PMU MATHEMATICS OF THE UNIVERSE
 東京大学
 the University of TOKyo

Deciphering New Physics
 Through Spin Measurement Using Interference

Hitoshi Murayama（IPMU Tokyo \＆Berkeley） KITP Conference on LHC，June 2， 2008 with Matt Buckley，Willie Klemm，Vikram Rentala， Beate Heinemann，Seong Youl Choi，Kentarou Mawatari

Motivation

New Era

New Era

- ~ 1900 reached atomic scale $10^{-8} \mathrm{~cm} \approx \alpha / \mathrm{m}_{e}$

New Era

- ~ 1900 reached atomic scale $10^{-8} \mathrm{~cm} \approx \alpha / \mathrm{m}_{e}$
- ~ 1970 reached strong scale $10^{-13} \mathrm{~cm} \approx \mathrm{Me}^{-2 \pi /}$
asb0

New Era

- ~1900 reached atomic scale $10^{-8} \mathrm{~cm} \approx \alpha / \mathrm{m}_{e}$
- ~ 1970 reached strong scale $10^{-13} \mathrm{~cm} \approx \mathrm{Me}^{-2 \pi /}$
asb0
- ~2010 will reach weak scale $10^{-17} \mathrm{~cm}$

New Era

- ~ 1900 reached atomic scale $10^{-8} \mathrm{~cm} \approx \alpha / \mathrm{m}_{e}$
- ~ 1970 reached strong scale $10^{-13} \mathrm{~cm} \approx \mathrm{Me}^{-2 \pi /}$
asb0
- ~2010 will reach weak scale $10^{-17} \mathrm{~cm}$
- Known since Fermi (1933), finally there!

New Era

- ~ 1900 reached atomic scale $10^{-8} \mathrm{~cm} \approx \alpha / \mathrm{m}_{e}$
- ~ 1970 reached strong scale $10^{-13} \mathrm{~cm} \approx \mathrm{Me}^{-2 \pi /}$
asb0
- 2010 will reach weak scale $10^{-17} \mathrm{~cm}$
- Known since Fermi (1933), finally there!
- presumably it is also a derived scale
- from SUSY breaking? extra dimensions? string theory?

New Era

- ~ 1900 reached atomic scale $10^{-8} \mathrm{~cm} \approx \alpha / \mathrm{m}_{e}$
- ~ 1970 reached strong scale $10^{-13} \mathrm{~cm} \approx \mathrm{Me}^{-2 \pi /}$
asb0
- ~2010 will reach weak scale $10^{-17} \mathrm{~cm}$
- Known since Fermi (1933), finally there!
- presumably it is also a derived scale
- from SUSY breaking? extra dimensions? string theory?
- If so, we expect rich spectrum of new

Post-Higgs Problem

- Once we discover Higgs, we see "what" is condensed
- But we still don't know "why"
- Two problems:
- Why anything is condensed at all
- Why is the scale of condensation
$\sim \mathrm{TeV} \ll \mathrm{M}_{\mathrm{p}}=10^{15} \mathrm{TeV}$
- Explanation most likely to be at $\sim \mathrm{TeV}$ scale because this is the relevant energy scale
physics looks alike
missing E_{T}, multiple jets, b-jets, (like-sign) leptons

SUSY
missing E_{T}, multiple jets, b-jets,

(like-sign) leptons

UED
SUSY

New physics looks alike

missing E_{T}, multiple jets, b-jets,

(like-sign) leptons

UED

New physics looks alike

missing E_{T}, multiple jets, b-jets,

(like-sign) leptons

UED
spin 1

SUSY
$\operatorname{spin} 1 / 2$
technicolor spin 0

Need absolute confidence for a major

Need absolute

confidence for a major

As an example, supersymmetry

Need absolute

confidence for a major

As an example, supersymmetry
"New-York Times level" confidence

The Other Half of the World Discovered Geneva, Switzerland

As an example, supersymmetry "New-York Times level" confidence

The New Hork Times

The Other Half of the World Discovered

 Geneva, SwitzerlandAs an example, supersymmetry
"New-York Times level" confidence still a long way to

