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1. Why custom-built machines?

I dynamical fermions are expensive:

ECFA scaling estimate

cost (in Flops) to generate a single independent gauge field
configuration (dynamical Wilson fermions, unimproved)

Cost ≈ 1.7× 107 V4.55/4
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)2.7

. . . and we want V→∞, a→ 0, m→ 0

I staggered fermions somewhat cheaper
I chiral fermions (overlap, DWF) ∼100× more expensive

−→ one of the “grand challenge problems” in HPC



Lines of attack

I better analytical understanding of the various limits
I improvement program (a→ 0)
I effective chiral theories (m→ 0)
I finite-V calculations; ε-regime of QCD (V →∞)

I better algorithms
I bigger and better (super-) computers



lattice QCD needs massively parallel machines
(global volume distributed over many processors)

Periodically mapped communication

(nearest neighbour) operation
Communication required for local

Unit Cell associated with one site

2-D example:
16× 16 global volume
8× 8 local volume
2× 2 processor grid



I main numerical problem: inversion of fermion (Dirac) matrix,
typically done using conjugate gradient algorithm
−→ need efficient matrix–vector routines and global sums

I on a parallel machine, communication between processors slows
down the calculation; two main factors:
1. communication bandwidth
2. communication latency

I for small local volumes (“hard scaling”):
I surface-to-volume ratio large→ high commun./comput. ratio
I latency is dominating factor

I ideally, communication can be overlapped with computation:
communication latency hiding

I measure of success: sustained vs. peak performance

I Scalability: keep physical problem size fixed and increase number
of processing nodes — how does sustained performance scale?
(It typically goes down drastically.)



Typical scaling behavior of clusters (measured by P. Boyle)
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2-d grid has twice the bandwidth, but performance roughly the same
−→ latency dominated



I PC clusters:
I see Robert Edwards’ talk yesterday
I cost-effective, easy to build
I useful for wide range of applications and for experimentation
I don’t scale well to very large numbers (>1000 or so) of processors

I commercial supercomputers:
I very expensive
I aimed at general-purpose market
I typically switched clusters of SMP’s

if not, networks are often underpowered or not scalable (crossbar)
−→ limited scalability

I exceptions: BlueGene/L, Cray XT3, others?

I special-purpose machines can exploit the problem characteristics
in hardware (extreme example: Grape)

for lattice QCD:
I predictable memory access→ prefetch
I mainly nearest-neighbor communications
I communications predictable and repetitive

−→ better scalability



The QCDOC project

I successor to QCDSP (and earlier Columbia machines)
I collaboration of IBM Research (Yorktown Heights), Columbia

University, RIKEN-BNL Research Center, UKQCD, SciDAC
I design based on an application-specific integrated circuit (ASIC)
I optimized for communications requirements of lattice QCD
I scalable to several 10,000 nodes with sustained performance of
∼50% even on very small local volumes (Vlocal = 24)

I best price/performance ratio in the industry
I low power consumption and heat dissipation
I standard software environment

another special-purpose lattice QCD machine (not discussed here):
apeNEXT by INFN/DESY/Paris-Sud
(successor to APE1, APE100, APEmille)



The QCDOC design team

Columbia: Norman Christ, Calin Cristian, Zhihua Dong, Changhoan
Kim, Xiaodong Liao, Goufeng Liu, Bob Mawhinney, Azusa Yamaguchi

IBM: Dong Chen, Alan Gara, Minhua Liu, Ben Nathanson

RIKEN-BNL: Shigemi Ohta (KEK), Tilo Wettig (Yale→ Regensburg)

UKQCD: Peter Boyle, Mike Clark, Bálint Joó

SciDAC: Chulwoo Jung, Kostya Petrov
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Current hardware status

I 14,720 nodes UKQCD machine at Edinburgh: running/testing
I 13,308 nodes RBRC machine at BNL: running/testing
I 14,140 nodes DOE machine at BNL: running/being assembled
I 2,432 nodes Columbia machine: running/testing
I 448 nodes Regensburg machine: just arrived

machines will be run 24x7 for five years
work horse for lattice QCD in the US and the UK



2. Architecture of the QCDOC supercomputer

I MIMD machine with distributed memory (in SPMD mode)
I system-on-a-chip design (QCDOC = QCD on a chip)
I QCDOC ASIC combines existing IBM components and

QCD-specific, custom-designed logic:
I 500 MHz (nominal) PowerPC 440 core with 64-bit, 1 GFlop/s FPU
I 4 MB on-chip memory (embedded DRAM), accessed through

custom-designed prefetching eDRAM controller (PEC)
I nearest-neighbor serial communications unit (SCU) with aggregate

bandwidth of 12 Gbit/s

I separate networks for physics communications and auxiliary tasks
I price/performance ratio < 1 US-$ per sustained MFlop/s
I very low power consumption, no serious cooling issues

All this on ∼ (12 mm)2 of silicon, consuming ∼ 5 W



The QCDOC ASIC

(0.18µ process, using low-alpha lead)



ASIC Floorplan
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440 PowerPC processor core

I 32-bit implementation of IBM Book E architecture
I out-of-order dual-issue, superscalar, pipelined (7 stages), . . .
I 32kB instruction and 32kB data caches (64-way associative,

partitionable, lockable)
I hardware memory protection through TLB
I 3 PLB master interfaces: instruction read, data read, data write
I complete control through JTAG interface
I connected to 64-bit, 1 GFlop/s IEEE floating point unit



