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1. Why custom-built machines?

» dynamical fermions are expensive:

ECFA scaling estimate

cost (in Flops) to generate a single independent gauge field
configuration (dynamical Wilson fermions, unimproved)
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» staggered fermions somewhat cheaper
» chiral fermions (overlap, DWF) ~100x more expensive

— one of the “grand challenge problems” in HPC



Lines of attack

» better analytical understanding of the various limits
» improvement program (a — 0)
» effective chiral theories (m — 0)
» finite-V calculations; e-regime of QCD (V — o0)

» better algorithms

» bigger and better (super-) computers



lattice QCD needs massively parallel machines
(global volume distributed over many processors)

i_1 Unit Cell associated with one site

<> Communication required for local
(nearest neighbour) operation

Periodically mapped communication

THD HUn 2.5 example:
16 x 16 global volume

8 x 8 local volume
2 x 2 processor grid




main numerical problem: inversion of fermion (Dirac) matrix,
typically done using conjugate gradient algorithm
— need efficient matrix—vector routines and global sums

on a parallel machine, communication between processors slows
down the calculation; two main factors:

1. communication bandwidth
2. communication latency

for small local volumes (“hard scaling”):

» surface-to-volume ratio large — high commun./comput. ratio
» latency is dominating factor

ideally, communication can be overlapped with computation:
communication latency hiding

measure of success: sustained vs. peak performance

Scalability: keep physical problem size fixed and increase number
of processing nodes — how does sustained performance scale?
(It typically goes down drastically.)



Typical scaling behavior of clusters (measured by P. Boyle)
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2-d grid has twice the bandwidth, but performance roughly the same
— latency dominated



» PC clusters:

see Robert Edwards’ talk yesterday

cost-effective, easy to build

useful for wide range of applications and for experimentation

don't scale well to very large numbers (>1000 or so) of processors
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» commercial supercomputers:
> very expensive
» aimed at general-purpose market
» typically switched clusters of SMP’s
if not, networks are often underpowered or not scalable (crossbar)
— limited scalability
» exceptions: BlueGene/L, Cray XT3, others?

» special-purpose machines can exploit the problem characteristics
in hardware (extreme example: Grape)

for lattice QCD:
» predictable memory access — prefetch
» mainly nearest-neighbor communications
» communications predictable and repetitive
— better scalability



The QCDOC project

» successor to QCDSP (and earlier Columbia machines)

» collaboration of IBM Research (Yorktown Heights), Columbia
University, RIKEN-BNL Research Center, UKQCD, SciDAC

» design based on an application-specific integrated circuit (ASIC)
» optimized for communications requirements of lattice QCD

» scalable to several 10,000 nodes with sustained performance of
~50% even on very small local volumes (Viocas = 2%)

» best price/performance ratio in the industry
» low power consumption and heat dissipation
» standard software environment

another special-purpose lattice QCD machine (not discussed here):
apeNEXT by INFN/DESY/Paris-Sud
(successor to APE1, APE100, APEmille)



The QCDOC design team

Columbia: Norman Christ, Calin Cristian, Zhihua Dong, Changhoan
Kim, Xiaodong Liao, Goufeng Liu, Bob Mawhinney, Azusa Yamaguchi

IBM: Dong Chen, Alan Gara, Minhua Liu, Ben Nathanson
RIKEN-BNL: Shigemi Ohta (KEK), Tilo Wettig (Yale — Regensburg)
UKQCD: Peter Boyle, Mike Clark, Balint Jo6

SciDAC: Chulwoo Jung, Kostya Petrov
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Current hardware status

14,720 nodes UKQCD machine at Edinburgh: running/testing
13,308 nodes RBRC machine at BNL: running/testing

14,140 nodes DOE machine at BNL: running/being assembled
2,432 nodes Columbia machine: running/testing

448 nodes Regensburg machine: just arrived
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machines will be run 24x7 for five years
work horse for lattice QCD in the US and the UK
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2. Architecture of the QCDOC supercomputer

MIMD machine with distributed memory (in SPMD mode)
system-on-a-chip design (QCDOC = QCD on a chip)

» QCDOC ASIC combines existing IBM components and
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QCD-specific, custom-designed logic:
» 500 MHz (nominal) PowerPC 440 core with 64-bit, 1 GFlop/s FPU
» 4 MB on-chip memory (embedded DRAM), accessed through
custom-designed prefetching eDRAM controller (PEC)
» nearest-neighbor serial communications unit (SCU) with aggregate
bandwidth of 12 Gbit/s
separate networks for physics communications and auxiliary tasks
price/performance ratio < 1 US-$ per sustained MFlop/s

very low power consumption, no serious cooling issues

All this on ~ (12 mm)? of silicon, consuming ~5W



The QCDOC ASIC
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(0.18 process, using low-alpha lead)
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440 PowerPC processor core

>

32-bit implementation of IBM Book E architecture

» out-of-order dual-issue, superscalar, pipelined (7 stages), ...
» 32kB instruction and 32kB data caches (64-way associative,
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partitionable, lockable)

hardware memory protection through TLB

3 PLB master interfaces: instruction read, data read, data write
complete control through JTAG interface

connected to 64-bit, 1 GFlop/s IEEE floating point unit



QCDOC networks

» fast “physics” network
» 6-dimensional torus with nearest-neighbor connections
(allows for machine partitioning in software)
» LVDS serial links using IBM HSSL transceivers with 2x500 Mbit/s
bandwidth per link (total bandwidth per node 12 Gbit/s)
» custom-designed Serial Communications Unit (SCU)

