’t Hooft-Polyakov Monopoles on the Lattice

Arttu Rajantie

DAMTP and Churchill College
University of Cambridge

Rajantie, in progress
Introduction

- 't Hooft-Polyakov monopoles
 - Pointlike magnetic charges
 - Georgi-Glashow model: SU(2)+adjoint Higgs

- Confinement in QCD and Yang-Mills
 - Monopole condensation?
 - Abelian projection?

- Predicted by all GUTs
 - Produced in the early universe
 - Greatly diluted by inflation
 - Constantly searched, none found yet
 - (or possibly one on Valentine’s Day 1982 (Cabrera 1982))

- Theoretical interest
 - SUSY models
 - Dualities
Topological Solitons

- Localized, topologically stable field configurations
- Order parameter ϕ at spatial infinity $|\vec{r}| \rightarrow \infty$:
 - Finite energy \Rightarrow Must approach vacuum
 - Possibly different vacuum in different directions
 - Defines a map from S^{d-1} to the vacuum manifold $\mathcal{M} \cong G/H$
- Solitons exist if $\pi_n(G/H) \neq 0$ for $n < d$
 - $n = 0$: Domain walls (kinks)
 - $n = 1$: Vortices (strings)
 - $n = 2$: Monopoles
 - Winding number $N_W \in \pi_n(G/H)$
- Convenient theoretical probes of phase properties
 - Dualities
 - Confinement \leftrightarrow Monopole condensation? (’t Hooft, Mandelstam)
Classical Kink

- 1+1D real scalar field

\[\mathcal{L} = \frac{1}{2} \dot{\phi}^2 - \frac{1}{2} \phi'^2 - \frac{\lambda}{4} (\phi^2 - v^2)^2 \]

- Two vacua \(\phi = \pm v \Rightarrow \pi_0 = \mathbb{Z}_2 \), winding number 0 or 1
- Kink: Choose \(\phi(\pm \infty) = \pm v \)
- Exact stationary solution: \(\phi(x) = v \tanh(\lambda v^2/2)^{1/2} x \)

Energy \(M_{\text{kink}} = \frac{2}{3} \sqrt{2\lambda v^3} \)
Continuum:

\[\mathcal{L} = -\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} + \text{Tr} [D_\mu, \Phi] [D_\nu, \Phi] - m^2 \text{Tr} \Phi^2 - \lambda (\text{Tr} \Phi^2)^2 \]

- SU(2) gauge field \(A_\mu = A_\mu^a \sigma^a / 2 \), where \(a \in \{1, 2, 3\} \)
- Adjoint Higgs field \(\Phi = \Phi^a \sigma^a / 2 \)

Euclidean lattice action (lattice spacing = 1)

\[\mathcal{L}_E = 2 \sum_\mu \left[\text{Tr} \Phi(\vec{x})^2 - \text{Tr} \Phi(\vec{x}) U_\mu(\vec{x}) \Phi(\vec{x} + \hat{\mu}) U_\mu^\dagger(\vec{x}) \right] + \frac{2}{g^2} \sum_{\mu < \nu} \left[2 - \text{Tr} U_{\mu\nu}(\vec{x}) \right] + m^2 \text{Tr} \Phi^2 + \lambda (\text{Tr} \Phi^2)^2 \]

- Link variables \(U_\mu \in \text{SU}(2), U_\mu \sim \exp(igA_\mu) \)
- Plaquette \(U_{\mu\nu} = U_\mu(x) U_\nu(x + \hat{\mu}) U_\mu^\dagger(x + \hat{\nu}) U_\nu^\dagger(x) \)
\(m^2 < 0 \): Symmetry breaking SU(2) \(\rightarrow \) U(1)

- Vacuum manifold \(\{ \text{Tr} \Phi^2 = v^2 = |m^2|/\lambda \} \cong S^2 \)
- \(\pi_2(S^2) = \mathbb{Z} \Rightarrow \) Monopoles (\textquoteleft t Hooft, Polyakov)

\[
\Phi^a(\vec{r}) = \frac{r_a}{gr^2} H(gvr)
\]
\[
A_i^a(\vec{r}) = -\epsilon_{aij} \frac{r_j}{gr^2} [1 - K(gvr)]
\]

