A Lepton-Friendly Higgs Boson

Shufang Su • U. of Arizona

In collaboration with B. Thomas Work in progress

Motivation

- Leptonic two Higgs Doublet Model (L2HDM)
- ^{^ω} LHC discovery (h→μμ, h→ττ)
 - * gluon fusion
 - * WBF
 - * tth
 - * Zh/Wh

Standard Model Higgs

- SM, one Higgs couples to all quarks and charged leptons
 - Higgs coupling is the Yukawa coupling
 - Yukawa coupling ∝ mass

$$\frac{g_{h\tau\tau}}{g_{hbb}}|_{\rm SM} = \frac{y_{\tau}}{y_b}|_{\rm SM} = \frac{m_{\tau}}{m_b}$$

 \bullet h ${\rightarrow} bb$ dominant at low mass region

$$\begin{aligned} &\mathrm{Br}(h \to \tau \tau) &= \frac{\Gamma(h \to \tau \tau)}{\Gamma_{\mathrm{tot}}} \\ &\approx \frac{\Gamma(h \to \tau \tau)}{\Gamma(h \to bb)} \approx \frac{y_{\tau}^2}{y_b^2} |_{\mathrm{SM}} \end{aligned}$$

3

Type II 2HDM: MSSM

• Type II 2HDM: one Higgs couples to up-type quarks, the other couples to down-type quarks and charged leptons (e.g., MSSM)

$$\mathcal{L}_{\text{Yukawa}} = y_u \bar{u} Q \phi_u - y_d \bar{d} Q \phi_d - y_l \bar{e} L \phi_d + h.c.$$

$$\langle \phi_u \rangle = \begin{pmatrix} 0 \\ v_u \end{pmatrix}, \quad \langle \phi_d \rangle = \begin{pmatrix} 0 \\ v_d \end{pmatrix}, \quad \tan \beta = \frac{v_u}{v_d}$$

$$y_b = \frac{m_b}{v_d} = \frac{m_b}{v \cos \beta} = \frac{1}{\cos \beta} y_b^{\rm SM}$$
$$y_\tau = \frac{m_\tau}{v_d} = \frac{m_\tau}{v \cos \beta} = \frac{1}{\cos \beta} y_\tau^{\rm SM}$$

 $h_u^0, h_d^0 \to h^0, H^0$

$$g_{h^{0}bb} = -\sin \alpha y_{b} = \left(-\frac{\sin \alpha}{\cos \beta}\right) y_{b}|_{\rm SM}$$
$$g_{h^{0}\tau\tau} = -\sin \alpha y_{\tau} = \left(-\frac{\sin \alpha}{\cos \beta}\right) y_{\tau}|_{\rm SM}$$

• enhanced Higgs coupling to b and τ for large tanß (small $v_d)$

$$\frac{g_{h^0\tau\tau}}{g_{h^0bb}}|_{\rm MSSM} = \frac{y_{\tau}}{y_b}|_{\rm SM}$$
$${\rm Br}(h \to \tau\tau)_{\rm MSSM} \approx \frac{g_{h^0\tau\tau}^2}{g_{h^0bb}^2}|_{\rm MSSM} \approx {\rm Br}(h \to \tau\tau)_{\rm SM}$$

Type II 2HDM: MSSM

Could we increase the leptonic decay branching ratio?

For example:

Fan, Goldberger, Ross, Skiba, Grinstein, arXiv:0803.2040, arXiv:0708.1463 + others ...

- lepton signal: $h \rightarrow ee$, $h \rightarrow \mu\mu$, $h \rightarrow \tau\tau$
- $y_e:y_\mu:y_\tau=m_e:m_\mu:m_\tau$ (lepton universality); consider only μ and τ
- measure μ and τ Yukawa couplings
- h→µµ: clean,
 - ⇒ muon easy to identify ϵ_{μ} ~ 90 %
 - reconstruct m_h peak

Leptonic Higgs decay

• $h \rightarrow \tau \tau$: relatively clean

,	τ decay	Br	efficiency
leptonic	т→e/µ v _т v̄ _{e/µ}	35%	~ 90%
hadronic	τ→π [±] + nπ ⁰ 1 prong	50%	~ 50%
	$\tau \rightarrow 3\pi^{\pm} + n\pi^{0}$ 3 prongs	15%	

