Searching for new Electroweak Particles with New Razor Variables

Matthew R Buckley
Schramm Fellow
Fermilab Theoretical Astrophysics Group

(Rutgers research faculty as of Sept. 2013)

What Didn't We Find?

- No squarks/gluinos decaying into jets $+\mathbb{E}_{T}$ masses $\lesssim 1 \mathrm{TeV}$
- No evidence of non-SM Higgs physics.
- Things we were looking for were motivated by
 "simple" supersymmetry or were "easy" to find.
- Interesting things can still be lurked at or below a TeV:
- 3rd generation partners
- Degenerate mass spectrum
- Direct electroweak production (sleptons, charginos, etc.)

Electroweak Difficulties

- Interested in

$$
\begin{aligned}
& p p \rightarrow \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{+} \rightarrow W^{(*)} W^{(*)} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rightarrow \ell^{-} \ell^{+}+\mathbb{E}_{T} \\
& p p \rightarrow \tilde{\ell}^{-} \tilde{\ell}^{+} \rightarrow \ell^{-} \ell^{+}+\mathbb{E}_{T} \\
& \hline
\end{aligned}
$$

- Slepton \& charginos have small rates and large backgrounds

Channel	$\sigma(\mathrm{fb})$	$\epsilon(e e)$	$\epsilon(e e) \times \sigma(\mathrm{fb})$	$\epsilon(e \mu)$	$\epsilon(e \mu) \times \sigma(\mathrm{fb})$
$t \bar{t}$	2.27×10^{5}	9.64×10^{-5}	20.2	2.43×10^{-4}	55.2
Drell-Yan	2.56×10^{6}	4.27×10^{-5}	109	7.00×10^{-6}	17.9
$W^{+} W^{-}$	5.88×10^{4}	1.75×10^{-3}	103	4.35×10^{-3}	256

(after CMS-like selection cuts)

The Current State of the Art

- Current LHC bounds comparatively weak, relative to squarks/gluinos

ATLAS Searches

$$
m_{\mathrm{T} 2}=\min _{\mathbf{q}_{\mathrm{T}}}\left[\max \left(m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}\right), m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}-\mathbf{q}_{\mathrm{T}}\right)\right)\right]
$$

- Uses "stransverse" mass $m_{\mathrm{T} 2}$
- Has endpoint at containing information about mass difference between parent and daughter particles.

CMS Searches

- Uses $M_{\mathrm{CT} \perp}$ variable (Matchev and Park 0910.1584)
- Construct a M_{CT}-like variable that projects out the ISR jets that are assumed to be irrelevant to the physics: $M_{\mathrm{CT} \perp}$
- Use tail of $M_{\mathrm{CT} \perp}$, and note that

$$
M_{\mathrm{CT} \perp}<\left(m_{\tilde{\ell}}^{2}-m_{\tilde{\chi}}^{2}\right) / m_{\tilde{\ell}}
$$

The Old-Fashioned Razor

- Introduced by Chris Rogan 1006.2727
- Used by CMS in squark/gluino searches, by Fox et al in monojet dark matter searches

- Define two variables that approximate $M_{\Delta} \equiv\left(m_{P}^{2}-m_{\chi}^{2}\right) / 2 m_{P}$ in pair production followed by decays into visible $+\mathbb{E}_{T}$

The Old Fashioned Razor

- Boost into approximation of pair-production frame, where visible particles have $q_{1}^{z}=-q_{2}^{z}$
- If particles produced near threshold, then in this razor frame $\left|q_{1}\right| \approx\left|q_{2}\right| \approx M_{\Delta}$, so define boost invariant mass

$$
M_{R}^{2}=\left(q_{1}+q_{2}\right)^{2}-\left(q_{1}^{z}+q_{2}^{z}\right)^{2}
$$