The New Hork Times

The Other Half of the World Discovered

 Geneva, SwitzerlandAs an example, supersymmetry "New-York Times level" confidence still a long way to
"Halliday-Resnick" level confidence

The Newdlork Times
 July 23, 2009

The Other Half of the World Discovered

 Geneva, SwitzerlandAs an example, supersymmetry "New-York Times level" confidence still a long way to "Halliday-Resnick" level confidence
"We have learned that all particles we observe have unique partners of different spin and statistics, called superpartners, that make our theory of elementary particles valid to small distances."

Neprecision new physics measurements

- spectroscopy
- Kinematic fits, partial wave analysis, Dalitz analysis, etc
- precision mass, BR measurements
- key: spin-parity

In
 N
 precisio mea

spectroscopy

Squarks
 $J=0$?

PDG 2012

The following data are averaged over all light flavors, presumably u, d, s, c with both chiralities. For flavor-tagged data, see listings for Stop and Sbottom. Most results assume minimal supergravity, an untested hypothesis with only five parameters. Alternative interpretation as extra dimensional particles is possible. See KK particle listing.

- kinematic fits, partial wave analysis, Dalitz analysis, etc
- precision mass, BR measurements
- key: spin-parity

SQUARK MASS

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
538 ± 10	OUR FIT		mSUGRA assumptions
532 ± 11	${ }^{1}$ ABBIENDI 11D	CMS	Missing ET with
			mSUGRA assumptions
541 ± 14	${ }^{2}$ ADLER 110	ATLAS	Missing ET with
			mSUGRA assumptions

652 ± 105
CMS
${ }^{1}$ ABBIENDI 11D assumes minimal supergravity in the fits to the data of jets and missing energies and set $A_{0}=0$ and $\tan \beta=3$. See Fig. 5 of the paper for other choices of A_{0} and $\tan \beta$. The result is correlated with the gluino mass M_{3}. See listing for gluino.
${ }^{2}$ ADLER 110 uses the same set of assumptions as ABBIENDI 11D, but with $\tan \beta=5$. ${ }^{3}$ ABBIENDI 11 K extends minimal supergravity by allowing for different scalar massessquared for $\mathrm{Hu}, \mathrm{Hd}, 5^{*}$ and 10 scalars at the GUT scale.

SQUARK DECAY MODES

MODE	BR(\%)	DOCUMENT ID	TECN	COMMENT
j+miss	32 ± 5	ABE 10U	ATLAS	
j I+miss	73 ± 10	ABE 10U	ATLAS	lepton universality
j e+miss	22 ± 8	ABE 10U	ATLAS	
j $\mu+$ miss	25 ± 7	ABE 10U	ATLAS	
$\mathrm{q} \chi^{+}$	seen	ABE 10 U	ATLAS	

Conventional Methods

Spin Measurements

- Most techniques for next-generation colliders concentrate on distinguishing models:
- Comparison of total cross section

$$
\sigma_{S U S Y}<\sigma_{U E D}
$$

- Look for higher KK modes in UED
- At a linear collider can use threshold scans:
- Scalar $\sigma \propto \beta^{3}$, spinor/vector $\sigma \propto \beta$
- Cannot distinguish higher spin modes

Spin Measurements

- At ILC: reconstruct production angle

- t-channel introduces model dependence: forward peak

Spin Measurements

- Spin dependence of decay anales:

- Using long decay chain at LHC can distinguish spinors from phase space:
$\tilde{q}_{L} \rightarrow \tilde{\chi}_{2}^{0} q_{L} \rightarrow \tilde{\ell}_{R}^{ \pm} \ell^{\mp} \xrightarrow[q_{L} \rightarrow \ell^{ \pm} \ell^{\mp} q_{L} q_{L} \tilde{\chi}_{1}^{0}]{\text { Far }}$
- Polluted with near/far ambiguity, antisquark production, and assumes chiral coupling

Typically worse

- For most LHC analyses, it is based on the comparison between the "data" and big Monte Carlo to see which one is "closer" to the data
- Not really spin measurements, more of a consistency check of the models
- How can we get information on spin of each new particle?

