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Kaplan’s Fermions

Continuum 5D fermions:

JY(x,s) + v505¢(x,s) + m(s)y(x,s) =0

The zero mode:
o = dT(s)uyr  Ysug = Fug [+£85 + m(s)] = (s) = 0
and

ot (s) = eI

IS the only normalizable state



Domain Wall Fermions for QCD

Formulate the 5D Wilson fermions with mass M # 0 in se[l, Lg]

A

qL) q(R)

For —2 < M < 0O, light chiral modes are bound on the walls.
Only one Dirac fermion without doublers remains.

A

" ) Fermion mass is introduced by
explicitly coupling m of the
/ walls. [Shamir,Furman & Shamir]



Ward Identity

q(x)
q(x)

Ls Ls
amp(2) = Pry(e, 2+ 1) + Pro(e, )

PL¢($7 O) + PRw(ﬂ% Lg— 1)
@(ma Ls— 1>PL + E(ma O)PR

— Lg — . Lg
qmp(x) — ¢(33, ?)PL + w(xa E _I_ 1)PR

Ls—1 Ls—1

J&(x) = g(z)mys5q(x) J,(2) = Tmp(@) T ysamp(x)  Ap(@) = 3 sign (s -
s=0

)

° Nim (Jg,(z)0) =0 Exact chiral symmetry at finite lattice spacing

s— OO




Overlap Fermions

Narayanan - Neuberger

e Develop Kaplan’s idea e W) = (0_|0g)

e Derive the 4D effective action

1 1

e The overlap formula DY, = 5+ S 15ElsD(Ms)] and M-<0

: 1
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Ginsparg-Wilson Relation

ve

Renormalization group transformation:

ve

e

e

ve

e

o—5'1®] _ / D e~ S191-T1®:d]

ve

ve

ve

The fixed point operator satisfies (massless case):

5D + Dvys = 2D~ D

Luscher symmetry: oW = v5(1 — 2D)W oW = Wng

e The overlap satisfies the GW relation
e What about the DWEF?




Is the GW relation enough?

Take the overlap formula with Mc>0

1 1
(o)v — 5 + 5755[75D(M5)]

[t satisfies the GW relation

1 1
v5 D + D~y =5+ 55[75D(M5)] + 5755[75D(M5)]’75 = 2D~ D

It does not have chiral modes!
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DWF and the GW relation

DWEF are at hart the same as the overlap

It’s easy to show that

1+m 1—m

_|_

Dov(m) = — >

v5& 1, [v5D(Ms)]

as D" (Ms)

bMs) = 2 + a5 DV (Ms5)

1 _ 1 1
The physical quark propagator is Depr =1 (DOU - 1>

This is just a particular approximation of the sign
function

[Ths(1 + ) — T145(1 — 2)
L1+ z) + 1151 — )

Er.(x) =
The GW relation
1
2758 =755 [1 - 5L52] = 5 Doy 4+ Doyys — 203,75 D,

The violation is positive for L. even



The DWF approximation

10°

102
[Ths(1 + =) — [1k(1 — 2)

[ (1 + o) + 1151~ 2) 10”
107°

E.(z) =

— 1078
1010
10712

107

%

10—16 . . |

e No flexibility in the approximation
o Only L, can be changed and hope for the best....



Changing the gauge action

1073 L

mrep/\/E

Wilson
Symanzik
1074 - Iwapgaki

= dbw?

10_5 | | | | | | | |
10 20

e DBW2 gauge action works for quenched (2GeV cutof?)
e Dynamical with 1.7GeV cutoff only a factor of 2 better



Why do we still work with DWE?

e For the overlap it seems there are a lot of tricks one can
play (Zolotarev, continued fractions, double pass, Nested
iteration prec. etc.)

e The physical picture is compelling for DWF (Axial current)

e The 5D action is local. New algorithms can exploit this
feature.

e Dynamical: Easy force computation. (other 5D methods
have this feature too)

e Computing the inverse is easier than computing the matrix
and then inverting!

o A little flexibility would not hurt!



The Mobius Fermions
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The Mobius overlap

With a little high school algebra we get

Dov(m) O 0 --+ ««v ... 0]
—(1-m T~ Ea/2H1 L 21 = 1 0 0 - - 0
_(1 - m;T_LS/2+2 ;—Lsiji;,;s; o 1 0o --- --- 0
D g+ (1
dwf(1) —(1=m) =gz 0 0 - 1 0.
()T s 0 e 0 1
[P Py 0 7 10 0 - 0]
T-LstIp, 1 0 0 ---
P = . . . L = T Ls+ M+ 0 1 . : _ LA
. . . . . . M+ — P_|_ . mP_ .
o0 Py : 0
-0 P STOML 0 0 1 Hy = ~5D
1+m 1—m
Doy(m) = > + > v5& 1. [vs D(Ms)]
T-Ls —1 (14 Hp)%s — (1 — Hp)Es b D, . N
- - 5 + Cy = o

* T T-Lot 1 (1+ Hp)ls + (1 — Hy)Ls
e Overlap:
e DWE:

=2, a5=0 (Borici)

a=1, a:=1 (Shamir)