- Use transverse information to get 2nd estimator of M_{Δ} :

$$
\left(M_{T}^{R}\right)^{2}=\frac{1}{2}\left[\boldsymbol{\not}_{T}\left(q_{1 T}+q_{2 T}\right)-\overrightarrow{\boldsymbol{H}}_{T} \cdot\left(\vec{q}_{1 T}+\vec{q}_{2 T}\right)\right]
$$

- Prefer to use:

$$
R^{2} \equiv \frac{\left(M_{T}^{R}\right)^{2}}{M_{R}^{2}}
$$

Old Fashioned Razor

- For gluino/squark jets+ \mathbb{E}_{T} background should be approximately scale free and drop exponentially.
- Signal should have structure near $M_{R} \sim M_{\Delta}$ and $R^{2} \sim \frac{1}{4}$

CMS Razor backgrounds 1212.6961

Super Razor

- Backgrounds in EW searches have real E_{T} and mass splittings similar to signal.
- So standard razor variables aren't the best choice
- But: an additional handle in this type of event
- Jets are assumed to not be part of the hard event
- Can make a transverse boost to remove ISR contamination of "interesting" physics
- CMS uses a similar motivation in construction of $M_{\mathrm{CT} \perp}$

Razor Frames

- Ideally, we'd love to reconstruct all these frames.
- Of course, nowhere near enough information.

Reconstructing the c.o.m. frame

- Need to make a series of assumptions to approximate the pair production frame
- Designed to work if event is 2 heavy particles decaying to 2 visible and 2 invisible particles
- Not enough information to reconstruct the true $\vec{\beta}$ lab

$$
\vec{\beta}^{\text {lab }}=\frac{\left\{\overrightarrow{\boldsymbol{\psi}}_{T}+\vec{q}_{1 T}+\vec{q}_{2 T}, P_{z}^{\mathrm{CM}}\right\}}{\sqrt{\left|\vec{P}^{\mathrm{CM}}\right|^{2}+\hat{s}}}
$$

- Build a boost vector $\vec{\beta}_{L}$ that boosts to a frame R which approximates the true c.o.m. frame
- Require that observables invariant under longitudinal boosts: fixes P_{z}^{CM}
- Need to guess a mass scale $\sqrt{\hat{s}_{R}} \sim \sqrt{\hat{s}}$

\hat{s}_{R}

- By assuming the invariant mass of the visible system is the same as the invariant mass of the invisible, can solve for \hat{s}_{R} (will be systematically lower than \hat{s}_{CM}).
- Sets the magnitude of the boost to the approximate c.o.m. frame, once we know P_{z}^{CM}
- Requiring $\frac{\partial \sqrt{\hat{s}_{R}}}{\partial P_{z}^{\mathrm{CM}}}=0$ sets our choice of P_{z}^{CM}
- In terms of old Razor variable M_{R} :

$$
\hat{s}_{R}=2 M_{R}^{2}-2 \vec{P}_{T}^{\mathrm{CM}} \cdot\left(\vec{q}_{1}^{\ell}+\vec{q}_{2}^{\ell}\right)+2 M_{R} \sqrt{M_{R}^{2}+\left|\vec{P}_{T}^{\mathrm{CM}}\right|^{2}-2 \vec{P}_{T}^{\mathrm{CM}} \cdot\left(\vec{q}_{1}^{\ell}+\vec{q}_{2}^{\ell}\right)}
$$

- New way to look at a variable from Zeppenfeld \& Rainwater (hep-ph/9906218)

\hat{s}_{R}

- $\sqrt{\hat{s}}_{R}$ can be thought of as "transverse boost-corrected" version of the Razor variable M_{R}
- Lots of assumptions go into building $\sqrt{\hat{s}_{R}}$, how'd we do?