General Principle

MA Model-independent information on spin

- How can we obtain information on spins without any model assumptions?
- Back to basics: quantum mechanics
- angular momentum generates rotation $U(\vec{\theta})=e^{i \vec{j} \cdot \vec{\theta} / \hbar}$
- there is no orbital angular momentum along the momentum, and spin can be isolated

Helicity and phase

- Decay of particle with spinh along the momentum axis
- Rotations about z-axis of decay plane given by

$$
\begin{aligned}
& \mathcal{M} \propto e^{i J_{z} \phi} \\
& J_{z}=\frac{(\vec{s}+\vec{x} \times \vec{p}) \cdot \vec{p}}{|\vec{p}|} \\
&=\frac{\vec{s} \cdot \vec{p}}{|\vec{p}|}=h
\end{aligned}
$$

- rotational invariance: a single helicity state has flat distribution in $\phi:\left|e^{i h \phi}\right|_{16}^{2}=1$

among helicities

(with M. Buckley, W. Klemm, and V. Rentala)

- If particles produced in multiple helicities:

$$
\begin{gathered}
\sigma \propto\left|\sum \mathcal{M}_{\text {prod. }} \mathcal{M}_{\text {decay }}\right|^{2} \\
\mathcal{M}_{\text {decay }}=e^{i h \phi} \mathcal{M}_{\text {decay }}(h, \phi=0)
\end{gathered}
$$

among helicities

(with M. Buckley, W. Klemm, and V. Rentala)

- If particles produced in multiple helicities:

$$
\begin{aligned}
& \sigma \propto\left|\sum \mathcal{M}_{\text {prod. }} \mathcal{M}_{\text {decay }}\right|^{2} \\
& \mathcal{M}_{\text {decay }}=e^{i h \phi} \mathcal{M}_{\text {decay }}(h, \phi=0)
\end{aligned}
$$

- Different helicities interfere once they decay!

among helicities

(with M. Buckley, W. Klemm, and V. Rentala)

- If particles produced in multiple helicities:

$$
\begin{gathered}
\sigma \propto\left|\sum \mathcal{M}_{\text {prod. }} \mathcal{M}_{\text {decay }}\right|^{2} \\
\mathcal{M}_{\text {decay }}=e^{i h \phi} \mathcal{M}_{\text {decay }}(h, \phi=0)
\end{gathered}
$$

- Different helicities interfere once they decay! - ϕ dependence of cross section tells us what helicities contributed to the interference.

among helicities

(with M. Buckley, W. Klemm, and V. Rentala)

- If particles produced in multiple helicities:

$$
\begin{gathered}
\sigma \propto\left|\sum \mathcal{M}_{\text {prod. }} \mathcal{M}_{\text {decay }}\right|^{2} \\
\mathcal{M}_{\text {decay }}=e^{i h \phi} \mathcal{M}_{\text {decay }}(h, \phi=0)
\end{gathered}
$$

- Different helicities interfere once they decay!
- ϕ dependence of cross section tells us what helicities contributed to the interference.
- Can measure only helicity differences (akin to neutrino oscillation)