What do we gain?
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Ward Identity

a(x) = P(@,0)+ Py, Lo — 1)
q(aj) — @(CE‘, Ls — 1>D—P— + E(wa O)D—P—I—
amp(@) = Poy(a, 2+ 1) + Pya(e, )

., Lg —,  Ls
amp(x) = w<x,5>D_P_+w<x,5+ 1)D_Py

Jg(z) = q(2)7y5q(x) J5q(x) = qmp(x) T v5qmp(T)

e The axial current is now more complicated




Chiral symmetry breaking

D (AL (2)0) = 2 my (J&(2)O) + 2(JE,(2)0) + i{520)

The size of (J5,(x)O) measures chiral symmetry breaking

Let’s use for the operator O = J£(0)

Assume at long distances J5, ~ J§

The proportionality constant is the residual mass

Myes =

Zx,y<<]gq(ya t)Jg“(% 0))

Z:U,y<‘]g(y7 t)Jg(fva O)> >t

Zmin



Mres

Residual Mass vs time
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Residual mass and the GW

1
258 L =55 [1 - 5L52} = 5 Doy 4 Doyys — 205,75 D,

e The violation of the GW relation is related to the residual
mass

Syl (0)Je())  TIALGE
Myes = —

Za:,y<Jg(y)Jg(a7)> TrGr




Even-odd preconditioning

SOSSETNIAE

4D Even - Odd preconditioning
_ Qee Qeo _ Qee 0 1 0 1 0 1 Q;el Qeo
QDWF_(Qoe Qoo)_( 0 Qoo)X(Qo—olQoe 1)X(O1_Q0_01Q06Q.3_61Qeo)x(0 1 )
e The mobius extra terms do not allow 5d even-odd preconditioning

For the 4d preconditioning the even-even and odd-odd are non-

trivial they do not depend on the gauge fields and can be inverted
with few extra flops



Residual Mass: Quenched

Shamir, M5=1.8, a;=1.00 + |
Borici, Ms=1.5, 2:=0.00 —®@)— |

a5=1.50 — A

D ag=1.25 —l—
L =12 9 as=1.00 —wy— |
as=0.75 —@—

mres

i
0.001 mﬁﬁﬁ;ﬂ%

2000 2500 3000 3500 4000 4500 5000 5500 6000
Number of Dirac applications

¢ Quenched 2GeV cutoff
e Almost 40% speedup
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o Change the scale as we change L,

e Speed up approaches a factor of infinity!
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What’s best for Dynamical

Define a metric for efficiency
Ask: What is the cost for given residual mass
Tested Mobius and Continued Fraction 5D algorithms

Use RBC dynamical light mass configurations
(25cnfs Mn~SOOMeV)

Open question: How small chiral symmetry can we tolerate?

We do not have to have exact chiral symmetry to do QCD



Residual Mass: dynamical
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Mobius and Zolotarev

An other approximation to the sign function

HsLs(l + asx) — Hgs(l — o)
HSLS(l + asx) + HSLS(l — usx)

Er(z) =

The error in the approximation

H£8(1 + asx) HsLs(l — QsT)
T55(1 + asz) + TE (1 — o)

11— €2, =

The error is zero for x=¥1/a,

Zolotarev: Find o so that the approximation is optimal
in a given interval



1—g2
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e Single zeros produce negative error.

e The residual mass is not positive!

e Possibility of exceptional configurations for m>0
e The problem can be fixed: Use double zeros



No free lunch theorem

The Zolotarev Mobius operator is badly conditioned

The cost of the calculation explodes if any of the o > 5

Zolotarev is impractical for Mobius
We need to find a preconditioner that solves the problem

We do have some ideas we are exploring....



Improved HMC for DWF

Two objectives:

e Achieve good accuracy of

Increasing L, also causes acceptance problems

5
HMC scales with V54d

e Avoid down as we approach the chiral limit

This seems most important



Current algorithms

What has been done?

¢ Fleming - Vranas and RBC (old)

v v _¢TPT DTl Ddlwf Pe - gbvaPTD;gvDP”qupv
detD}, Dy, = [ oo dop 1o - dof) e T

e Dawson and RBC (new)

_¢T7)TDTU Tl 1 Dy P
detDivDov — /d¢0 dr. e Pl Paws




New HMC algoritms

Try to accelerate the approach to the chiral limit

1 _¢TL1¢¢TMP1 1M¢
det[MTM] = det[MTM | x det [MTMMM] /D¢D¢€ v M e

e Luscher SAP algorithm
e Hasenbusch algorithm

e Hopefully new DWF preconditioners can be found...



Conclusions

e Dynamical chiral fermions with good chiral symmetry
require enormous resources

e We need every possible algorithmic trick we can get

H. Nueberger: My main message in this paper is that in the
context of dynamical fermion simulations there are many
alternatives and tricks that have not been yet explored, and it might
be a waste to exclusively focus on the most literal numerical
implementations of the recent theoretical advances on the topic of
chiral symmetry on the lattice.

e We are working on improving HMC and preconditioners
for the DWF operators

e Future looks promising!