Broken phase: U(1) symmetry \(\Rightarrow \) Electrodynamics

- Field strength \(F_{\mu\nu} = \text{Tr} \hat{\Phi} F_{\mu\nu} + (2i g)^{-1} \text{Tr} \hat{\Phi} [D_\mu, \hat{\Phi}][D_\nu, \hat{\Phi}] \)
 - Unitary gauge \(\hat{\Phi} = \sigma_3 \): Reduces to \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \)
- Magnetic field \(B_i = \frac{1}{2} \epsilon_{ijk} F_{jk} \):
 - If \(\Phi \neq 0 \), then \(\vec{\nabla} \cdot \vec{B} = 0 \)
 - For a smooth configuration \(\vec{\nabla} \cdot \vec{B}(\vec{x}) = (4\pi/g) \sum_i \pm \delta(\vec{x} - \vec{x}_i) \)
 \(\Rightarrow \) Magnetic monopoles with charge \(\pm 4\pi/g \)
Magnetic Field on the Lattice

Discretized version of $\mathcal{F}_{\mu\nu}$:
- Define projection $\Pi_+ = \frac{1}{2}(1 + \hat{\Phi})$
- Projected link $u_\mu(x) = \Pi_+(x)U_\mu(x)\Pi_+(x + \hat{\mu})$
- U(1) field strength tensor

\[\alpha_{\mu\nu} = \frac{2}{g} \arg \text{Tr} \ u_\mu(x)u_\nu(x + \hat{\mu})u_\mu^\dagger(x + \hat{\nu})u_\nu^\dagger(x) \]

Magnetic field $\hat{B}_i = \frac{1}{2}\epsilon_{ijk}\alpha_{jk}$
- Magnetic charge in a lattice cell
\[\hat{\rho}_M = \sum_i \left[\hat{B}_i(x + \hat{i}) - \hat{B}_i(x) \right] \in (4\pi/g)\mathbb{Z} \]
\[\Rightarrow \text{Stable monopoles} \]
Classical Monopole Mass

- Continuum result
 \[M = (4\pi m_W/g^2)f(m_H/m_W) \]
 \[f(x) \approx 1 + x/2 + (x^2/2)(\ln x + \sqrt{2}) \]
 (Kirkman & Zachos 1981)

- Example: \(\lambda = 0.1, g = 1/\sqrt{5} \)

- Finite size effects
 - Coulomb force \(|m^2| \gg 1/L^2|\):
 \[\Delta E(L) \approx 11.0/g^2 L \]
 - Symmetry restoration
 \[\Delta E(L) \approx V(0)L^3 = (\lambda v^4/4)L^3 \]

- Infinite-volume extrapolation:
 \[f(x) \approx 1.10 \]
Perturbative Quantum Corrections

- Find lowest energy eigenvalue $E(N_W)$ with a given winding number N_W
 - Soliton mass $M = E(1) - E(0)$

- Perturbative approach: (Dashen et al. 1974)
 - Loop expansion around classical solution $\phi_0(x)$
 - Write $\phi(t, x) = \phi_0(x) + \delta(t, x)$
 - Quantize $\delta(t, x)$: Field in a x-dependent potential
 - Order δ^2: Harmonic potential $U(\delta) = \frac{1}{2} V''(\phi_0(x))\delta^2$
 - Diagonalize:
 \[
 \left[-\vec{\nabla}^2 + V''(\phi_0(x)) \right] \delta_k(x) = \omega_k^2 \delta_k(x)
 \]
 \Rightarrow Frequencies ω_k
 - One-loop level: $\Delta E = \sum_k (\omega_k^1 - \omega_k^0)/2$
 - Higher-order corrections: Difficult
One-loop Kink Mass

Equation for ω_k:

$$\left[-\frac{\partial^2}{\partial x^2} + \lambda v^2 \left(3 \tanh^2 \sqrt{\frac{\lambda v^2}{2x}} - 1 \right) \right] \delta_k(x) = \omega_k^2 \delta_k(x)$$

Can be solved exactly:

$\omega_0^2 = 0$, $\omega_1^2 = 3\lambda v^2 / 2$ and a continuum $\omega_q^2 = (q^2 / 2 + 2)\lambda v^2$

Caveats: Zero mode, measure for q, UV regularisation

Result: (Dashen et al. 1974)

$$M_{\text{kink}} \approx \frac{2}{3} \sqrt{2\lambda} v^3 + \left(\frac{1}{2\sqrt{6}} - \frac{3}{\sqrt{2\pi}} \right) \sqrt{\lambda} v$$
Leading-log Monopole Mass

