard quark-gluon pair
- Hard gluon-gluon pair
- ▶ NLO (D. Kosower; J. Campbell, M. Cullen, E.W.N. Glover)
 - Three-parton antenna: one unresolved parton
- NNLO (A. Gehrmann-De Ridder, E.W.N. Glover, TG)
 - Four-parton antenna: two unresolved partons
 - Three-parton antenna at one loop
 - Products of NLO antenna functions
 - Soft antenna function

Antenna subtraction: incoming hadrons

- Leading colour gluons-only as proof of concept (A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)
 - Double real radiation
 - Subtraction terms constructed and implemented
 - Azimuthal correlations from gluon splitting
 - Single real radiation at one loop
 - Subtraction terms constructed and implemented
 - Interplay of antenna functions and mass factorization
 - Two-loop contributions
 - Added integrated subtraction terms from above
 - Observe analytic cancellation of all infrared poles
- All implemented in parton-level event generator

Inclusive jet p_T distribution

Inclusive jet p_T distribution: scale dependence

Inclusive jet production: double differential distributions

R = 0.7

LHC - The first part of the journey

√s=8 TeV

anti-k_T R=0.7

 $\mu_{B} = \mu_{F} = p_{T_{1}}$

MSTW2008nnlo

 $-\Delta$ |y|<0.3 (x10⁶)

 \rightarrow 0.3 \leq |y|<0.8 (x10⁵)

-⊕- 0.8 ≤ |y|<1.2 (x10⁴)

Single-jet inclusive: jet size dependence in anti- k_T algorithm

Inclusive jet production: double differential distributions

20

LHC - The first part of the journey

√s=8 TeV

anti-k_T R=0.4

MSTW2008nnlo

 $-\Delta$ lyl<0.3 (x10⁶)

 \rightarrow 0.3 \leq lyl<0.8 (x10⁵)

-⊕ 0.8 ≤ lyl<1.2 (x10⁴)

LHC - The first part of the journey

Outlook: next steps

- Current status of $pp \rightarrow 2j$: leading colour, gluons only
 - Serves as proof-of-principle
 - Implementation of all parton-level processes at NNLO (J. Currie, E.W.N. Glover, S. Wells)
 - Towards automated generation of subtraction terms
 - Systematic understanding of infrared cancellations (J. Currie, E.W.N. Glover)
- Other processes of similar complexity: $2 \rightarrow 2$
 - ▶ $pp \rightarrow H+j$
 - ▶ $pp \rightarrow V+j$

Higher-multiplicity processes: two-loop virtuals needed

Conclusions

NNLO corrections to precision observables at LHC

- Various methods have been applied successfully
- Healthy competition between groups

• Current frontier: $2 \rightarrow 2$ QCD processes

- Top quark pairs
- Higgs-plus-jet cross section (gluons only)
- Single-jet inclusive and di-jet cross sections (gluons only)

Precision phenomenology with jet observables starting

- Measurements of coupling constants
- Determination of parton distributions