M. Chanowitz LBNL

Precision Electroweak Data and the Direct Limit on the Higgs Mass

Presented at the conference on

Modern Challenges for Lattice Field Theory KITP - UCSB, April 1, 2005

This talk: experimental & theoretical update of previous work.

MC PRL 87:231802, 2001 PRD 66:073002, 2002 Zeuthen Workshop, hep-ph 0304199

M. Chanowitz

KITP - Lattice 4/1/05

1

Executive Summary

February '05: *Final* Z-pole results confirm longstanding discrepancy between the two most precise asymmetry measurements, critical for extraction of m_H from SM fit:

A_{FB}^{b} vs A_{LR} : 3.2 σ CL = 0.0016

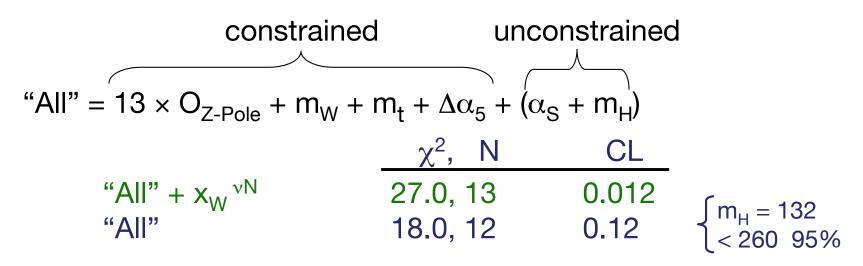
Could be New Physics, Statistics, or Systematics.

- If Systematics, then $A_{FB}^{b}(+ A_{FB}^{c}, Q_{FB}^{c})$ are most likely culprits.
- **But** without A_{FB}^{b} , m_H from SM fit is low, appreciably below the 114 GeV LEP II direct lower limit

- Low fit value for m_H could be *statistics or new physics*

Conflict with LEP II limit is diminished by D0 m_t measurement but not completely removed. Depending on future evolution of m_t , $m_{w_t} \alpha(m_z)$, conflict could disappear or get worse.

Technology of SM fits


SM EWRC from ZFITTER 6.30 + 2-loop m_W & (fermionic) x_W

 $m_Z, m_t, \Delta \alpha_5, \alpha_S, m_H \longrightarrow O_{Z-Pole} + m_W + x_W^{VN} + ...$ $\Delta \alpha_5$ from B-P (BES) – EWWG default Biggest experimental correlations alla EWWG Do not include Γ_W : $\Delta \Gamma_W = 30 \Delta \Gamma_Z$ Good agreement with EWWG, $\leq 1-2$ parts in 10⁵

 χ^2 and "Bayesian" likelihood fits:

Vary m_t , $\Delta \alpha_5$, α_S , m_H Fit m_t , $\Delta \alpha_5$ + all/some of {13 O_{Z-Pole} , m_W , $x_W^{\nu N}$ } χ^2 agrees with EWWG to within a few tenths

Global Fits

x_W^{vN} too imprecise to significantly effect m_H not considered further in this analysis

CL("All") = 0.12 roughly reflects probability for outlyers relative to sample size, dominated by 2.77σ pull of $A_{FB}^{\ b}$: P($\geq 1 \ 2.77\sigma$, N = 12) = 1 - (1 - 0.0056)^{12} = 0.07 ~ CL(\chi^2) = 0.12 Global CL's are fairly valued: the appropriate statistical ensemble is multiple replays of the 1990's at LEP, SLC, and FNAL.