→ reconstruct $M_{\tau\tau}$ or $M_{\tau\tau}^{T}$

Leptonic Two Higgs Doublet Model

• 2HDM: one Higgs couples to quarks, the other couples to leptons

$$\mathcal{L}_{\text{Yukawa}} = y_u \bar{u} Q \phi_q^c - y_d \bar{d} Q \phi_q - y_l \bar{e} L \phi_l + h.c.$$

Z₂ symmetry:
$$\phi_q, Q, u, d, L$$
 even; ϕ_l, e odd
After EWSB $\langle \phi_q \rangle = \begin{pmatrix} 0 \\ v_q \end{pmatrix}, \quad \langle \phi_l \rangle = \begin{pmatrix} 0 \\ v_l \end{pmatrix}, \quad \tan \beta = \frac{v_q}{v_l}$

$$y_b = \frac{m_b}{v_q} = \frac{m_b}{v\sin\beta} = \frac{1}{\sin\beta} y_b^{\rm SM}$$

$$y_{\tau} = \frac{m_{\tau}}{v_l} = \frac{m_{\tau}}{v \cos \beta} = \frac{1}{\cos \beta} y_{\tau}^{\rm SM}$$

enhanced
$$\tau$$
 coupling for large tan β (small v_i)

Leptonic 2HDM

• CP even Higgses

$$\frac{g_{h^0\tau\tau}}{g_{h^0bb}}|_{\rm L2HDM} = -\left(\frac{\tan\beta}{\cot\alpha}\right)\frac{y_{\tau}}{y_b}|_{\rm SM}$$

$$\operatorname{Br}(h^0 \to \tau \tau)_{\text{L2HDM}} = \frac{g_{h^0 \tau \tau}^2}{g_{h^0 b b}^2}|_{\text{L2HDM}} \approx \left(\frac{\tan^2 \beta}{\cot^2 \alpha}\right) \operatorname{Br}(h \to \tau \tau)_{\text{SM}}$$

• decoupling limit: \Rightarrow SM

$$m_H, m_{A^0}, m_{H^{\pm}} \gg m_h \qquad \alpha \approx \beta - \frac{\pi}{2}$$

 $\operatorname{Br}(h \to \tau \tau)|_{L2HDM} \approx \operatorname{Br}(h \to \tau \tau)|_{SM}$

- \bullet non-decoupling, could have large $tan\beta$ enhancement
- parametrize light Higgs h⁰ coupling

$$\eta_l = \frac{g_{h^0 ll}}{g_{h^0 ll}^{\mathrm{SM}}} = -\frac{\sin\alpha}{\cos\beta} \qquad \eta_q = \frac{g_{h^0 qq}}{g_{h^0 qq}^{\mathrm{SM}}} = \frac{\cos\alpha}{\sin\beta} \qquad \eta_{W,Z} = \frac{g_{h^0 VV}}{g_{h^0 VV}^{\mathrm{SM}}} = \sin(\beta - \alpha)$$

Light Higgs Decay

Light Higgs Decay

Light Higgs Decay

Higgs Decay Width

$$\frac{\sigma(X \to h \to Y)}{\sigma(X \to h \to Y)^{\text{SM}}} = \frac{\Gamma(h \to X)}{\Gamma(h \to X)^{\text{SM}}} \frac{\text{Br}(h \to Y)}{\text{Br}(h \to Y)^{\text{SM}}}$$
$$= \frac{\Gamma(h \to X)}{\Gamma(h \to X)^{\text{SM}}} \frac{\Gamma(h \to Y)}{\Gamma(h \to Y)^{\text{SM}}} \frac{\Gamma_{\text{tot}}}{\Gamma_{\text{tot}}}$$

16

$$\frac{\sigma(X \to h \to Y)}{\sigma(X \to h \to Y)^{\text{SM}}} = \frac{\Gamma(h \to X)}{\Gamma(h \to X)^{\text{SM}}} \frac{\text{Br}(h \to Y)}{\text{Br}(h \to Y)^{\text{SM}}}$$
$$= \frac{\Gamma(h \to X)}{\Gamma(h \to X)^{\text{SM}}} \frac{\Gamma(h \to Y)}{\Gamma(h \to Y)^{\text{SM}}} \frac{\Gamma_{\text{tot}}^{\text{SM}}}{\Gamma_{\text{tot}}}$$
$$\overset{\uparrow}{\Gamma_{\text{tot}}}$$

