QCDOC: A highly scalable architecture
for lattice QCD simulations

Tilo Wettig
University of Regensburg

Outline

1. Why custom-built machines?
2. QCDOC architecture
3. Performance figures

4. Summary and outlook
Thanks to IBM for $10k of conference sponsorship

KITP Santa Barbara, 30 March 2005

1. Why custom-built machines?

» dynamical fermions are expensive:

ECFA scaling estimate

cost (in Flops) to generate a single independent gauge field
configuration (dynamical Wilson fermions, unimproved)

1 7.25 1 2.7
Cost ~ 1.7 x 107 V4554 [= -
a I‘Tbs

...andwewantV — oco,a— 0, m— 0

» staggered fermions somewhat cheaper
» chiral fermions (overlap, DWF) ~100x more expensive

— one of the “grand challenge problems” in HPC

Lines of attack

» better analytical understanding of the various limits
» improvement program (a — 0)
» effective chiral theories (m — 0)
» finite-V calculations; e-regime of QCD (V — o0)

» better algorithms

» bigger and better (super-) computers

lattice QCD needs massively parallel machines
(global volume distributed over many processors)

i_1 Unit Cell associated with one site

<> Communication required for local
(nearest neighbour) operation

Periodically mapped communication

THD HUn 2.5 example:
16 x 16 global volume

8 x 8 local volume
2 x 2 processor grid

main numerical problem: inversion of fermion (Dirac) matrix,
typically done using conjugate gradient algorithm
— need efficient matrix—vector routines and global sums

on a parallel machine, communication between processors slows
down the calculation; two main factors:

1. communication bandwidth
2. communication latency

for small local volumes (“hard scaling”):

» surface-to-volume ratio large — high commun./comput. ratio
» latency is dominating factor

ideally, communication can be overlapped with computation:
communication latency hiding

measure of success: sustained vs. peak performance

Scalability: keep physical problem size fixed and increase number
of processing nodes — how does sustained performance scale?
(It typically goes down drastically.)

Typical scaling behavior of clusters (measured by P. Boyle)

800 T
GM-1d —
. GM-2d —
No Communication MPI-2d —
700 - Local —]

600 Myrinet's Own Comms Routines

400 - MPI (over Myrinet)

Mflops

300 [q

200 q

100 - q

L L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
\%

«—— # of processors o< 1/Vigcal

2-d grid has twice the bandwidth, but performance roughly the same
— latency dominated

» PC clusters:

see Robert Edwards’ talk yesterday

cost-effective, easy to build

useful for wide range of applications and for experimentation

don't scale well to very large numbers (>1000 or so) of processors

vy vy VY

» commercial supercomputers:
> very expensive
» aimed at general-purpose market
» typically switched clusters of SMP’s
if not, networks are often underpowered or not scalable (crossbar)
— limited scalability
» exceptions: BlueGene/L, Cray XT3, others?

» special-purpose machines can exploit the problem characteristics
in hardware (extreme example: Grape)

for lattice QCD:
» predictable memory access — prefetch
» mainly nearest-neighbor communications
» communications predictable and repetitive
— better scalability

The QCDOC project

» successor to QCDSP (and earlier Columbia machines)

» collaboration of IBM Research (Yorktown Heights), Columbia
University, RIKEN-BNL Research Center, UKQCD, SciDAC

» design based on an application-specific integrated circuit (ASIC)
» optimized for communications requirements of lattice QCD

» scalable to several 10,000 nodes with sustained performance of
~50% even on very small local volumes (Viocas = 2%)

» best price/performance ratio in the industry
» low power consumption and heat dissipation
» standard software environment

another special-purpose lattice QCD machine (not discussed here):
apeNEXT by INFN/DESY/Paris-Sud
(successor to APE1, APE100, APEmille)

The QCDOC design team

Columbia: Norman Christ, Calin Cristian, Zhihua Dong, Changhoan
Kim, Xiaodong Liao, Goufeng Liu, Bob Mawhinney, Azusa Yamaguchi

