THE WIMPLESS MIRACLE

Jonathan Feng, UC Irvine 6 June 2008, Anticipating the LHC, KITP Santa Barbara

Based on Feng and Kumar, arXiv:0803.4196, and work in progress with

Jason Kumar

Louie Strigari

Huitzu Tu

Haibo Yu

LHC EXPECTATIONS

- 2 reasons to anticipate something rather than nothing (beyond the Higgs):
- Gauge hierarchy problem
- Dark matter
 - Qualitative: Ockham's razor
 - Quantitative: WIMPs give the right thermal relic density
 - Less robust: Other production mechanisms, candidates possible
 - More robust: Independent of notions of naturalness
- WIMPs motivate many experimental searches
 - Colliders: missing energy
 - Dark matter searches: focused on masses around $m_W \sim 100 \text{ GeV}$

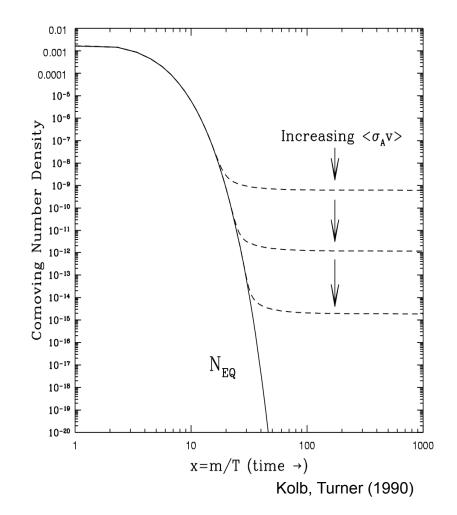
Xerxes Tata's talk

START OVER

- What do we really know about dark matter?
 - All solid evidence is gravitational
 - Also solid evidence *against* strong and EM interactions
- A reasonable 1st guess: dark matter has no SM gauge interactions, i.e., it is *hidden*
 - Hidden sectors: distinguished history and recent interest

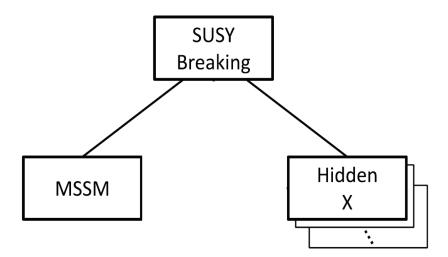
Lee, Yang (1956); Gross, Harvey, Martinec, Rohm (1985) Schabinger, Wells (2005); Patt, Wilczek (2006); Strassler, Zurek (2006); Georgi (2007); Kang, Luty (2008) March-Russell, West, Cumberbatch, Hooper (2008); McDonald, Sahu (2008); Kim, Lee, Shin (2008); Krolikowski (2008); Foot (2008); many others

- What one (seemingly) loses
 - The WIMP miracle
 - Predictivity
 - Non-gravitational signals


THE WIMP MIRACLE

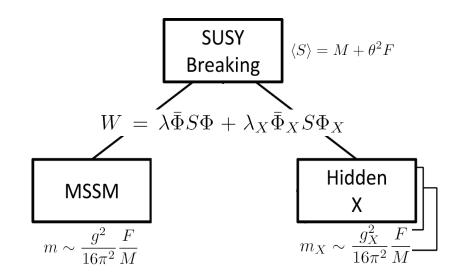
- WIMPs naturally freeze out with the desired relic density
- More explicitly:

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$


 $(g_X,\,m_X)\sim (g_{\mathbb W},\,m_{\mathbb W}) \twoheadrightarrow \Omega_X\sim \Omega_{\mathsf{DM}}$

Note: Ω_X, not n_X, appears above;
m_X enters through σ and dimensional analysis

HIDDEN SECTORS


- Can we obtain something like the WIMP miracle, but with hidden DM? Need some structure.
- Consider standard GMSB with one or more hidden sectors
- Each hidden sector has its own gauge groups and couplings

THE WIMPLESS MIRACLE

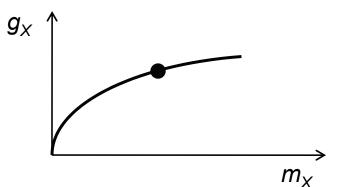
Feng, Kumar (2008)