I.e., not a case of a high bin in a histogram with 1000 bins

M. Chanowitz

$X_W^{\ell,eff}$: most important observable for m_H fit

$$\begin{array}{c} A_{LR} & 0.23098 \, (26) \\ A_{FB}^{\ \ell} & 0.23099 \, (53) \\ A_{e,\tau} & 0.23159 \, (41) \end{array} \right\} \begin{array}{c} x^{\ell} [A_{L}] = 0.23113 \, (21) \\ \chi^{2}/N = 1.6/2 \quad CL = 0.44 \end{array} \right\} \begin{array}{c} 0.23153 \, (16) \\ 3.2\sigma \\ CL = 0.0014 \\ \chi^{2}/N = 0.23220 \, (81) \\ Q_{FB} & 0.23240 \, (120) \end{array} \right\} \begin{array}{c} x^{\ell} [A_{H}] = 0.23222 \, (27) \\ \chi^{2}/N = 0.06/2 \quad CL = 0.97 \end{array} \right\} \begin{array}{c} 0.23153 \, (16) \\ CL = 0.0014 \\ \chi^{2}/N = 0.06/2 \quad CL = 0.97 \end{array}$$

Dominated by

 $x[A_{LR}] \oplus x[A_{FB}^{b}] = 0.23153 (19)$ 3.2σ CL = 0.0016 Combining all six: $\chi^2/N = 11.8/5$ CL = 0.037

A_{FB}^{b} , A_{h} , $x_{w}^{\ell,eff}$ & all that... $A_{FB}^{b} = 3/4 \cdot A_{e}^{c} A_{b}^{c} A_{f}^{c} = \frac{g_{fL}^{2} - g_{fR}^{2}}{g_{eL}^{2} + g_{eR}^{2}}$ $g_{fL} = t_{3L,f} - q_f x_W^{f,eff}$ $g_{fR} = -q_f x_W^{f,eff}$ SM: $A_{b}^{(SM)} = 0.935 \pm 0.0005$ \longrightarrow Negligible sensitivity to m_{H}, m_{t} Sensitivity to m_H resides in A_ℓ (because $A_\ell \propto 1/4 - x_w$) SM m_H fit assumes $A_{\ell} = 4A_{FR}^{b} / 3A_{h}^{(SM)} \implies x_{W}^{\ell,eff}$ A_b measured **directly**: $A_{FBLR}^{b} \longrightarrow A_b = 0.923$ (20) $\begin{cases} Agrees \\ with SM \end{cases}$ or **indirectly** from A_{FB}^{b} using A_{ℓ} from A_{LR}^{c} , A_{FB}^{ℓ} , $A_{e.\tau}^{c}$: $A_{b} = 4A_{FB}^{b} / 3 A_{\ell} = 0.881 (17)$ $\begin{cases} 3.2\sigma \text{ from SM} \\ 1.6 \sigma \text{ from } A_{FBLR}^{b} \end{cases}$ $A_{b}[direct] \oplus A_{b}[indirect] = 0.899 (13) \qquad \begin{cases} 2.8\sigma \text{ from SM} \\ CL = 0.006 \end{cases}$ Evidence for new physics in A_b is equivocal.

M. Chanowitz

$x[A_L] - x[A_H]$ discrepancy significant for 3 reasons:

- 1) Failed test for SM $A_q \neq A_q[SM]$
- 2) SM fit of m_H dominated by low probability combination of $x[A_{LR}] \oplus x[A_{FB}{}^b]$.
- 3) Together with $x_W^{\nu N}$, the $x[A_{LR}] x[A_{FB}^{b}]$ discrepancy contributes to diminished quality of global SM fit.

Three generic options...

- $A_{FB}^{b} A_{LR}$ anomaly could be
 - Statistical fluctuation
 - New physics
 - Underestimated systematic error

Briefly consider each:

Statistical Fluctuation

Significance of anomaly depends on how question is framed.