- Same principles, many extra complications
 - Gauge fixing
 - Two coupled fields
 - Higher dimensionality
 - Renormalisation issues
- Only leading log in the $m_H/m_W \to 0$ limit has been calculated (Kiselev&Selivanov 1988)

$$M = \frac{4\pi m_W}{g^2} \left(1 + \frac{g^2}{8\pi^2} \ln \frac{m_H^2}{m_W^2} + O(g^2) \right)$$

- Infrared divergence as $m_H/m_W \to 0$
- Related to Coleman-Weinberg effect:
 $$m_H/m_W \gg g$$ due to quantum fluctuations
- Difficult to test: Need small $m_H/m_W \to 0$
 $$\Rightarrow$$ Small $g \Rightarrow$ Small quantum correction
Non-perturbative Soliton Masses

- Soliton creation and annihilation operators ψ^\dagger and ψ (Kadanoff&Ceva 1971)
 - $\langle 0 | \psi^\dagger(t_1) \psi(t_2) | 0 \rangle \propto e^{iM(t_2-t_1)}$

- Path integral formulation (integrate over φ with $N_W = 0$)

 $e^{-M(t_2-t_1)} \propto Z^{-1} \int_0 D\varphi \psi^\dagger(t_1) \psi(t_2) e^{-S[\varphi]}$

- Easy to do in simple cases: Kinks, vortices

- Less straightforward for monopoles:
 - Magnetic field $\Rightarrow \psi$ necessarily non-local
 - Compact QED: Duality maps to an integer-valued gauge theory (Polley&Wiese)
 \Rightarrow Becomes much simpler

- Non-Abelian theories: Several attempts (Frohlich&Marchetti, Di Giacomo et al.)
 - Idea: Add a classical monopole configuration between t and $t + \delta t$
 (Dirac string with an endpoint, BPS monopole . . .)
 - Boundary conditions problematic
Removing Start and Endpoints

Take $t_2 \rightarrow t_1 + T$, where T is temporal size

- $\langle \psi^\dagger(t_1) \psi(t_2) \rangle \rightarrow Z_1/Z_0 = \exp(-MT)$
- $M = -\ln(Z_1/Z_0)/T$

Define Z_1 using appropriate boundary conditions

Monte Carlo: Cannot calculate Z_1 or Z_0 directly
- Only expectation values: Derivatives or differences
Mass Derivatives

- \(M = -\frac{\ln Z_1/Z_0}{T} \), but cannot calculate \(Z_1 \) or \(Z_0 \) directly
- Calculate derivative with respect to some parameter \(\lambda \):
 \[
 \frac{\partial M}{\partial \lambda} = \frac{1}{T} \left(\frac{1}{Z_0} \frac{\partial Z_0}{\partial \lambda} - \frac{1}{Z_1} \frac{\partial Z_1}{\partial \lambda} \right)
 \]
- Express in terms of expectation values:
 \[
 \frac{1}{Z_{NW}} \frac{\partial Z_{NW}}{\partial \lambda} = -\frac{1}{Z_{NW}} \int_{NW} D\varphi \left(\frac{\partial S}{\partial \lambda} \right) e^{-S} = -\left\langle \frac{\partial S}{\partial \lambda} \right\rangle_{NW}
 \]
- Can be calculated with Monte Carlo simulations
- Integrate to obtain \(M(\lambda) \)
- Start in symmetric phase: No integration constant
Non-perturbative Kink Mass

- Comparison of one-loop, operator and twist results (Ciria&Tarancon 1994)
 - Twist: Simply antiperiodic b.c. $\phi(L) = -\phi(0)$

- Non-perturbative results agree with each other
- Twist has much smaller errors
 - Also true for monopoles in compact QED (Vettorazzo&de Forcrand 2004)
- Slightly above one-loop result
• Fix the field to the classical solution at the boundary (Smit&van der Sijs 1994, Cea&Cosmai 2000)
• Boundary effects?
Twisted Boundary Conditions

Most common choice: Periodic boundary conditions

- No boundary effects: Consequence of translation invariance
- Magnetic Gauss law $\vec{\nabla} \cdot \vec{B} = \rho_M \Rightarrow$ Magnetic charge $Q_M = 0$

Translation invariance only requires periodicity up to symmetries

- C-periodic: (Kronfeld&Wiese 1991)

 \[
 U_\mu(x + N\hat{j}) = U_\mu^*(x) = \sigma_2 U_\mu(x) \sigma_2 \\
 \Phi(x + N\hat{j}) = \Phi^*(x) = -\sigma_2 \Phi(x) \sigma_2
 \]