NWe Definition of the azimuthal angle

Spin and Quantum Interference

- Vector Boson Decay:
- Spinor Decay:

$$
\begin{array}{lll}
\mathcal{M}_{+} \propto e^{i \phi_{1}} & \mathcal{M}_{\uparrow} \propto e^{i \phi_{1} / 2} \\
\mathcal{M}_{0} \propto 1 & \mathcal{M}_{\downarrow} \propto e^{-i \phi_{1} / 2} \\
\mathcal{M}_{-} \propto e^{-i \phi_{1}} & \propto
\end{array}
$$

$$
\begin{aligned}
& \left|\sum \mathcal{M}\right|^{2}=A_{0}+A_{1} \cos \phi+A_{2} \cos 2 \phi\left|\sum \mathcal{M}\right|^{2}=A_{0}+A_{1} \cos \phi \\
& \quad \text { In general: } \\
& \sigma=A_{0}+A_{1} \cos (\phi)+\cdots+A_{n} \cos (n \phi), n=2 \times \operatorname{spin}
\end{aligned}
$$

Simple example
$e_{L}^{-} e_{R}^{+} \rightarrow \tilde{w}^{-} \tilde{w}^{+} \rightarrow\left(\mu^{-} \tilde{\nu}_{\mu}^{*}\right)\left(e^{+} \tilde{\nu}_{e}\right)$
$\bar{M}(-+) \propto$
$\cos \frac{\hat{\theta}_{1}}{2} e^{-i \hat{\phi}_{1} / 2} \cos \frac{\hat{\theta}_{1}}{2} e^{-i \hat{\phi}_{2} / 2}$
$\mathcal{M}(+-) \propto(1-\cos \theta) \sin \frac{\hat{\theta}_{1}}{2} e^{+i \hat{\phi}_{1} / 2} \sin \frac{\hat{\theta}_{1}}{2} e^{+i \hat{\phi}_{2} / 2}$
$\mathcal{M}(--) \propto-\sin \theta \frac{\hat{W}^{2}}{E} \cos \frac{\hat{\theta}_{1}}{2} e^{-i \hat{\phi}_{1} / 2} \sin \frac{\hat{\theta}_{1}}{2} e^{+i \hat{\phi}_{2} / 2}$
$\mathcal{M}(++) \propto-\sin \theta \frac{M}{E} \sin \frac{\hat{\theta}_{1}}{2} e^{+i \hat{\phi}_{1} / 2} \cos \frac{\hat{\theta}_{1}}{2} e^{-i \hat{\phi}_{2} / 2}$
(HM: LCWS 2000 @ Fermilab)

Real-life Examples

No Literature

No Literature

- We could find no papers that studied the quantum interference effects among helicity states in modern collider physics literature

No Literature

- We could find no papers that studied the quantum interference effects among helicity states in modern collider physics literature
- indeed, most MC programs don't have them

No Literature

- We could find no papers that studied the quantum interference effects among helicity states in modern collider physics literature
- indeed, most MC programs don't have them
- Vague suspicion: people in the 60's may have known this well in hadron resonance physics

No Literature

- We could find no papers that studied the quantum interference effects among helicity states in modern collider physics literature
- indeed, most MC programs don't have them
- Vague suspicion: people in the 60's may have known this well in hadron resonance physics
- Instead of looking for data, we show examples that should exist on tape and can be looked for right away

No Literature

- We could find no papers that studied the quantum interference effects among helicity states in modern collider physics literature
- indeed, most MC programs don't have them
- Vague suspicion: people in the 60's may have known this well in hadron resonance physics
- Instead of looking for data, we show examples that should exist on tape and can be looked for right away
e.g., J.D. Jackson and K. Gottfried, Nuovo Cimento, 33, 309 (1964)

LEP-II

- $e^{+} e^{-} \rightarrow W^{+} W^{-}$
- study semileptonic
- $\mathrm{W}^{-} \rightarrow I^{-} \mathrm{nu}$
- $W^{+} \rightarrow j j$
- $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$
- $A_{1} / A_{0}=-26 \%$
- $A_{2} / A_{0}=-8.6 \%$

LEP-II

- $e^{+} e^{-} \rightarrow W^{+} W^{-}$
- study semileptonic
- $\mathrm{W}^{-} \rightarrow I^{-} \mathrm{nu}$
- $W^{+} \rightarrow j$ j
- $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$
- $A_{1} / A_{0}=-26 \%$
- $\mathrm{A}_{2} / \mathrm{A}_{0}=-8.6 \%$

