
QCDOC: A highly scalable architecture
for lattice QCD simulations

Tilo Wettig

University of Regensburg

Outline

1. Why custom-built machines?

2. QCDOC architecture

3. Performance figures

4. Summary and outlook

Thanks to IBM for $10k of conference sponsorship

KITP Santa Barbara, 30 March 2005

1. Why custom-built machines?

I dynamical fermions are expensive:

ECFA scaling estimate

cost (in Flops) to generate a single independent gauge field
configuration (dynamical Wilson fermions, unimproved)

Cost ≈ 1.7× 107 V4.55/4

(
1
a

)7.25 (
1

mps

)2.7

. . . and we want V→∞, a→ 0, m→ 0

I staggered fermions somewhat cheaper
I chiral fermions (overlap, DWF) ∼100× more expensive

−→ one of the “grand challenge problems” in HPC

Lines of attack

I better analytical understanding of the various limits
I improvement program (a→ 0)
I effective chiral theories (m→ 0)
I finite-V calculations; ε-regime of QCD (V →∞)

I better algorithms
I bigger and better (super-) computers

lattice QCD needs massively parallel machines
(global volume distributed over many processors)

Periodically mapped communication

(nearest neighbour) operation
Communication required for local

Unit Cell associated with one site

2-D example:
16× 16 global volume
8× 8 local volume
2× 2 processor grid

I main numerical problem: inversion of fermion (Dirac) matrix,
typically done using conjugate gradient algorithm
−→ need efficient matrix–vector routines and global sums

I on a parallel machine, communication between processors slows
down the calculation; two main factors:
1. communication bandwidth
2. communication latency

I for small local volumes (“hard scaling”):
I surface-to-volume ratio large→ high commun./comput. ratio
I latency is dominating factor

I ideally, communication can be overlapped with computation:
communication latency hiding

I measure of success: sustained vs. peak performance

I Scalability: keep physical problem size fixed and increase number
of processing nodes — how does sustained performance scale?
(It typically goes down drastically.)

Typical scaling behavior of clusters (measured by P. Boyle)

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
flo

ps

V

GM−1d
GM−2d
MPI−2d

Local
No Communication

Myrinet’s Own Comms Routines

MPI (over Myrinet)

←− # of processors ∝ 1/Vlocal

2-d grid has twice the bandwidth, but performance roughly the same
−→ latency dominated

I PC clusters:
I see Robert Edwards’ talk yesterday
I cost-effective, easy to build
I useful for wide range of applications and for experimentation
I don’t scale well to very large numbers (>1000 or so) of processors

I commercial supercomputers:
I very expensive
I aimed at general-purpose market
I typically switched clusters of SMP’s

if not, networks are often underpowered or not scalable (crossbar)
−→ limited scalability

I exceptions: BlueGene/L, Cray XT3, others?

I special-purpose machines can exploit the problem characteristics
in hardware (extreme example: Grape)

for lattice QCD:
I predictable memory access→ prefetch
I mainly nearest-neighbor communications
I communications predictable and repetitive

−→ better scalability

The QCDOC project

I successor to QCDSP (and earlier Columbia machines)
I collaboration of IBM Research (Yorktown Heights), Columbia

University, RIKEN-BNL Research Center, UKQCD, SciDAC
I design based on an application-specific integrated circuit (ASIC)
I optimized for communications requirements of lattice QCD
I scalable to several 10,000 nodes with sustained performance of
∼50% even on very small local volumes (Vlocal = 24)

I best price/performance ratio in the industry
I low power consumption and heat dissipation
I standard software environment

another special-purpose lattice QCD machine (not discussed here):
apeNEXT by INFN/DESY/Paris-Sud
(successor to APE1, APE100, APEmille)

The QCDOC design team

Columbia: Norman Christ, Calin Cristian, Zhihua Dong, Changhoan
Kim, Xiaodong Liao, Goufeng Liu, Bob Mawhinney, Azusa Yamaguchi

IBM: Dong Chen, Alan Gara, Minhua Liu, Ben Nathanson

RIKEN-BNL: Shigemi Ohta (KEK), Tilo Wettig (Yale→ Regensburg)