IBM: Dong Chen, Alan Gara, Minhua Liu, Ben Nathanson
RIKEN-BNL: Shigemi Ohta (KEK), Tilo Wettig (Yale — Regensburg)
UKQCD: Peter Boyle, Mike Clark, Balint Jo6

SciDAC: Chulwoo Jung, Kostya Petrov

v

Supercomputmg Landscape

Performance

\ —

CU-11

< umumm\
,,TN

QCDSP
0.6 TFLOP

7'\

QCDOC
CMOSTSF
20 TFLOP

\

BG/L
CU-11
180 Hl()l

Y

‘ 3 1000 TFLOP
7 £

’\/\'//
m P /:/7
TN

CU-08

ASCIQ

30 TFLOP

PPC 630
ASCI-
‘White
10 TFLOP

PPC 604
ASCI-Blue
3.3TFLOP

Specific

Architecture

General

from http://www.research.ibm.com/bluegene

Current hardware status

14,720 nodes UKQCD machine at Edinburgh: running/testing
13,308 nodes RBRC machine at BNL: running/testing

14,140 nodes DOE machine at BNL: running/being assembled
2,432 nodes Columbia machine: running/testing

448 nodes Regensburg machine: just arrived

vV vV v v Y

machines will be run 24x7 for five years
work horse for lattice QCD in the US and the UK

v

v

2. Architecture of the QCDOC supercomputer

MIMD machine with distributed memory (in SPMD mode)
system-on-a-chip design (QCDOC = QCD on a chip)

» QCDOC ASIC combines existing IBM components and

v

v

v

QCD-specific, custom-designed logic:
» 500 MHz (nominal) PowerPC 440 core with 64-bit, 1 GFlop/s FPU
» 4 MB on-chip memory (embedded DRAM), accessed through
custom-designed prefetching eDRAM controller (PEC)
» nearest-neighbor serial communications unit (SCU) with aggregate
bandwidth of 12 Gbit/s
separate networks for physics communications and auxiliary tasks
price/performance ratio < 1 US-$ per sustained MFlop/s

very low power consumption, no serious cooling issues

All this on ~ (12 mm)? of silicon, consuming ~5W

The QCDOC ASIC

8 Gbyte/sec 1 Gflops
4 MBytes of e 2.6 GByte/sec Interface
Memory/Processor Double Precision
Embedded DRAM Bandwidth RISC Processor it 2t 02

2.6 GByte/sec

EDRAM/SDRAM

24 Link DMA
Communication
Control

Bootable
Ethernet
Interface

100 Mbit/sec
Fast Ethernet

[18M Library Component

sideband

[custom Designed Logic Signals

Complete Processor Node
on a Single QCDOC Chip

(0.18 process, using low-alpha lead)

ASIC Floorplan

v 29 v59 20is7 PR 10 es2seta

LM Faour
39K x 2% Xy = 368(L coo M
* Useable Silicon Box
Nx M xy EDRAM keepout box

/ FPU

EDRAM (288 x 32k macro)

440 Core Macro

: \ ECC ard data capture

Prefetch Buffers (128 x 96)
and

EDRAM (288 x 32k macro)
Vrite buffers (128 x 48)

EDRAM (288 x 32k macro) EDRAM (288 x 32k macro)

I
Temouy AETE o 039 i -k
v oS 67316

440 PowerPC processor core

>

32-bit implementation of IBM Book E architecture

» out-of-order dual-issue, superscalar, pipelined (7 stages), ...
» 32kB instruction and 32kB data caches (64-way associative,

vV v v v

partitionable, lockable)

hardware memory protection through TLB

3 PLB master interfaces: instruction read, data read, data write
complete control through JTAG interface

connected to 64-bit, 1 GFlop/s IEEE floating point unit

QCDOC networks

» fast “physics” network
» 6-dimensional torus with nearest-neighbor connections
(allows for machine partitioning in software)
» LVDS serial links using IBM HSSL transceivers with 2x500 Mbit/s
bandwidth per link (total bandwidth per node 12 Gbit/s)
» custom-designed Serial Communications Unit (SCU)

>
>
>
>

>

>

runs all links concurrently

direct memory access

packets have 8-bit header and 64-bit data

error detection and correction

(ECC on header, parity on data, hardware checksum counters)

low-latency passthrough mode for global operations
reconfigurable partition interrupts and barriers

