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Motivation
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According to our simulating friends, the Universe is lumpy. Galaxies
and clusters are full of substructure.

Substructure in galaxies can be probed using strong and possibly
weak (higher order lensing).

Agreement between observations and simulations unclear.

Need to carefully look for evidence of substructure in lens galaxies
and compare with predictions from simulations.

Baryons are crucial here!!!



Lensing by a simulated galaxy

Lensing by a simulated galaxy

e What flux anomalies do we expect from a “typical” galaxy? (Bradat
et al. 2004)

Matthias Steinmetz K(x) = Z(éo?)
GRAPESPH ACDM Smoothingbusing Delaunay Tesselation

Lens properties using FFT



Lensing by a simulated galaxy

Dealaunay Tesselation

e Fully adaptive and parameter free - neither size nor shape of
smoothing “kernel” are considered a parameter.

e If we work in M dimensions, each cell consists of 1 + M points, W; is
the volume of all cells belonging to point /.

e Density estimate at each point (Schaap and van de Weygaert 2000)
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Surface mass density maps
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Magnification maps
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Lensing by a simulated galaxy
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Cusp Relation

8, (arcsec)

|A—B+C|
¢ = ATBrC

o ~ 4 kpc

Expe

8, (arcsec)

6.5

0.6

0.5

0.4

T
I
0.3

T
L
0.2

0.1




Cusp Relation
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Cusp Relation
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Cusp Relation
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Are these signatures unique?
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N-body simulations:

Mao et al. (2004) Predicted fraction of substructures too high
compared with observations (single galaxy)

Amara et al. (2006) Lower level of cusp violations and no swallowtails
than what we observed.

Maccio et al. (2006) Not enough substructure to reproduce the
observed high numbers of discrepancies observed in the flux ratios of
multiply lensed quasars.

Analytic models:

Chen et al. (2003) Str along the line-of-sight only a minor effect.
Oguri (2005) The environmental effects can partly explain the high
incidence of anomalous flux ratios.

Rozo et al. (2006) The average magnification is lower (higher) than
that in smooth models for positive-parity (negative-parity) images.



Are these signatures unique?
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N-body simulations:

Mao et al. (2004) Predicted fraction of substructures too high
compared with observations (single galaxy)

Amara et al. (2006) Lower level of cusp violations and no swallowtails
than what we observed.

Maccio et al. (2006) Not enough substructure to reproduce the
observed high numbers of discrepancies observed in the flux ratios of
multiply lensed quasars.

Analytic models:

Chen et al. (2003) Str along the line-of-sight only a minor effect.
Oguri (2005) The environmental effects can partly explain the high
incidence of anomalous flux ratios.

Rozo et al. (2006) The average magnification is lower (higher) than
that in smooth models for positive-parity (negative-parity) images.
This is a big mess!!!



GLAMROC

Gravitational Lens Adaptive Mesh Raytracing of Catastrophes by
Edward A. Baltz / KIPAC
Use tractable lens “atoms” - all derivatives are done analytically

e Cored isothermal spheres, NFW profiles, point lenses
e Ellipticity and boxiness in isopotentials (arbitrary quartic in x,y)

Arbitrary number of lens atoms on arbitrary number of planes

e Going from 1 to 2 lens planes is a huge mess
e Going from 2 to N lens planes is simple

Up to 6th derivative of (potential = time delay) can be calculated
o Covers all “elementary” catastrophes: critical curve (2nd derivative),
cusp (3rd derivative), swallowtail (4th derivative), etc.
o Convergence, shear (2nd derivative), flexion (3rd derivative)

Adaptive mesh refinement improves resolution where needed

e Based on (image plane) magnification to resolve critical curves
e Based on (source plane) surface brightness for efficient lens modeling

Expc



GLAMROC

e Simulated galaxy, based on simulations from Taylor and Babul (2005)




GLAMROC

e Simulated galaxy, based on simulations from Taylor and Babul (2005)




Summary

EKpc

CDM substructure does affect flux ratios, causing flux ratio
anomalies, however its effects are far more subtle that first thought of.

Detailed comparisson with simulations have not been performed yet.
How to proceed:

Detail analysis of simulated galaxies (remember: baryons are
important, and halos are NOT self similar)

Look for unusual lenses (higher order catastrophes; beyond folds and
cusps).
Higher order “weak” lensing (flexion, etc. Irwin and Shmakova 2005)

Remember this is important, lensing is a unique tool to study
substructure in galaxies at high redshifts!!



NA-CDM Crises

e Two ‘“crises” challenging the standard picture of galaxy formation and
the ACDM paradigm...
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NA-CDM Crises

e Two ‘“crises” challenging the standard picture of galaxy formation and
the ACDM paradigm...

@ We need better simulations!!
® We need more datall
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SWhite in search of dwarfs

EKpc

Take seven simulated halos, with the redshifts 0.96, 0.41, 0.31, 0.34,
0.63, 0.76, 0.87 and velocity dispersions 160 < o < 220km s~1

Don't forget their baryons!

Determine the properties: flux ratios, cusp relation, saddle point
demagnification, etc.

Compare: MG 041440534, B0712+472, PG 1115+080, B1422+231,
B1608+656, B1933+-503, and B20454-265.

How well can we measure substructure fraction, Hubble constant,
etc.?
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