UKQCD: Peter Boyle, Mike Clark, Bálint Joó

SciDAC: Chulwoo Jung, Kostya Petrov

QCDOC

CMOS7SF

20 TFLOP

QCDSP

0.6 TFLOP

ASCI-Q

30 TFLOP

PPC 630

ASCI-
White

10 TFLOP

PPC 604
ASCI-Blue

3.3TFLOP

P
e
rf

o
rm

a
n

ce

ArchitectureSpecific General

BG/L

CU-11
180 TFLOP

BG/C

CU-11

1000 TFLOP

BG/ P

CU-08

1000 TFLOP

Supercomputing LandscapeSupercomputing Landscape

from http://www.research.ibm.com/bluegene

Current hardware status

I 14,720 nodes UKQCD machine at Edinburgh: running/testing
I 13,308 nodes RBRC machine at BNL: running/testing
I 14,140 nodes DOE machine at BNL: running/being assembled
I 2,432 nodes Columbia machine: running/testing
I 448 nodes Regensburg machine: just arrived

machines will be run 24x7 for five years
work horse for lattice QCD in the US and the UK

2. Architecture of the QCDOC supercomputer

I MIMD machine with distributed memory (in SPMD mode)
I system-on-a-chip design (QCDOC = QCD on a chip)
I QCDOC ASIC combines existing IBM components and

QCD-specific, custom-designed logic:
I 500 MHz (nominal) PowerPC 440 core with 64-bit, 1 GFlop/s FPU
I 4 MB on-chip memory (embedded DRAM), accessed through

custom-designed prefetching eDRAM controller (PEC)
I nearest-neighbor serial communications unit (SCU) with aggregate

bandwidth of 12 Gbit/s

I separate networks for physics communications and auxiliary tasks
I price/performance ratio < 1 US-$ per sustained MFlop/s
I very low power consumption, no serious cooling issues

All this on ∼ (12 mm)2 of silicon, consuming ∼ 5 W

The QCDOC ASIC

(0.18µ process, using low-alpha lead)

ASIC Floorplan

EDRAM (288 x 32k macro) EDRAM (288 x 32k macro)

FPU

440 Core Macro

EDRAM (288 x 32k macro)

EDRAM (288 x 32k macro)

EDRAM keepout box
Useable Silicon Box

ECC and data capture

Prefetch Buffers (128 x 96)
and
Write buffers (128 x 48)

440 PowerPC processor core

I 32-bit implementation of IBM Book E architecture
I out-of-order dual-issue, superscalar, pipelined (7 stages), . . .
I 32kB instruction and 32kB data caches (64-way associative,

partitionable, lockable)
I hardware memory protection through TLB
I 3 PLB master interfaces: instruction read, data read, data write
I complete control through JTAG interface
I connected to 64-bit, 1 GFlop/s IEEE floating point unit

QCDOC networks

I fast “physics” network
I 6-dimensional torus with nearest-neighbor connections

(allows for machine partitioning in software)
I LVDS serial links using IBM HSSL transceivers with 2×500 Mbit/s

bandwidth per link (total bandwidth per node 12 Gbit/s)
I custom-designed Serial Communications Unit (SCU)

I runs all links concurrently
I direct memory access
I packets have 8-bit header and 64-bit data
I error detection and correction

(ECC on header, parity on data, hardware checksum counters)
I low-latency passthrough mode for global operations
I reconfigurable partition interrupts and barriers

I communications performance ∼ memory performance

I global tree network for three independent interrupts
I Ethernet network (switched) for booting, I/O, control

Serial Communications Unit (SCU)

Control

X

M
U

Passthru

REC DMA

64

8

encode

8

8

8

control

SND REC UNIT

SEND REGISTER

DMA
Control

DMA
Control

SND DMA

U

X

M

In
te

rf
ac

e
P

L
B

 S
la

ve

Registers

REC DMA
Instruction

SRAM

SND DMA
Instruction

SRAM

Arbiter

P
L

B
 M

as
te

r
In

te
rf

ac
e

64

HSSL

control

control

rec buf
192−bit

snd buf
192−bit

decode control

HSSL

RECEIVE REGISTER

Communications latency hiding for global sums (1-d example)

FIFO

DMA

Memory

Pass
Thru

R
cv

Sn
d

PLB

Node 1 Node 2 Node N

I receive unit gets number from neighbor in − direction
→ puts it in FIFO and simultaneously passes it on to neighbor in

+ direction
I FIFO is flushed when PLB access is available
I after N− 1 shifts, all numbers from this dimension are in memory
I add done by CPU

→ software and bus latency only paid once instead of N times
broadcast of final result not necessary

HSSL training byte 0x5A

Serial communications data eye

Software environment

I custom OS (QOS) written by Peter Boyle
I qdaemon on host machine

(csh-like user interface, program load, integrated diagnostics)
I boot kernel download via Ethernet/JTAG to I/D cache in parallel
I run kernel download via Ethernet
I single application process→ no scheduler-induced slowdown
I user-space access to communications hardware→ low latency

I standard compile chains: gcc/g++ and xlc/xlC
I QMP library for inter-node message passing (Chulwoo Jung)