$$\begin{aligned} \frac{\sigma(X \to h \to Y)}{\sigma(X \to h \to Y)^{\text{SM}}} &= \frac{\Gamma(h \to X)}{\Gamma(h \to X)^{\text{SM}}} \frac{\text{Br}(h \to Y)}{\text{Br}(h \to Y)^{\text{SM}}} \\ &= \frac{\Gamma(h \to X)}{\Gamma(h \to X)^{\text{SM}}} \frac{\Gamma(h \to Y)}{\Gamma(h \to Y)^{\text{SM}}} \frac{\Gamma_{\text{tot}}^{\text{SM}}}{\Gamma_{\text{tot}}} \\ & \uparrow \\ & \uparrow \\ & \clubsuit \eta \chi^2 & & \clubsuit \eta \gamma^2 \end{aligned}$$

LHC Higgs Reach: SM

LHC Higgs Reach: L2HDM

LHC Higgs Reach: L2HDM

LHC Higgs Reach: L2HDM

LHC Higgs Production

Han, McElrath, hep-ph/0201023

- irreducible SM background: $pp \to Z^*, \, \gamma^* \to \mu \mu$
- Cuts: two μ p_T > 20 GeV, η < 2.5; m_h-2.24 GeV< m($\mu\mu$) < m_h +2.24 GeV, ϵ_{μ} =0.90

Han, McElrath, hep-ph/0201023

- irreducible SM background: $pp \rightarrow Z^*, \gamma^* \rightarrow \mu\mu$
- Cuts: two μ p_T > 20 GeV, η < 2.5; m_h-2.24 GeV< m($\mu\mu$) < m_h +2.24 GeV, ϵ_{μ} =0.90

gg→h→ττ

Tevatron: Belyaev, Han, Rosenfeld, hep-ph/0204210

• signal: $pp \rightarrow hj \rightarrow \tau \tau j$ tau pair not back-to-back in the transverse plane

 $\sigma(p\bar{p} \to hj \to \tau^+\tau^-j) = 44, \ 28, \ 15 \ \text{fb for} \ m_h = 120, \ 130, \ 140 \ \text{GeV}$

Вд: pp→Zj→ттj, pp→jjj

$$\begin{split} \sigma(p\bar{p} \to Zj \to \tau^+\tau^-j) &= 7 \times 10^4 \text{fb}, \quad \textbf{\epsilon}_{\mathbf{j} \to \mathbf{\tau}\mathbf{j}} = \textbf{0.005} \\ \sigma(p\bar{p} \to jjj) &= 2.5 \times 10^8 \text{fb}, \quad \textbf{\epsilon}_{\mathbf{j} \to \mathbf{\tau}\mathbf{l}} = \textbf{0.0001} \end{split}$$

m_h		12	$20 \mathrm{GeV}$	T
channels	hj	Zj	jjj	S/B(%)
jj	32	713	559	2.5
$j\mu$	18	430	13	4.1
je	17	338	13	4.8
$\mu\mu$	1.4	18	0.26	7.7
ee	1.2	18	0.26	6.5
μe	2.5	40	0.26	6.2

L=10 fb⁻¹

21

gg→h→ττ (Tevatron)

gg→h→ττ (Tevatron)

WBF, h→µµ

Plehn and Rainwater, hep-ph/0107180

- irreducible SM background: QCD Zjj, EW Zjj, WWjj, tt+jets, bbjj
- cuts: forward tagging jets, $m_{jj}{>}500~GeV,$ isolated energetic muons, m_H \pm 1.6 GeV window, minijet veto

						<u> </u>
m _h	Signal	Bg	S/√В ѕм	S/√B _{L2HDM}	10 ¹	<u> </u>
(GeV)	(fb)	(fb)	(600 fb ⁻¹)	(30 fb ⁻¹)		
115	0.092	0.82	2.35	2.34	σ _{SM}	
120	0.081	0.62	2.37	2.39	=o_new/	
130	0.062	0.40	2.25	2.40	К	
140	0.037	0.28	2.58	2.95	10 ⁰	-
					-	30 fb ⁻¹

135

140

125 130 m_h (GeV)

120

115

WBF, h→µµ

Plehn and Rainwater, hep-ph/0107180

- irreducible SM background: QCD Zjj, EW Zjj, WWjj, tt+jets, bbjj
- cuts: forward tagging jets, $m_{jj}{>}500~GeV,$ isolated energetic muons, m_H \pm 1.6 GeV window, minijet veto