>
>
>
>

>

>

runs all links concurrently

direct memory access

packets have 8-bit header and 64-bit data

error detection and correction

(ECC on header, parity on data, hardware checksum counters)

low-latency passthrough mode for global operations
reconfigurable partition interrupts and barriers

» communications performance ~ memory performance
» global tree network for three independent interrupts
» Ethernet network (switched) for booting, I/O, control
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Serial Communications Unit (SCU)
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Communications latency hiding for global sums (1-d example)

Bl o= 1B N p— —
st

» receive unit gets number from neighbor in — direction
— puts it in FIFO and simultaneously passes it on to neighbor in
+ direction
» FIFO is flushed when PLB access is available
» after N — 1 shifts, all numbers from this dimension are in memory
» add done by CPU

— software and bus latency only paid once instead of N times
broadcast of final result not necessary
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Software environment

» custom OS (QOS) written by Peter Boyle
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gdaemon on host machine

(csh-like user interface, program load, integrated diagnostics)
boot kernel download via Ethernet/JTAG to I/D cache in parallel
run kernel download via Ethernet

single application process — no scheduler-induced slowdown
user-space access to communications hardware — low latency

standard compile chains: gcc/g++ and xIc/xIC

QMP library for inter-node message passing (Chulwoo Jung)
(SciDAC cross-platform library for lattice QCD)

CPS, MILC, and Chroma/QDP++ lattice QCD codes ported
Bagel automatic assembly generator (Peter Boyle)

MPI port by BNL (Robert Bennett)

SciDAC software: see Robert Edwards’ talk yesterday
RISCWatch for diagnostics



RISCWatch
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3. Performance figures

Three relevant areas:

1. Memory system performance
2. Network performance

3. Application code performance

all of the following courtesy of Peter Boyle



Memory system performance

Streams benchmark (measures sustainable memory bandwidth)

Compiler/Options/Code Comment Memory | MBI/s

xlc -O5 -garch=440 vanilla source Edram 747

gce-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 vanilla source Edram 747
gce-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 __builtin_prefetch Edram 1024
Assembly auto-generated asm Edram 1670

xlc -O5 -garch=440 vanilla source DDR 260

gcce-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 vanilla source DDR 280
gce-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6 __builtin_prefetch DDR 447
Assembly auto-generated asm DDR 606




Network performance

QCDOC Multi-wire Ping Ping bandwidth (420MHz)
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» multi-link bandwidth as good as CPU-memory bandwidth

» single-link ping pong obtains 50% of maximum bandwidth on
32-byte packets



Latency (microseconds)

0.1

QCDOC Single-wire latency (420MHz)

Single direction
Multi-directional effective latency

10 100 1000 10000
Packet size bytes



Global reduction

» hardware-acceleration for “all-to-all” along an axis

» CPU performs arithmetic

1
global sum — 30ns x ED(Nproc)l/D

» 1024-node global sum in less than 16us (12k nodes in 20-30u9)
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Application code performance

various discretizations, 4* local volume

Action | Nodes | Sparse matrix | CG performance
Wilson 512 44% 39%
Asgtad 128 42% 40%

DWF 512 46% 42%
Clover 512 54% 47%




Scalability
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» 16% on 1024 nodes (equivalent to 32* on 16k nodes)
» expect 4 to 5 TFlop/s sustained on large machines
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4. Summary and outlook

» QCDOC provides

>

>

>

exceptional scalability

(due to network performance and hardware assist for global sums)
standard software environment

best value for the money:

< 1 US-$ per sustained MFlop/s at 5 TFlop/s on a non-trivial problem

» low power and low cost allows large systems to be built
» hardware status (again)

>
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current clock speed is 420 MHz (hope to improve this)

14,720 nodes UKQCD machine at Edinburgh: running/testing
13,308 nodes RBRC machine at BNL: running/testing

14,140 nodes DOE machine at BNL: running/being assembled
2,432 nodes Columbia machine: running/testing

448 nodes Regensburg machine: just arrived



Future possibilities

vV v v v

cannot beat IBM in general-purpose market (BG/P, BG/Q)
clusters are catching up fast
exploiting the special-purpose character can still give us an edge

must aim at 10x in price/performance over IBM and/or clusters
goal is $0.01/MFlop/s or $10 million/PFlop/s (sustained)
currently exploring a number of possibilities

» custom ASIC

» commercial chip plus companion ASIC
» standard protocols (Hypertransport, ...)
|

ASIC NRE costs exploding — high risk
Cell looks interesting
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300 engineers

0.09/0.065 process

50~80 W at 4 GHz

1 (new) PowerPC CPU with 32 kB L1 caches (D/I)
8 FPU's with 256 kB of private memory

each FPU can do 4 FMADD’s per cycle
— 256 GFlop/s at 4 GHz (single precision)

double precision ~10x slower

512 kB on-chip shared L2 cache

25 GB/s memory bandwidth (Rambus XDR)

76.8 GB/s (44.8 in, 32 out) I/O bandwidth (Rambus FlexIO)
Can memory subsystem keep the FPU’s fed?
Programming model?