 - Charge conjugation: Avoid Gauss law problem
 - Restricts Q_M to even values \Rightarrow Use this to define Z_0

- Twisted b.c.:

 \[
 U_\mu(x + N\hat{j}) = \sigma_j U_\mu(x) \sigma_j \\
 \Phi(x + N\hat{j}) = -\sigma_j \Phi(x) \sigma_j
 \]

 - Locally gauge equivalent to C-periodic - but not globally!
 - Always gives odd $Q_M \Rightarrow$ Use this to define Z_1 (JHEP 2000)
Derivative of Monopole Mass

- Choose \(m^2 \) as the integration variable
 - Start at high enough \(m^2 \) ⇒ Symmetric phase
 - Measure \(\langle \text{Tr}\Phi^2 \rangle_{NW} \) at many values of \(m^2 \) using lattice Monte Carlo
 - Integrate:

\[
M = L^3 \int_{m_0^2}^{m^2} dm^2 \left(\langle \text{Tr}\Phi^2 \rangle_1 - \langle \text{Tr}\Phi^2 \rangle_0 \right)
\]

- Better: Finite differences

\[
M = \frac{1}{T} \sum_n \left(\langle e^{\Delta m^2 T L^3 \text{Tr} \Phi^2} \rangle_{1,m_n^2} - \langle e^{\Delta m^2 T L^3 \text{Tr} \Phi^2} \rangle_{0,m_n^2} \right)
\]
Derivative of Monopole Mass: Results

\[- \frac{dM}{dm} \]

Arttu Rajantie
Direct Calculation

- Problems: – Must go through a phase transition
 – Errors accumulate

- Direct way of calculating M at given m^2

 - Gauge transformation \rightarrow C-periodic except

 \[
 U_3(t, x, L, L - 1) = -U_3^*(t, x, 0, L - 1) \\
 U_1(t, L - 1, y, L) = -U_1^*(t, L - 1, y, 0) \\
 U_1(t, L - 1, L, z) = -U_1^*(t, L - 1, 0, z)
 \]
Direct Calculation

- Problems: – Must go through a phase transition
 – Errors accumulate

- Direct way of calculating M at given m^2
 - Gauge transformation \rightarrow C-periodic except

$$
U_3(t, x, L, L - 1) = -U_3^*(t, x, 0, L - 1)
$$
$$
U_1(t, L - 1, y, L) = -U_1^*(t, L - 1, y, 0)
$$
$$
U_1(t, L - 1, L, z) = -U_1^*(t, L - 1, 0, z)
$$

- Change of variables

$$
U_3(t, x, L, L - 1) \rightarrow -U_3(t, x, L, L - 1)
$$
$$
U_1(t, L - 1, y, L) \rightarrow -U_1(t, L - 1, y, L)
$$
$$
U_1(t, L - 1, L, z) \rightarrow -U_1(t, L - 1, L, z)
$$
Direct Calculation

- Problems: – Must go through a phase transition
 – Errors accumulate

- Direct way of calculating M at given m^2
 - Gauge transformation
 - Change of variables

$$Z_1 = \int_{C\text{--per}} DU_\mu D\Phi \exp(-S - \Delta S) = \langle \exp(-\Delta S) \rangle_0 Z_0$$

where

$$\Delta S = \beta \sum_{t,x=0}^{L-1} [\text{Tr } U_{23}(x, y_0, z_0) + \text{Tr } U_{13}(x_0, y, z_0) + \text{Tr } U_{12}(x_0, y_0, z)]$$

- Three orthogonal 't Hooft lines crossing each other at (x_0, y_0, z_0)
Direct Calculation

- Problems: – Must go through a phase transition
 – Errors accumulate

- Direct way of calculating M at given m^2
 - Gauge transformation
 - Change of variables

\[
Z_1 = \int_{C_{\text{per}}} DU_\mu D\Phi \exp(-S - \Delta S) = \langle \exp(-\Delta S) \rangle_0 Z_0
\]

where

\[
\Delta S = \beta \sum_{t,x=0}^{L-1} \left[\text{Tr} \ U_{23}(x, y_0, z_0) + \text{Tr} \ U_{13}(x_0, y, z_0) + \text{Tr} \ U_{12}(x_0, y_0, z) \right]
\]

- Three orthogonal ’t Hooft lines crossing each other at (x_0, y_0, z_0)
Non-Integer Twists