Particle Physics

Superpartner masses, interaction strengths depend on gauge couplings Cosmology

$$\frac{m_X}{g_X^2} \sim \frac{m}{g^2} \sim \frac{F}{16\pi^2 M}$$

$$\label{eq:Omega} \begin{split} \Omega \text{ depends only on the} \\ \text{SUSY Breaking sector:} \\ \Omega_{\text{X}} \thicksim \Omega_{\text{WIMP}} \thicksim \Omega_{\text{DM}} \end{split}$$

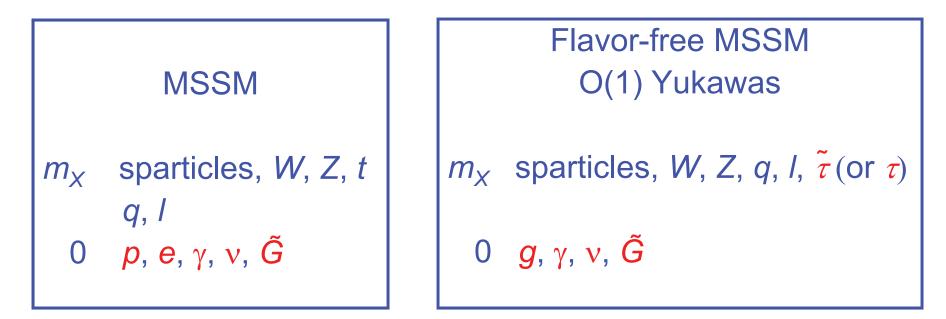

Any hidden particle with mass ~ m_X will have the right thermal relic density (for any m_X)

WIMPLESS DARK MATTER

• The thermal relic density constrains only one combination of g_X and m_X

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

• These models map out the remaining degree of freedom



 This framework decouples the WIMP miracle from WIMPs, gives a new class of candidates with WIMP pedigree, but with a range of masses/couplings, e.g.:

 $10^{-3} \lesssim g_X \lesssim 3$ 10 MeV $\lesssim m_X \lesssim 10$ TeV

STABILITY

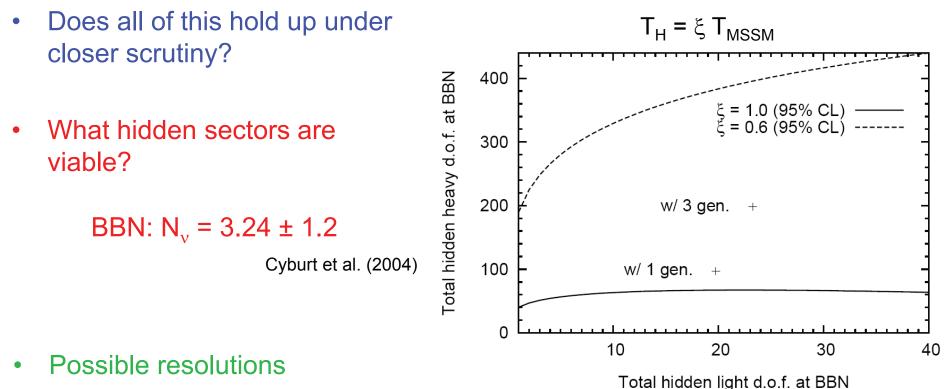
• This requires that an m_X particle be stable. Can one be?

 If the hidden sector is a flavor-free MSSM, a natural NLSP candidate, the stau (or tau), would be stabilized by charge conservation. No bounds from hidden sea water, etc.