Reconstructing the Decay Frame

- Now need to get from the approximate c.o.m. frame to the two decay frames.
- Again, not enough information to do this perfectly, so we guess.
- Two decaying particles, so two boosts from R-frame
- Need to be equal and opposite

$$
\vec{\beta}_{R}=\frac{\vec{q}_{1}-\vec{q}_{2}}{q_{1}+q_{2}} \quad \begin{gathered}
\left(q_{1}, q_{2}\right. \text { lepton mom } \\
\text { in } R \text {-frame })
\end{gathered}
$$

- The boost with the right symmetry

M_{Δ}^{R}

- The actual boost $\vec{\beta}$ CM relates \hat{s}_{CM} and M_{P} by

$$
\sqrt{\hat{s}}_{\mathrm{CM}}=2 \gamma_{\mathrm{CM}} M_{P}
$$

- Our approximate boost $\vec{\beta}_{R}$ relates \hat{s}_{R} to an approximation of this mass. We're working only with the visible system though, we get approximation of M_{Δ}

$$
\sqrt{\hat{s}}_{R}=2 \gamma_{R} M_{\Delta}^{R}
$$

- M_{Δ}^{R} will have an edge at $M_{\Delta} \equiv\left(m_{P}^{2}-m_{\chi}^{2}\right) / 2 m_{P}$ insofar as assumptions behind β_{R}, β_{L} are good

M_{Δ}^{R}

- Nice properties of our new variable:
- Backgrounds have sharp kinematic edge; signal has longer tails (especially for high jet multiplicities)
- Approximate reconstruction of production frame leads to further kinematic variables of interest (work to be done)

M^{R} Δ

- M_{Δ}^{R} is relatively independent of the transverse momentum p_{T}^{CM} of c.o.m. relative to lab

Selection Criteria

- Compare apples to apples:
- Use ATLAS and CMS cuts in 2 separate analyses to compare our method (and theorist-level systematics) to the current market leaders
- Cuts a la

CMS-PAS-SUS-12-022 ATLAS-CONF-2013-049

- Most relevant:
- MET cuts
- Z-mass cuts
- $p_{T, \text { jet }}>30 \mathrm{GeV}$
- Work with 0,1,2+ jet samples

Comparing Variables

- Attempt to mock up experimental systematics:
- 10% jet normalization (per jet)
- 10% jet/MET energy scale shape systematic
- 2\% lepton ID
- 10% cross section uncertainty

Sensitivity to Sleptons

- Unfortunately, CMS $M_{\mathrm{CT} \perp}$ comparison plots not quite ready for this talk.
- We're assuming \tilde{e}_{L} or $\tilde{\mu}_{L}$, CMS/ATLAS results assume both flavors degenerate
- Using CLs method for limits

Chargino Applications

- Extra MET from SM neutrinos
- Don't expect to see the nice edge as in sleptons
- Regardless, still a useful variable.
- (and further information from Razor frames to use)

Sensitivity to Charginos

- Recall, we pay the W lepton BR twice for our chargino search.
- ATLAS and CMS publishes results for 100\% BR into leptons.

Conclusions

- Razor variables have proven useful in a variety of searches involving jets $+E_{T}$
- For events where we can identify jets that aren't "interesting" (i.e. ISR), we can do better.
- EW production of new particles a prime candidate for these improved razor variables.
- Today l've talked about 2 of the most straightforward variables: \hat{s}_{R} and M_{Δ}^{R}.
- Approximations of the c.o.m. energy and mass differences in event
- Clean distinctions between background + signal
- Approximations to c.o.m. and decay frames lead to other new and useful variables.

Back-up Slides

M_{CT}

- Defined as

$$
M_{\mathrm{CT}}=\sqrt{m_{1}^{2}+m_{2}^{2}+2\left(e_{1 T} e_{2 T}+\vec{p}_{1 T} \cdot \vec{p}_{2 T}\right)}
$$

- With $e_{i T}=\sqrt{m_{i}^{2}+\left|\vec{p}_{i T}\right|^{2}}$
- If there were no objects in event other than leptons + MET, then M_{CT} has endpoint depending only on mass of parents and invisible particles.

SF Chargino Sample

CLs

- Use probability distribution functions to create toy experimental results, compare to background-only