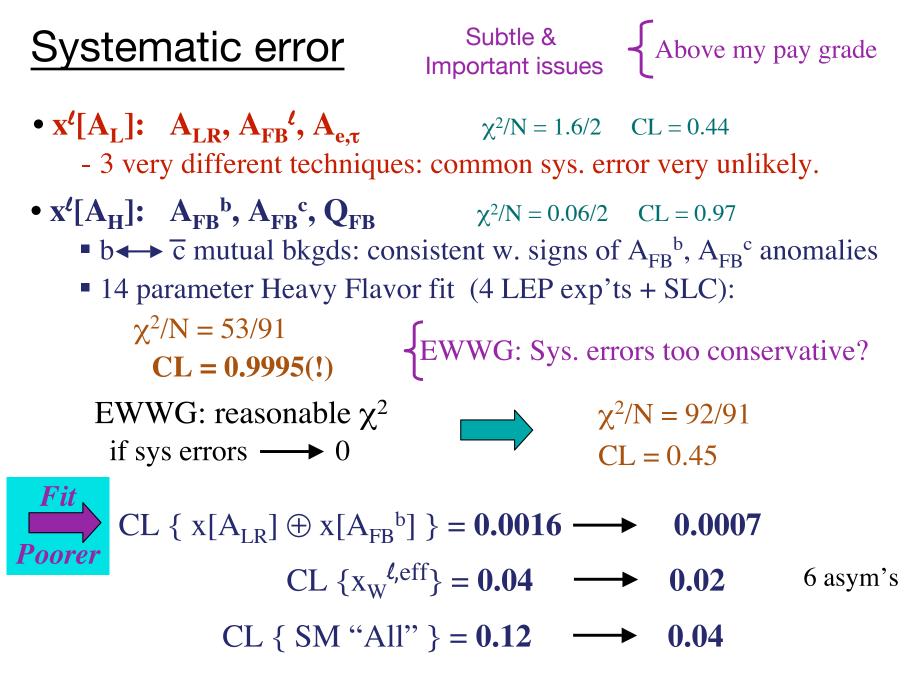
Global CL's fairly reflect likelihood that *any* of a set of measurements might fluctuate to become an outlyer:

E.g., for "All," $CL(\chi^2) = 0.12$

Cf, Probability of at least one 2.77 σ outlyer (A_{FB}^b) among 12 independent measurements: **P** = 0.07

IF we ask for the consistency of the two highest precision measurements that determine m_H , the answer is the nominal CL for 3.2 σ , **P** = 0.0014

In the most conservative assessment there is an O(10%) problem.


New Physics in A_b ? — the R_b constraint

1998 \pm : 3 σ R_b anomaly understood as expt'l sys. error. $R_{\rm b}[\text{expt}] / R_{\rm b}[\text{SM}] = 1.003 (3)$ Today: $\delta g_{\rm bl}^2 + \delta g_{\rm bB}^2 \sim 0.0005 (5)$ A_{FB}^{b} anomaly: $A_{b}[A_{FB}^{b}] / A_{b}[SM] = 0.942$ (18) $\delta g_{bl}^2 - \delta g_{bB}^2 \sim -0.009 (3)$ **Roughly**, from $R_{\rm b}$: $\delta g_{\rm bl}^2 + \delta g_{\rm bR}^2 \sim 0$ $g_{bl} \sim -0.42$ $g_{bB} \sim +0.08$ SM: HUGE $\delta g_{bB} \sim 0.009/4 g_{bB} \sim 0.03$ $\delta g_{bl} \sim -g_{bR} \delta g_{bR} / g_{bl} \sim + 0.005$

Huge δg_{bR} probably requires new physics at tree level, hard to find in plausible extensions of the SM.

New Physics in A_{FB}^b ?

- Maybe not
 - challenging experimental & theoretical systematics
 - A_b from A_{FBLR}^{b} agrees with SM
 - Large δg_{bR} hard to explain
- Maybe so
 - persistent statistical significance
 - exp'ters have worked long & hard to understand expt'l systematics <u>&</u> have applied lessons from R_b (but problem might be theor. systematics that uniquely afflict A_{FB})

Systematic error

• $x^{\ell}[A_L]$: $A_{LR}, A_{FB}^{\ell}, A_{e,\tau}$

- 3 very different techniques: common sys. error very unlikely.

• $x^{\ell}[A_H]$: A_{FB}^{b} , A_{FB}^{c} , Q_{FB}

Extraction of **quark** asymmetries from **hadron** data requires QCD models of hadronization/charge flow, gluon radiation, ...

Unique, correlated QCD systematics for A_{FB}^{b} , A_{FB}^{c} , Q_{FB} which may be difficult to quantify.