						<u> </u>
m _h	Signal	Bg	S/√В ѕм	S/√B _{L2HDM}	10 ¹	<u> </u>
(GeV)	(fb)	(fb)	(600 fb ⁻¹)	(30 fb ⁻¹)		
115	0.092	0.82	2.35	2.34	asw	
120	0.081	0.62	2.37	2.39	=0 new/	κ=η _V ²Χη _I ²=5.4
130	0.062	0.40	2.25	2.40	Ϋ́	
140	0.037	0.28	2.58	2.95	10 ⁰	
					_	30 fb ⁻¹

115

120

135

140

125 130 m_h (GeV)

WBF, h→τ_jτι

Rainwater, Zeppenfeld, Hagiwara, hep-ph/9808468

• reducible SM background: QCD Zjj, EW Zjj, Wj+jj, bbjj

	signa	l (fb)		backgrou)		
	VV	gg	$t\overline{t}$	γ^*/Z	+ jets	W+jet	Total
				QCD	\mathbf{EW}		
Lepton acceptance	13.7	50.3	$1.6 \cdot 10^4$	6925	22.0	$3.4 \cdot 10^4$	$5.7 \cdot 10^4$
+ Identified had. τ	6.18	22.7	4274.	1842	8.03	3200.	9462
+ Forward Tagging	1.97	0.18	29.7	23.6	1.72	30.0	85.0
+ Tau reconstruction	1.27	0.11	6.06	13.8	1.09	5.9	26.9
+ Transverse mass	1.02	0.07	1.74	11.9	0.92	0.63	15.2
$+ P_T^{miss}$	0.81	0.05	1.38	8.31	0.71	0.58	11.0
+ Jet mass	0.71	0.03	1.01	6.63	0.69	0.37	8.70
+ Jet veto	0.63	0.02	0.14	4.24	0.66	0.21	5.25
+ Mass window	0.52	0.01	0.01	0.19	0.06	< 0.01	0.27

ATLAS study: S. Asai et. al, hep-ph/0402254

WBF, $h \rightarrow \tau_1 \tau_1 \rightarrow e \mu p_{\Gamma}$

Plehn, Rainwater, Zeppenfeld, hep-ph/9911385

• irreducible SM background: QCD Zjj, EW Zjj, tt+jets, bbjj, QCD WWjj, EW WWjj

	signa	l (fb)	background (fb)					
	VV	gg	$t\overline{t} + jets$	WW	+ jets	$\gamma^*/Z + jets$		Total
				\mathbf{EW}	QCD	EW	QCD	
Lepton acceptance	5.55		2014.	18.2	669.8	11.6	2150.	4864.
+ Forward Tagging	1.31		42.0	9.50	0.38	2.20	27.5	81.6
$+ P_T^{miss}$	0.85		29.2	7.38	0.21	1.21	12.4	50.4
+ Jet mass	0.76		20.9	7.36	0.11	1.17	9.38	38.9
+ Jet veto	0.55		2.70	5.74	0.05	1.11	4.56	14.2
+ Angular cuts	0.40		0.74	1.20	0.04	0.57	3.39	5.94
+ Tau reconstruction	0.37		0.12	0.28	0.001	0.49	2.84	3.73
+ Mass window	0.27	0.01	0.03	0.02	0.0	0.04	0.15	0.24
$H \to \tau \tau \to e \mu$	0.27	0.01	0.03	0.02	0.0	0.04	0.15	0.24
$H \to \tau \tau \to e e$	0.13	0.01	0.01	0.01	0.0	0.02	0.07	0.11
$H \to \tau \tau \to \mu \mu$	0.14	0.01	0.01	0.01	0.0	0.02	0.07	0.11

ATLAS study: S. Asai et. al, hep-ph/0402254

WBF, h→ττ

ATLAS study: S. Asai et. al, hep-ph/0402254 L=30 fb⁻¹

m_H	(GeV)	110	120	130	140	150
$H \to \tau \tau \to e \mu P_T^{mi}$	<i>SS</i>					
Signal		9.7	8.4	6.3	3.8	1.8
Background		17.3	7.1	4.1	3.0	2.6
Stat. significance		1.9	2.5	2.3	1.7	0.7
$H \rightarrow \tau \tau \rightarrow ee/\mu\mu$	P_T^{miss}					
Signal		9.7	8.3	6.3	3.8	1.8
Background		16.2	6.6	4.5	3.5	2.6
Stat. significance		1.9	2.6	2.3	1.5	0.7
$H \to \tau \tau \to \ell \ had$	P_T^{miss}					
Signal		16.8	15.6	11.8	8.9	3.8
Background		31.9	7.7	3.6	2.5	2.5
Stat. significance		2.4	4.2	4.4	3.9	1.7
combined						
Stat. significance		3.7	5.7	5.7	4.8	2.4
L2HDM		16.2	25.7	27.1	24.6	13.2
S. Su						