» communications performance ~ memory performance
» global tree network for three independent interrupts
» Ethernet network (switched) for booting, I/O, control

[l || || ||scuLiNks

Serial Communications Unit (SCU)

REC DMA
—
 —
— REC DMA
rec buf —
155-bit — Instruction
 — SRAM
—
T T 7

control

control

RECEIVE REGISTER

SND DMA

snd buf

SND DMA
Instruction
SRAM
DMA
Control

Lol 192-bit

SEND REGISTER

control

g SNDRECUNIT

Passthru

Arbiter

PLB Master

H
&
@
o
3
T

Interface

Interface

Communications latency hiding for global sums (1-d example)

Bl o= 1B N p— —
st

» receive unit gets number from neighbor in — direction
— puts it in FIFO and simultaneously passes it on to neighbor in
+ direction
» FIFO is flushed when PLB access is available
» after N — 1 shifts, all numbers from this dimension are in memory
» add done by CPU

— software and bus latency only paid once instead of N times
broadcast of final result not necessary

\
\

4 W

_%‘\

NG
===\
-

t Mgg,\.

= Synopsys Waveform Viewer - TESTFIX.SUS 0w — [Untitled] [
File Edit Marker Golo View Options Window Help
Cle{e] s pfelen] #=(a] <[] w5 el
!IHHFIIJWHIWWIHJWHIHMW AR AR AT lﬂ T AT AR WFﬂl l
I il I ‘ L
Il |11 1L I |
o | — il 10
[M M 3 Rl
’” i T i it il THATE FHHE
o 715 I o IO I 1 O 5 I 7 1
‘ JLIIE NI [m U I L
d 1J|_[_lh WJLF_HH_ 1
= J]lL HJHI N1 R O
B OB WAAELSUEN sows [eonvz H ﬂ'yma b M s ¥ e fefeleiondf] oo Eﬁéiﬁ-ﬁi'ﬁ&éf,f- 0105
b R feferttE T TH==f e i
o nsason | T[] T N [[
- kI O e 13
S = e Gl [=
Ready |Time = 23465000 [Wi=105 Wie=105 |5

Tek PreVu |

e H

‘Ch1- 500mV - Ch2- 500mv M 10.0ns ‘A Chl £ 1.14V
r\-'lath

1.00V 10.0ns 59:.40% : .

Dual wfm
Math

FFT

HSSL training byte Ox5A

Edit Math
Definition
Set 1st
Source to

|Ch1|

Set
Operator to

Set 2nd
Source to

|Ch2|

Serial communications data eye

M1.00ns A Chd /—20.0mV.
L E+»v480.000ps

Software environment

» custom OS (QOS) written by Peter Boyle

v

v

vV v v v Y

>

vvyVvVvy

gdaemon on host machine

(csh-like user interface, program load, integrated diagnostics)
boot kernel download via Ethernet/JTAG to I/D cache in parallel
run kernel download via Ethernet

single application process — no scheduler-induced slowdown
user-space access to communications hardware — low latency

standard compile chains: gcc/g++ and xIc/xIC

QMP library for inter-node message passing (Chulwoo Jung)
(SciDAC cross-platform library for lattice QCD)

CPS, MILC, and Chroma/QDP++ lattice QCD codes ported
Bagel automatic assembly generator (Peter Boyle)

MPI port by BNL (Robert Bennett)

SciDAC software: see Robert Edwards’ talk yesterday
RISCWatch for diagnostics

RISCWatch

1

FEEEELE]

3. Performance figures

Three relevant areas:

1. Memory system performance
2. Network performance

3. Application code performance

all of the following courtesy of Peter Boyle

Memory system performance

Streams benchmark (measures sustainable memory bandwidth)

Compiler/Options/Code Comment Memory | MBI/s

xlc -O5 -garch=440 vanilla source Edram 747

gce-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 vanilla source Edram 747
gce-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 __builtin_prefetch Edram 1024
Assembly auto-generated asm Edram 1670

xlc -O5 -garch=440 vanilla source DDR 260

gcce-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 vanilla source DDR 280
gce-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 __builtin_prefetch DDR 447
Assembly auto-generated asm DDR 606