- Difficult to calculate $\langle \exp(-\Delta S) \rangle$: Poor overlap
- Define for $\epsilon \in [0, 1]$

\[
Z_\epsilon = \int_{C-\text{per}} DU_\mu D\Phi \exp(-S - \epsilon \Delta S')
\]

- Unphysical for non-integer ϵ
- Still well-defined

- Differentiate with respect to ϵ

\[
\frac{dM}{d\epsilon} = -\langle \Delta S' \rangle_\epsilon
\]
Non-Integer Twists

\[\beta = 18, \ x = 0.35, \ y = -0.5, \ L = 16 \]

From 3D simulation (PRD65(2002))
Renormalisation

- Comparison with classical results?
 - m^2, λ, g bare couplings
 - Must renormalise

- Scheme dependence

- Perturbative renormalisation
 - Monopole mass only to the same order in perturbative expansion

- Non-perturbative approach:
 - Measure three different quantities (say g, m_H, m_W)
 - Use them to fix the classical couplings

- For the moment, simply ignore logs and finite terms
 - Shift m^2 axis by a constant amount
Comparison with Classical Mass

- m^2 shifted by 0.268
- Quantum masses generally lower (renormalisation?)
Effective Couplings

- Classical simulation \(\Rightarrow \) Finite size effect \(\Delta E(L) = 11.0/g^2 L \)
- Fit quantum finite size effect to determine \(g_R \)
 - Gives \(g_R \approx 0.44(5) \) vs bare \(g \approx 0.447 \)
- Masses \(m_H \) and \(m_W \)
 - from correlation functions
 - Difficult to measure \(m_W \)
- Expectations: As \(m^2 \rightarrow m_c^2 \)
 - Triviality: \(\lambda_R \rightarrow 0 \)
 - Asymptotic freedom: \(g_R \) becomes large
 - \(m_H/m_W = \sqrt{\lambda_R/g_R} \rightarrow 0 \)
 - \(M/m_W = (4\pi/g_R^2)f(m_H/m_W) \rightarrow 0? \)
 - Will \(W^\pm \) decouple?
 \(\Rightarrow \) Charged scalar + photon (+ neutral scalar)
Near the critical point, $M_{\text{vort}} \propto (m_c^2 - m^2)^{0.671 \pm 0.038}$.

- Vortex becomes the lightest particle: $m_\gamma, m_s \propto (m_c^2 - m^2)^{1/2}$
- Dual to complex scalar field theory?

Numerical evidence: XY model critical exponent
Speculation: Asymptotic Duality in Georgi-Glashow Model?

<table>
<thead>
<tr>
<th>Georgi-Glashow model</th>
<th>Abelian Higgs model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs phase</td>
<td>Coulomb phase</td>
</tr>
<tr>
<td>electric/magnetic field</td>
<td>magnetic/electric field</td>
</tr>
<tr>
<td>magnetic monopole</td>
<td>charged scalar</td>
</tr>
<tr>
<td>massless photon</td>
<td>massless photon</td>
</tr>
<tr>
<td>Confining phase</td>
<td>Higgs phase</td>
</tr>
<tr>
<td>confinement</td>
<td>superconductivity</td>
</tr>
<tr>
<td>confining string</td>
<td>vortex line</td>
</tr>
</tbody>
</table>

- Puts the ’t Hooft-Mandelstam dual superconductor idea on firm footing
- Same duality is known to exist in supersymmetric theories
Hints for Monopole Duality

- Phase diagram for $\lambda \to \infty$ (Greensite et al. 2004)

- Limit $\kappa \to \infty = \text{compact QED}$
 - Exactly dual to 4D frozen superconductor (Peskin 1978)
 - Frozen superconductor $= \lambda, \kappa \to \infty$ limit of Abelian Higgs model
 - Duality maps electric and magnetic field to each other

- Will duality survive near critical point even for finite λ, κ?
Conclusions

- Monopole mass using twisted boundary conditions
 - Well defined even on the lattice
 - No cooling needed
 - No reference to any specific field configs

- Integrating the derivative
 - Derivative with respect to m^2
 - Straightforward
 - Growing errors
 - Derivative with respect to non-integer twist ϵ
 - Non-integer values unphysical
 - Direct measurement of M at given couplings

- Comparison with classical result
 - Significant correction in terms of bare couplings
 - Renormalisation: Perturbative/Non-perturbative

- Critical behaviour: Duality?