Systematic errors might be larger than estimates

If A_{FB}^{b} , A_{FB}^{c} , Q_{FB} have underestimated sys. errors, x_{W}^{ℓ} is most reliably obtained from A_{LR} , A_{FB}^{ℓ} , $A_{e,\tau}$.

Consequences of underestimated systematic error

Focus on sys. uncertainty not because it is a more likely explanation than statistical fluctutation or new physics, but to see if it could improve the SM fit.

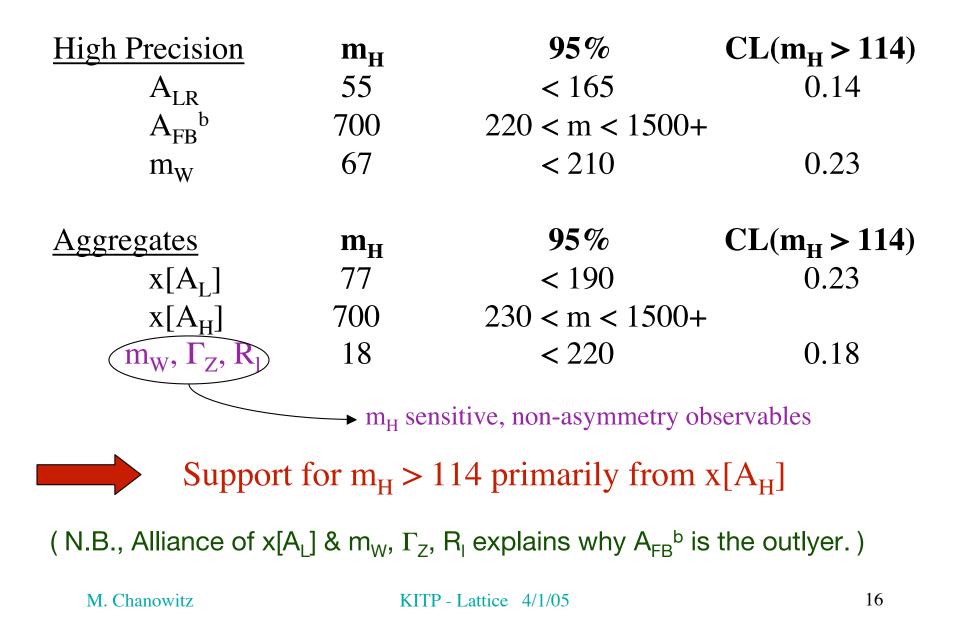
Assume **A**_{FB}^b, **A**_{FB}^c, **Q**_{FB} have underestimated sys errors and remove from fit.

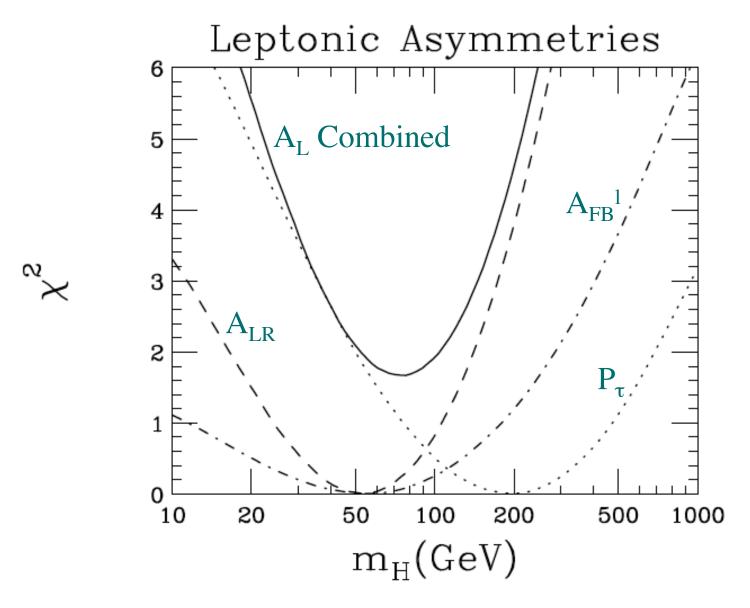
Fits of m_{μ} sensitive observables

To test reliability of m_{μ} predictiction and probe specifically for new physics in the Higgs sector, it is interesting to focus on the $m_{\rm H}$ sensitive observables, that determine $m_{\rm H}$ in the SM fit.