AN ASIDE: SUSY FLAVOR AND DARK MATTER

- Generically in SUSY there is tension between flavor and dark matter solutions
 - Flavor: small gravity effects \rightarrow light gravitino
 - DM: neutralino LSP \rightarrow heavy gravitino
- The standard thermal gravitino is no longer viable
 - $Ω_{\tilde{G}} h^2 ≈ 1.2 (m_{\tilde{G}} / keV)$
 - $-m_{\tilde{G}}$ > 2 keV; DM can't be too hot

Pagels, Primack (1982)


Viel et al.; Seljak et al. (2006)

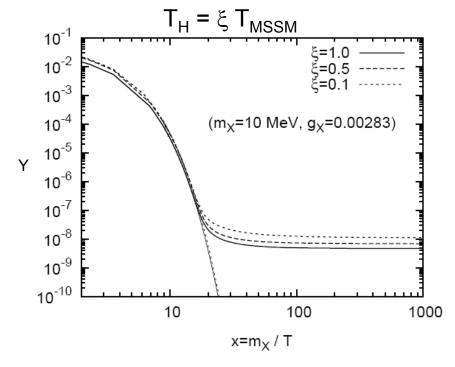
• WIMPless DM provides one resolution (there are others)

Han, Hempfling (1997); Baltz, Murayama (2003); Ibe, Kitano (2006); Feng, Smith, Takayama (2007)

CONCRETE MODELS

Feng, Tu, Yu (2008)

- Model building: g_{*H} < g_{*MSSM}
- Cosmology: Hidden = MSSM or similar, but hidden sector reheats to lower temperature

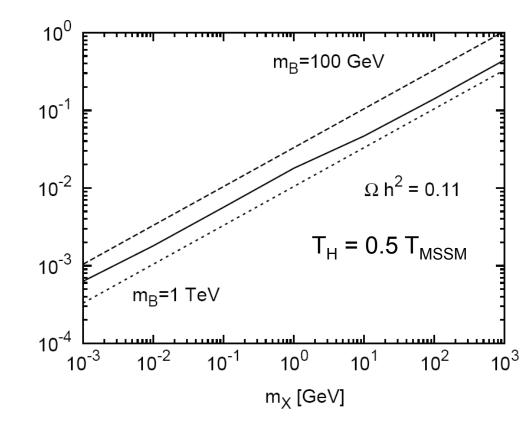

RELIC DENSITIES IN COLDER HIDDEN SECTORS

The hidden Boltzmann equat	tion:
$\frac{dn}{dt} = -3Hn - \left\langle \sigma v \right\rangle \left[n^2 - \right.$	$n_{\rm eq}^2$

All sectors contribute to H

 $- <_{\sigma}v$ thermally-averaged over T_H

- Consider a hidden sector with
 - flavor-free MSSM
 - 1 generation
 - $\tilde{\tau}$ WIMPless candidate
 - $\tilde{\tau} \tilde{\tau} \rightarrow \gamma \gamma$, γZ (all are hidden particles)

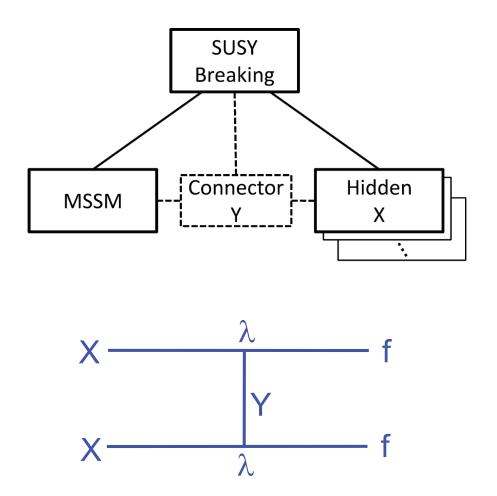


Feng, Tu, Yu (2008)

• Minimal impact : $\langle \sigma v \rangle = \sigma_0 + \sigma_1 v^2 + ...$, low T only suppresses subdominant P-wave contributions

RELIC DENSITIES IN COLDER HIDDEN SECTORS

- Numerically solve hidden Boltzmann equation for various (g_X, m_X)
- The parameters that give the correct relic density are also those that give weakscale MSSM masses.
- The dimensional analysis is confirmed in this concrete example



Feng, Tu, Yu (2008)

DETECTION

Feng, Kumar, Strigari (2008)

- So far, WIMPless DM has no observable consequences (other than gravitational)
- But we can add connectors with both MSSM and hidden charges; e.g., bifundamentals motivated by intersecting brane models
- Y particles mediate both annihilation to and scattering with MSSM particles