Tevatron

- p pbar $\rightarrow Z+$ gluon
. study $Z \rightarrow e^{+} e^{-}$
- $\mathrm{A}_{1} / \mathrm{A}_{0}=6.0 \%$
- $A_{2} / A_{0}=12 \%$
used $p_{T}(\mathrm{~g})>7 \mathrm{GeV}$

Tevatron

Other distributions

- $\cos \theta$ distribution of the production shows t- and u-channel process, no spin information
- $\cos \hat{\theta}$ distribution of the decay does not show a big spin effect because the process is primarily near threshold

Practicalities

acceptance cuts

- actual experimental data always suffer from acceptance cuts because of the geometry of the detector
- In addition, background also forces us to place additional cuts
- They tend to destroy the needed rotational invariance

\author{

Applications

 (with M. Buckley, W. Klemm, and B.Heinemann)}

- Demonstration of technique using data already on tape @ LEP-II and Tevatron

Applications

(with M. Buckley, W. Klemm, and B.Heinemann)

- Demonstration of technique using data already on tape @ LEP-II and Tevatron
- $p \bar{p} \rightarrow Z+$ jet, $Z \rightarrow e^{-} e^{+}$
- $\sigma=7 \mathrm{pb}$ with
$p_{T \text { jet }}>30 \mathrm{GeV},\left|\eta_{\text {jet }}\right|<2.1$
and cuts on lepton p_{T}, η
๑1.7(8.0) fb^{-1} total
luminosity

Applications

(with M. Buckley, W. Klemm, and B.Heinemann)

- Demonstration of technique using data already on tape @ LEP-II and Tevatron
- $p \bar{p} \rightarrow Z+$ jet, $Z \rightarrow e^{-} e^{+}$
- $\sigma=7 \mathrm{pb}$ with
$p_{T \text { jet }}>30 \mathrm{GeV},\left|\eta_{\text {jet }}\right|<2.1$ and cuts on lepton p_{T}, η ๑1.7(8.0) fb^{-1} total luminosity
- $e^{-} e^{+} \rightarrow W^{-} W^{+} \rightarrow j j \ell^{ \pm} \nu$
- 3150 events with \sqrt{s} from $182-207 \mathrm{GeV}$

Applications

(with M. Buckley, W. Klemm, and B.Heinemann)

- Demonstration of technique using data already on tape @ LEP-II and Tevatron
- $p \bar{p} \rightarrow Z+$ jet, $Z \rightarrow e^{-} e^{+}$
- $e^{-} e^{+} \rightarrow W^{-} W^{+} \rightarrow j j \ell^{ \pm} \nu$
- $\sigma=7 \mathrm{pb}$ with
$p_{T \text { jet }}>30 \mathrm{GeV},\left|\eta_{\text {jet }}\right|<2.1$
- 3150 events with \sqrt{s} from $182-207 \mathrm{GeV}$ and cuts on lepton p_{T}, η
-1.7(8.0) fb^{-1} total
luminosity
In both cases, expect non-zero

$$
A_{0}, A_{1}, A_{2}
$$

Kinematics

$\cos \phi=\frac{\hat{z} \times \vec{p}_{W^{ \pm} / Z^{0}}}{\left|\hat{z} \times \vec{p}_{W^{ \pm} / Z^{0}}\right|} \times \frac{\vec{p}_{W^{ \pm} / Z^{0}} \times \vec{p}_{\ell^{ \pm} / e^{-}}}{\left|\vec{p}_{W^{ \pm} / Z^{0}} \times \vec{p}_{\ell^{ \pm} / e^{-}}\right|}$
Define positive ϕ to be in the direction of

$$
\hat{z} \times \vec{p}_{W \pm / Z^{0}}
$$

Results

- Calculated cross sections using HELAS and the adaptive Monte-Carlo program BASES.
- With only cuts on jet p_{T}, η for Tevatron data, and no cuts on LEP-II:

Effects of Cuts

- However, detectors cannot see forward regions, and need isolation cuts on jets/ leptons. CDF cuts:

Jet transverse momentum	$p_{T, j}>30 \mathrm{GeV}$
Jet η	$\|\eta\|<2.1$
Invariant mass of lepton pair	$66<m_{\ell \ell}<116$
Central electron η	$\|\eta\|<1$
Second electron η	$\|\eta\|<1$ or $1.2<\|\eta\|<2.8$
Electron E_{T}	$E_{T}>25 \mathrm{GeV}$
Electron isolation cuts	$\Delta R_{e-j}>0.7$

Lepton momentum	$p_{\ell}>25 \mathrm{GeV}$
Polar angle θ of final state particles	$\|\cos \theta\|<0.95$
Neutrino energy fraction	$R_{\nu}>0.07$
Visible energy fraction	$R_{\text {vis }}>0.3$
Neutrino transverse momentum	$p_{T, \nu}>16 \mathrm{GeV}$
Lepton isolation	$\Delta R>0.75,0.5,0.2$

Rotational Invariance

- Cuts introduce new directional dependences.
- Remove them by requiring events to pass cuts after rotation about boson axis

Rotational Invariance

- Cuts introduce new directional dependences.
- Remove them by requiring events to pass cuts after rotation about boson axis

Rotationally Invariant Cut's

- Applying these rotationally invariant cuts
(with looser acceptances at Tevatron:
$\mathrm{E}_{\mathrm{T}}>20 \mathrm{GeV}, \mathrm{E}_{\mathrm{T}}>10 \mathrm{GeV},|\eta|<2.6 ; B \mathrm{G}<5 \%$)

A_{1} / A_{0}	0.040 ± 0.023
A_{2} / A_{0}	0.082 ± 0.023
A_{3} / A_{0}	0.000 ± 0.023
A_{4} / A_{0}	0.000 ± 0.024

A_{1} / A_{0}	-0.219 ± 0.063
A_{2} / A_{0}	-0.063 ± 0.063
A_{3} / A_{0}	0.000 ± 0.078
A_{4} / A_{0}	0.000 ± 0.078

LEP-II Efficiencies

- OPAL uses energy deposition cuts to isolate leptons
- We used ΔR cuts with lower efficiencies.
- Higher efficiency \rightarrow better statistics
- Using $\Delta R=0, \epsilon \sim 90 \%$ (non-rotational cuts) $\epsilon \sim 15 \%$ (rotational cuts)
- Combine ALEPH, L3, DELPHI, OPAL:

$$
\Delta R=0.2
$$

LEP-II Efficiencies

- OPAL uses energy deposition cuts to isolate leptons
- We used ΔR cuts with lower efficiencies.
- Higher efficiency \rightarrow better statistics

A_{1} / A_{0}	-0.211 ± 0.050
A_{2} / A_{0}	-0.081 ± 0.049
A_{3} / A_{0}	0.000 ± 0.057
A_{4} / A_{0}	0.000 ± 0.057

- Using $\Delta R=0, \epsilon \sim 90 \%$ (non-rotational cuts) $\epsilon \sim 15 \%$ (rotational cuts)
- Combine ALEPH, L3, DELPHI, OPAL:

$$
\Delta R=0.2
$$

LEP-II Efficiencies

- OPAL uses energy deposition cuts to isolate leptons
- We used ΔR cuts with lower efficiencies.
- Higher efficiency \rightarrow better statistics

A_{1} / A_{0}	-0.211 ± 0.050
A_{2} / A_{0}	-0.081 ± 0.049
A_{3} / A_{0}	0.000 ± 0.057
A_{4} / A_{0}	0.000 ± 0.057

- Using $\Delta R=0, \epsilon \sim 90 \%$ (non-rotational cuts) $\epsilon \sim 15 \%$ (rotational cuts)
- Combine ALEPH, L3, DELPHI, OPAL: $\Delta R=0.2$

A_{1} / A_{0}	-0.211 ± 0.025
A_{2} / A_{0}	-0.081 ± 0.025
A_{3} / A_{0}	0.000 ± 0.029
A_{4} / A_{0}	0.000 ± 0.029

Lessons

Lessons

- We can extract interesting spin information from the existing data

Lessons

- We can extract interesting spin information from the existing data
- effect particularly strong near threshold (good news for future hadron collider!)