(SciDAC cross-platform library for lattice QCD)
I CPS, MILC, and Chroma/QDP++ lattice QCD codes ported
I Bagel automatic assembly generator (Peter Boyle)
I MPI port by BNL (Robert Bennett)
I SciDAC software: see Robert Edwards’ talk yesterday
I RISCWatch for diagnostics

3. Performance figures

Three relevant areas:

1. Memory system performance

2. Network performance

3. Application code performance

all of the following courtesy of Peter Boyle

Memory system performance

Streams benchmark (measures sustainable memory bandwidth)

Compiler/Options/Code Comment Memory MB/s
xlc -O5 -qarch=440 vanilla source Edram 747

gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 vanilla source Edram 747
gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 __builtin_prefetch Edram 1024

Assembly auto-generated asm Edram 1670
xlc -O5 -qarch=440 vanilla source DDR 260

gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 vanilla source DDR 280
gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 __builtin_prefetch DDR 447

Assembly auto-generated asm DDR 606

Network performance

0

200

400

600

800

1000

10 100 1000 10000

M
B

/s

Packet size bytes

QCDOC Multi−wire Ping Ping bandwidth (420MHz)

11 BiDi links
10 BiDi links

9 BiDi links
8 BiDi links
7 BiDi links
6 BiDi links
5 BiDi links
4 BiDi links
3 BiDi links
2 BiDi links
1 BiDi link

Infiniband PMB (NCSA)
Myrinet PMB (NCSA)

TCP PMB (NCSA)

I multi-link bandwidth as good as CPU-memory bandwidth
I single-link ping pong obtains 50% of maximum bandwidth on

32-byte packets

 0.1

 1

 10

 100

 10 100 1000 10000

La
te

nc
y

(m
icr

os
ec

on
ds

)

Packet size bytes

QCDOC Single−wire latency (420MHz)

Single direction
Multi−directional effective latency

Global reduction
I hardware-acceleration for “all-to-all” along an axis
I CPU performs arithmetic

global sum→ 300ns× 1
2

D(Nproc)
1/D

I 1024-node global sum in less than 16µs (12k nodes in 20-30µs)

1

10

1 10 100 1000 10000

G
lo

ba
ls

um
(u

s)

Number of processors

1d global sum
2d global sum
3d global sum
4d global sum
5d global sum
6d global sum

Application code performance

various discretizations, 44 local volume

Action Nodes Sparse matrix CG performance
Wilson 512 44% 39%
Asqtad 128 42% 40%
DWF 512 46% 42%

Clover 512 54% 47%

Scalability

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

G
ig

af
lo

ps

processors

Scaling on 16^4 to 1024 nodes

Edram threshold

Ideal Edram
Clover scaling

Ideal DDR

I 164 on 1024 nodes (equivalent to 324 on 16k nodes)
I expect 4 to 5 TFlop/s sustained on large machines

4. Summary and outlook

I QCDOC provides
I exceptional scalability

(due to network performance and hardware assist for global sums)
I standard software environment
I best value for the money:

< 1 US-$ per sustained MFlop/s at 5 TFlop/s on a non-trivial problem

I low power and low cost allows large systems to be built
I hardware status (again)

I current clock speed is 420 MHz (hope to improve this)
I 14,720 nodes UKQCD machine at Edinburgh: running/testing
I 13,308 nodes RBRC machine at BNL: running/testing
I 14,140 nodes DOE machine at BNL: running/being assembled
I 2,432 nodes Columbia machine: running/testing
I 448 nodes Regensburg machine: just arrived

Future possibilities

I cannot beat IBM in general-purpose market (BG/P, BG/Q)
I clusters are catching up fast
I exploiting the special-purpose character can still give us an edge
I must aim at 10× in price/performance over IBM and/or clusters

goal is $0.01/MFlop/s or $10 million/PFlop/s (sustained)
I currently exploring a number of possibilities

I custom ASIC
I commercial chip plus companion ASIC
I standard protocols (Hypertransport, . . .)
I . . .

I ASIC NRE costs exploding→ high risk
I Cell looks interesting

I 300 engineers
I 0.09/0.065µ process
I 50∼80 W at 4 GHz
I 1 (new) PowerPC CPU with 32 kB L1 caches (D/I)
I 8 FPU’s with 256 kB of private memory
I each FPU can do 4 FMADD’s per cycle
→ 256 GFlop/s at 4 GHz (single precision)

I double precision ∼10× slower
I 512 kB on-chip shared L2 cache
I 25 GB/s memory bandwidth (Rambus XDR)
I 76.8 GB/s (44.8 in, 32 out) I/O bandwidth (Rambus FlexIO)
I Can memory subsystem keep the FPU’s fed?
I Programming model?