WBF, h→ττ

ATLAS study: S. Asai et. al, hep-ph/0402254 L=30 fb⁻¹

WBF, h→ττ

ATLAS study: S. Asai et. al, hep-ph/0402254 L=30 fb⁻¹

SS, B. Thomas, prelimenary

- Signal: t \rightarrow bqq, t \rightarrow bqq, h \rightarrow µµ; bbqqqqµµ
- background: ttZ/γ*
- cuts: 2b, 4 jets, 2 μ , top reconstruction, m_H±2.5 GeV window

tth, h→μμ

SS, B. Thomas, prelimenary

- Signal: t \rightarrow bqq, t \rightarrow bqq, h \rightarrow µµ; bbqqqqµµ
- background: ttZ/γ*
- cuts: 2b, 4 jets, 2µ, top reconstruction, $m_H \pm 2.5$ GeV window

Belyaev, Reina, hep-ph/0205270

- Signal: t \rightarrow blv, t \rightarrow bqq, 2t_j; bbluqqt_jt_j
- background: ttZ/γ*
- cuts: 2jets, 2b, one e/µ, 2 hadronic $\tau,$ top reconstruction

	Background:	Signal: $pp \to t\bar{t}H, H \to \tau^+\tau^-$				
	$pp \rightarrow t\bar{t}\tau^+\tau^-$	$110 \mathrm{GeV}$	$120 \mathrm{GeV}$	$130 \mathrm{GeV}$	$140 { m GeV}$	
Eff. of CUTS I+II+III (%)	0.42	0.50	0.52	0.55	0.58	
Number of events/100 $\rm fb^{-1}$	12	34	25	16	8.8	
$S/\sqrt{S+B}$		5.0	4.1	3.0	1.9	
S/B		2.8	2.1	1.3	0.7	
$\delta\sigma/\sigma$		0.20	0.24	0.33	0.52	
L2HDM (L=30 fb ⁻¹)	10.5	8.89	6.86	4.67		

tth, h→ττ

Belyaev, Reina, hep-ph/0205270

- Signal: t→blv, t→bqq, 2T_i; bbluqqT_iT_i
- background: ttZ/γ*
- cuts: 2jets, 2b, one

tth, h→ττ

Belyaev, Reina, hep-ph/0205270

 Signal: t→blv, t→bqq, 2T_i; bbluggT_iT_i • background: ttZ/γ* 5σ L=30 fb⁻¹ cuts: 2jets, 2b, one 3σ 10¹ к=σ_{new}/σ_{SM} $\kappa = \eta_q^2 X \eta_l^2 = 4.7$ Eff. of CUTS I+II+III (%) Number of events/100 $\rm fb^{-1}$ $S/\sqrt{S+B}$ S/B10⁰ $\delta\sigma/\sigma$ L2HDM (L=30 fb⁻¹) 125 m_h (GeV) 110 115 120 130 135 140 28

Wh, Zh, h→μμ, ττ

SS, B. Thomas, preliminary

- Signal: leptonic decay of W and Z
- background: WZ and ZZ

SM	m _h (GeV)	Signal (fb)	Bg (fb)	before cuts
h→µµ	ZH	0.011	39.18	signal too small
	WH	0.015	102	
һ→тт	ZH	3.195	26.12	possible
	WH	12.26	102	

prelimenary

S. Su

30

Conclusions

- Higgs decay to muon or tau pair: clean channel
- L2HDM: enhanced leptonic Higgs decay branching ratio
- [≌] h→тт
 - * WBF: SM Higgs discovery channel
 - * tth: 3 σ possible @ 100 fb⁻¹
 - * gg \rightarrow h and WH/ZH: study in progress ...
- ^ĕ h→μμ
 - * SM gg \rightarrow h, WBF, tth: need high luminosity
 - * discovery possible at low L with enhanced Higgs coupling