Lessons

- We can extract interesting spin information from the existing data
- effect particularly strong near threshold (good news for future hadron collider!)
- seeing $\cos (n \phi)$ dependence implies spin $\geq n / 2$

Lessons

- We can extract interesting spin information from the existing data
- effect particularly strong near threshold (good news for future hadron collider!)
- seeing $\cos (n \phi)$ dependence implies $\operatorname{spin} \geq n / 2$
- works well if fully reconstructible

Challenges

Partially Reconstructable

- Many solutions to Hierarchy problem contain a weakly coupled, stable massive particle.
- Ex: $\tilde{\chi}_{1}^{0}$ in SUSY, B_{1} in UED
- The symmetry which makes these good DM candidates also means they are pair-produced
- Pair-production followed by single decay
- Cannot fully reconstruct events due to 2 sources of missing momentum

False Solutions

(with M. Buckley, S-Y. Choi, and K.Mawatari)

- If masses of μ / B partners are known:
4+4 unknown momenta
-4 measured \nsupseteq
-4 mass relations
- System specified up to two-fold ambiguity

False Solutions

(with M. Buckley, W. Klemm, and V. Rentala)

- Plotting both true and false distribution gives spurious high-frequency noise in ϕ distributions
- ϕ_{1}, ϕ_{2} are not observable, but $\Delta \phi$ is.

Scalar decay:

$\Delta \phi$

Opening angles $\alpha^{ \pm}$ defined by
$m_{\tilde{\mu}^{ \pm}}^{2}-m_{\tilde{\chi}}^{2}=\sqrt{s} E_{\tilde{\mu}^{ \pm}}\left(1-\beta_{\tilde{\mu}^{ \pm}} \cos \alpha^{ \pm}\right)$
$\Delta \phi$

$\Delta \phi$

Opening angles $\alpha^{ \pm}$ defined by

$m_{\tilde{\mu}^{ \pm}}^{2}-m_{\tilde{\chi}}^{2}=\sqrt{s} E_{\tilde{\mu}^{ \pm}}\left(1-\beta_{\tilde{\mu}^{ \pm}} \cos \alpha^{ \pm}\right)$ Straightforwardly,

$$
\Delta \phi_{T}=\Delta \phi_{F}
$$

Since interference argument only needs some reference plane, we expect same expansion in $\cos n \phi$ and $\cos n \Delta \phi$

Spin at the ILC

- Consider pair production of μ-partners ($\tilde{\mu}, \mu_{1}$) decaying to μ 's and missing energy ($\tilde{\chi}_{1}^{0}, B_{1}$)
- Couplings assumed to be those of MSSM/ Minimal Universal Extra Dimensions
- MUED:
- Single extra dimension of radius R compactified on S^{1} / Z_{2}
- Flavor universal boundary terms set to zero at Λ

Spin at the ILC

- Choose:

Spin at the ILC

- Fit to $A_{0}+A_{1} \cos \phi+\cdots+A_{4} \cos 4 \phi$

$$
\begin{gathered}
e^{-} e^{+} \rightarrow \tilde{\mu}^{-} \tilde{\mu}^{+} \\
\tilde{\mu} \rightarrow \mu \tilde{\chi}_{1}^{0}
\end{gathered}
$$