Network performance

QCDOC Multi-wire Ping Ping bandwidth (420MHz)

1000 . T T
11 BiDi links
10 BiDi links
9 BiDi links -~~~ —
8 BiDi links ——--- _—
7 BiDi links -
800 - 6 BiDi links b
5B8iDilinks - .
4 BiDi links T
3 BiDilinks -~~~ - / P
2BDilinks —— /7 7T
L 1 BiDi link L - |
600 Infiniband PMB (NGSA) -——— |/ 7 -
Myrinet PMB (NCSA) - 7. -
3 TCP PMB (NCSA) s
=
400 |- I G il
200 |) B
0 L sususns i L |
10 100 1000 10000

Packet size bytes

» multi-link bandwidth as good as CPU-memory bandwidth

» single-link ping pong obtains 50% of maximum bandwidth on
32-byte packets

Latency (microseconds)

0.1

QCDOC Single-wire latency (420MHz)

Single direction
Multi-directional effective latency

10 100 1000 10000
Packet size bytes

Global reduction

» hardware-acceleration for “all-to-all” along an axis

» CPU performs arithmetic

1
global sum — 30ns x ED(Nproc)l/D

» 1024-node global sum in less than 16us (12k nodes in 20-30u9)

o
T

Global sum (us)

T
1d global sum

3d global sum —----
4d global sum -----

6d global sum

I
1 10 100
Number of processors

I
1000

10000

Application code performance

various discretizations, 4* local volume

Action | Nodes | Sparse matrix | CG performance
Wilson 512 44% 39%
Asgtad 128 42% 40%

DWF 512 46% 42%
Clover 512 54% 47%

Scalability

350

30

S

250

200

Gigaflops

150

100

50

Scaling on 16”4 to 1024 nodes

Ideal Edram —-—--
Clover scalin}g
leal DD

"Edram threshold
I I I I I

200 400 600 800 1000
processors

» 16% on 1024 nodes (equivalent to 32* on 16k nodes)
» expect 4 to 5 TFlop/s sustained on large machines

1200

4. Summary and outlook

» QCDOC provides

>

>

>

exceptional scalability

(due to network performance and hardware assist for global sums)
standard software environment

best value for the money:

< 1 US-$ per sustained MFlop/s at 5 TFlop/s on a non-trivial problem

» low power and low cost allows large systems to be built
» hardware status (again)

>

vy vy vYVvYy

current clock speed is 420 MHz (hope to improve this)

14,720 nodes UKQCD machine at Edinburgh: running/testing
13,308 nodes RBRC machine at BNL: running/testing

14,140 nodes DOE machine at BNL: running/being assembled
2,432 nodes Columbia machine: running/testing

448 nodes Regensburg machine: just arrived

Future possibilities

vV v v v

cannot beat IBM in general-purpose market (BG/P, BG/Q)
clusters are catching up fast
exploiting the special-purpose character can still give us an edge

must aim at 10x in price/performance over IBM and/or clusters
goal is $0.01/MFlop/s or $10 million/PFlop/s (sustained)
currently exploring a number of possibilities

» custom ASIC

» commercial chip plus companion ASIC
» standard protocols (Hypertransport, ...)
|

ASIC NRE costs exploding — high risk
Cell looks interesting

DR

EEEFIFR]

o

3

vV v v v Vv Y

vV v.v. v v .Yy

300 engineers

0.09/0.065 process

50~80 W at 4 GHz

1 (new) PowerPC CPU with 32 kB L1 caches (D/I)
8 FPU's with 256 kB of private memory

each FPU can do 4 FMADD’s per cycle
— 256 GFlop/s at 4 GHz (single precision)

double precision ~10x slower

512 kB on-chip shared L2 cache

25 GB/s memory bandwidth (Rambus XDR)

76.8 GB/s (44.8 in, 32 out) I/O bandwidth (Rambus FlexIO)
Can memory subsystem keep the FPU’s fed?
Programming model?