EXAMPLE

• Suppose the connectors are chiral Y multiplets, interacting through

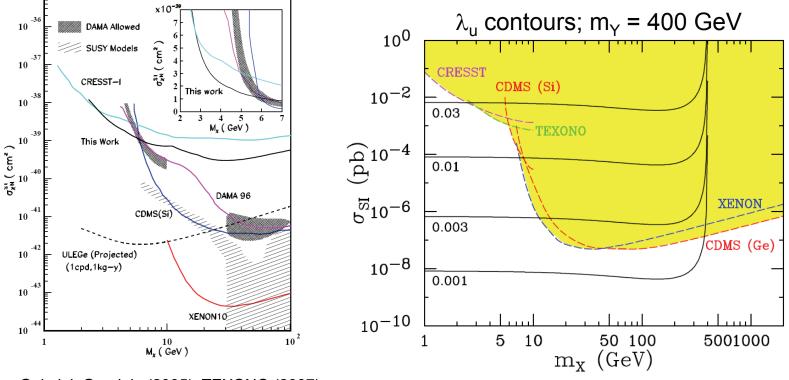
$$\mathcal{L} = \lambda_f X \bar{Y}_{f_L} f_L + \lambda_f X \bar{Y}_{f_R} f_R + m_{Y_f} \bar{Y}_{f_L} Y_{f_R}$$

- Y particles get mass from both MSSM and hidden gauge-mediation, so $m_Y \sim \max(m_W, m_X)$
- Does annihilation through Y's destroy the relic density properties? No, annihilation to MSSM is subdominant, as long as $\lambda_f < g_W$.
- Y's are subject to 4th generation constraints from collider direct searches, precision electroweak, Yukawa perturbativity. For 4th generation quarks,

$250 \text{ GeV} < m_{Y} < 500 \text{ GeV}$

Kribs, Plehn, Spannowsky, Tait (2007); Fok, Kribs (2008)

SIGNATURES

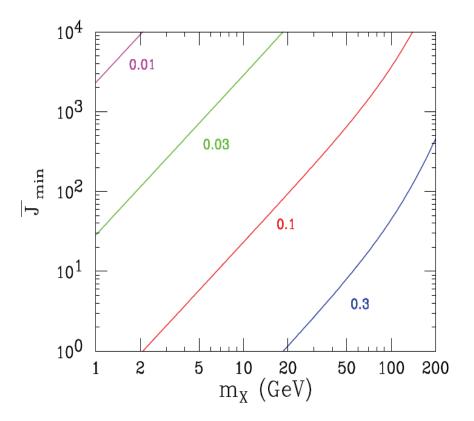

- DM is under investigation in ~100 experiments around the world. Many hints of DM have been reported
 - DAMA
 - HEAT
 - HESS

. . .

- INTEGRAL
- WMAP haze

• Most are not naturally explained by WIMPs. What about WIMPless DM?

DIRECT DETECTION



Gelmini, Gondolo (2005); TEXONO (2007)

 WIMPless DM can have very large cross sections, and masses from MeV to 10 TeV, explain DAMA

INDIRECT DETECTION

- WIMPless DM predicts constant Ω for all m
- But n ~ 1/m, and so indirect rates ~ n² are greatly enhanced for light DM (annihilation cross sections are determined by λ, not g)
- GLAST will be sensitive to ~GeV to 10 GeV WIMPless DM, even for smooth halos with J~1 (not so for WIMPs)

LHC SIGNALS

- The WIMPless DM scenario motivates unusual LHC phenomenology of GMSB + 4th generation. Many effects:
 - Conventional GMSB spectrum with GMSB signals (prompt photon, multi-leptons, etc.)
 - But also pair production YY → XX f f, "gravity-mediated" missing energy signal
 - Higgs mass as high as 300 GeV
 - gg \rightarrow h enhanced by \sim 10 from 4th generation in loop
 - Higgs portal
 - Enhanced, viable electroweak baryogenesis

Kribs, Plehn, Spannowsky, Tait (2007); Fok, Kribs (2008)

SUMMARY

- Early days
- WIMPless dark matter
 - Relic density: $\Omega \sim 0.1$
 - Mass: MeV to 10 TeV
 - Hidden gauge couplings: 10⁻³ to 1
- WIMP pedigree with potential for new signals
 - Direct detection
 - Indirect detection
 - LHC
 - Cosmology