(For $m_{\tilde{\mu}^{ \pm} / \mu_{1}}=200 \mathrm{GeV}, m_{\tilde{\chi}_{1}^{0} / B_{1}}=100 \mathrm{GeV}, \sqrt{s}=405 \mathrm{GeV}$

$$
\frac{A_{1}}{A_{0}} \approx 5 \%
$$

Effects of Cuts

- Apply cuts on visible μ 's and $\not p:|\eta|<2.5$
- We find that these cuts do not introduce large spurious high-frequency modes

$$
\begin{gathered}
e^{-} e^{+} \rightarrow \tilde{\mu}^{-} \tilde{\mu}^{+} \\
\tilde{\mu} \rightarrow \mu \tilde{\chi}_{1}^{0}
\end{gathered}
$$

Effects of Cuts

solid lines dashed lines

no cuts

$|\eta|<2.5$

Scalar
Spinor

Higher Spin

$$
e^{-} e^{+} \rightarrow W_{1}^{+} W_{1}^{-}, W^{ \pm} \rightarrow \ell^{ \pm} \nu_{1}
$$

- $\cos 2 \Delta \phi$ is present, but A_{2} / A_{0} typically $1-2 \%$
- Measurement possible, but would require high statistics $\quad \sqrt{s}=405 \mathrm{GeV} \quad m_{W_{1}^{ \pm}}=200 \mathrm{GeV}$

Higher Spin

$$
e^{-} e^{+} \rightarrow W_{1}^{+} W_{1}^{-}, W^{ \pm} \rightarrow \ell^{ \pm} \nu_{1}
$$

- $\cos 2 \Delta \phi$ is present, but A_{2} / A_{0} typically $1-2 \%$
- Measurement possible, but would require high statistics $\quad \sqrt{s}=405 \mathrm{GeV} \quad m_{W_{1}^{ \pm}}=200 \mathrm{GeV}$

Events

- Longer decay chains provide additional mass constraints.
- All investigated possibilities at the ILC suffered from low statistics.

$$
\begin{gathered}
\sigma_{U E D} \times B R \sim 1 \mathrm{fb} \\
\sigma_{S U S Y} \times B R \sim 0.1 \mathrm{fb}
\end{gathered}
$$

Spin at the LHC

- If all masses are known:

4+4 unknown momenta -2 measured \not_{T} - 6 mass relations

- If near/far ambiguity can be overcome, system specified up to two-fold ambiguity
- Still not clear whether this ambiguity has equal $\Delta \phi$

Spin at LHC

- In $e^{+} e^{-}$or p pbar collisions:

- Sign ambiguity with identical beams $\phi \rightarrow \phi+\pi$
- Makes odd $\cos n \phi$ non-physical
- Work-around in study
- But maybe $\cos 4 \phi$ for KK graviton?

Conclusions

- Quantum interference among helicities exists

Conclusions

- Quantum interference among helicities exists
- Completely model-independent method to study spin

Conclusions

- Quantum interference among helicities exists
- Completely model-independent method to study spin
- Should be demonstrable in the existing LEP-II and Tevatron data

Conclusions

- Quantum interference among helicities exists
- Completely model-independent method to study spin
- Should be demonstrable in the existing LEP-II and Tevatron data
- particularly useful near threshold when other spin correlations are not very prominent

Conclusions

- Quantum interference among helicities exists
- Completely model-independent method to study spin
- Should be demonstrable in the existing LEP-II and Tevatron data
- particularly useful near threshold when other spin correlations are not very prominent
- Really works if full reconstructable

Conclusions

- Quantum interference among helicities exists
- Completely model-independent method to study spin
- Should be demonstrable in the existing LEP-II and Tevatron data
- particularly useful near threshold when other spin correlations are not very prominent
- Really works if full reconstructable
- partial reconstruction can be used as well

Conclusions

- Quantum interference among helicities exists
- Completely model-independent method to study spin
- Should be demonstrable in the existing LEP-II and Tevatron data
- particularly useful near threshold when other spin correlations are not very prominent
- Really works if full reconstructable
- partial reconstruction can be used as well
- Can be used to decipher new physics!