QCDOC networks

I fast “physics” network
I 6-dimensional torus with nearest-neighbor connections

(allows for machine partitioning in software)
I LVDS serial links using IBM HSSL transceivers with 2×500 Mbit/s

bandwidth per link (total bandwidth per node 12 Gbit/s)
I custom-designed Serial Communications Unit (SCU)

I runs all links concurrently
I direct memory access
I packets have 8-bit header and 64-bit data
I error detection and correction

(ECC on header, parity on data, hardware checksum counters)
I low-latency passthrough mode for global operations
I reconfigurable partition interrupts and barriers

I communications performance ∼ memory performance

I global tree network for three independent interrupts
I Ethernet network (switched) for booting, I/O, control
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Communications latency hiding for global sums (1-d example)
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I receive unit gets number from neighbor in − direction
→ puts it in FIFO and simultaneously passes it on to neighbor in

+ direction
I FIFO is flushed when PLB access is available
I after N− 1 shifts, all numbers from this dimension are in memory
I add done by CPU

→ software and bus latency only paid once instead of N times
broadcast of final result not necessary



















HSSL training byte 0x5A



Serial communications data eye



Software environment

I custom OS (QOS) written by Peter Boyle
I qdaemon on host machine

(csh-like user interface, program load, integrated diagnostics)
I boot kernel download via Ethernet/JTAG to I/D cache in parallel
I run kernel download via Ethernet
I single application process→ no scheduler-induced slowdown
I user-space access to communications hardware→ low latency

I standard compile chains: gcc/g++ and xlc/xlC
I QMP library for inter-node message passing (Chulwoo Jung)

(SciDAC cross-platform library for lattice QCD)
I CPS, MILC, and Chroma/QDP++ lattice QCD codes ported
I Bagel automatic assembly generator (Peter Boyle)
I MPI port by BNL (Robert Bennett)
I SciDAC software: see Robert Edwards’ talk yesterday
I RISCWatch for diagnostics





3. Performance figures

Three relevant areas:

1. Memory system performance

2. Network performance

3. Application code performance

all of the following courtesy of Peter Boyle



Memory system performance

Streams benchmark (measures sustainable memory bandwidth)

Compiler/Options/Code Comment Memory MB/s
xlc -O5 -qarch=440 vanilla source Edram 747

gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 vanilla source Edram 747
gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 __builtin_prefetch Edram 1024

Assembly auto-generated asm Edram 1670
xlc -O5 -qarch=440 vanilla source DDR 260

gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 vanilla source DDR 280
gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 __builtin_prefetch DDR 447

Assembly auto-generated asm DDR 606



Network performance
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Global reduction
I hardware-acceleration for “all-to-all” along an axis
I CPU performs arithmetic

global sum→ 300ns× 1
2

D(Nproc)
1/D

I 1024-node global sum in less than 16µs (12k nodes in 20-30µs)
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Application code performance

various discretizations, 44 local volume

Action Nodes Sparse matrix CG performance
Wilson 512 44% 39%
Asqtad 128 42% 40%
DWF 512 46% 42%

Clover 512 54% 47%



Scalability
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I 164 on 1024 nodes (equivalent to 324 on 16k nodes)
I expect 4 to 5 TFlop/s sustained on large machines



4. Summary and outlook

I QCDOC provides
I exceptional scalability

(due to network performance and hardware assist for global sums)
I standard software environment
I best value for the money:

< 1 US-$ per sustained MFlop/s at 5 TFlop/s on a non-trivial problem

I low power and low cost allows large systems to be built
I hardware status (again)

I current clock speed is 420 MHz (hope to improve this)
I 14,720 nodes UKQCD machine at Edinburgh: running/testing
I 13,308 nodes RBRC machine at BNL: running/testing
I 14,140 nodes DOE machine at BNL: running/being assembled
I 2,432 nodes Columbia machine: running/testing
I 448 nodes Regensburg machine: just arrived



Future possibilities

I cannot beat IBM in general-purpose market (BG/P, BG/Q)
I clusters are catching up fast
I exploiting the special-purpose character can still give us an edge
I must aim at 10× in price/performance over IBM and/or clusters

goal is $0.01/MFlop/s or $10 million/PFlop/s (sustained)
I currently exploring a number of possibilities

I custom ASIC
I commercial chip plus companion ASIC
I standard protocols (Hypertransport, . . . )
I . . .

I ASIC NRE costs exploding→ high risk
I Cell looks interesting





I 300 engineers
I 0.09/0.065µ process
I 50∼80 W at 4 GHz
I 1 (new) PowerPC CPU with 32 kB L1 caches (D/I)
I 8 FPU’s with 256 kB of private memory
I each FPU can do 4 FMADD’s per cycle
→ 256 GFlop/s at 4 GHz (single precision)

I double precision ∼10× slower
I 512 kB on-chip shared L2 cache
I 25 GB/s memory bandwidth (Rambus XDR)
I 76.8 GB/s (44.8 in, 32 out) I/O bandwidth (Rambus FlexIO)
I Can memory subsystem keep the FPU’s fed?
I Programming model?