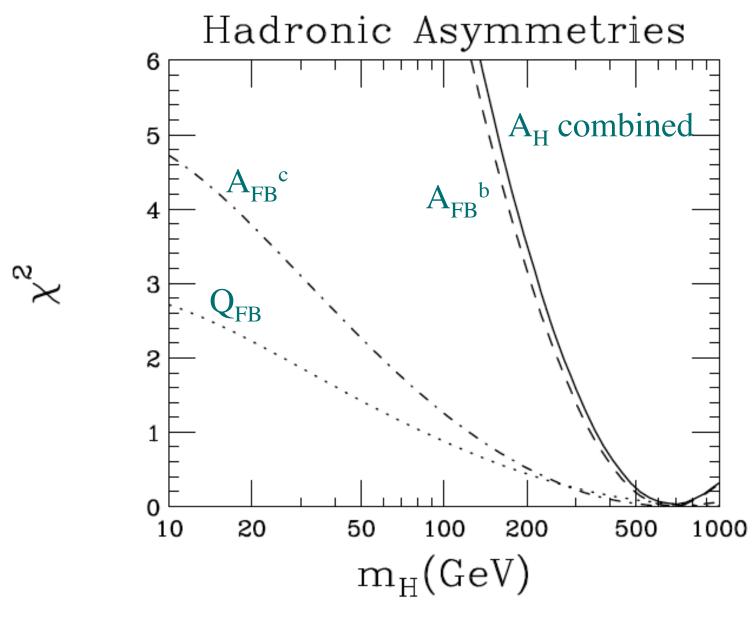
Excluding m_{H} insensitive (σ_{H} , R_{b} , R_{c} , A_{b} , A_{c}), find that

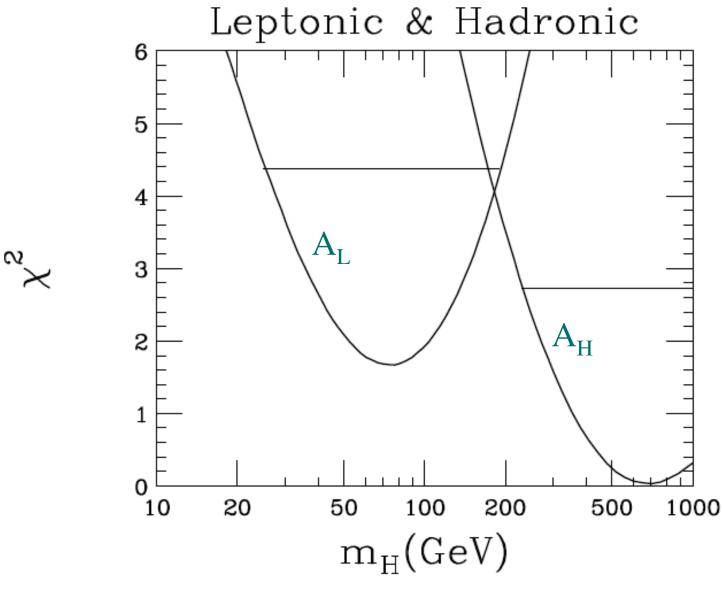
discrepancies are concentrated in m_H sensitive sector: χ^2 , N = 15.1, 7 CL = 0.035 and especially in the most m_H sensitive (A_{FB}^b, A_{LR}, m_W): $\int_{Cf. (All)^2} Cf. (All)^2 CL = 0.12$ $\begin{aligned} & \chi^{2}, \text{ N} = 11.8, 2 & \text{CL} = 0.003 \\ & m_{\text{H}} = 139 & < 280 \ 95\% \end{aligned} \quad \begin{cases} \text{Compare} \\ & m_{\text{H}} = 132 \\ & \text{compare} \\ & \text{compar$

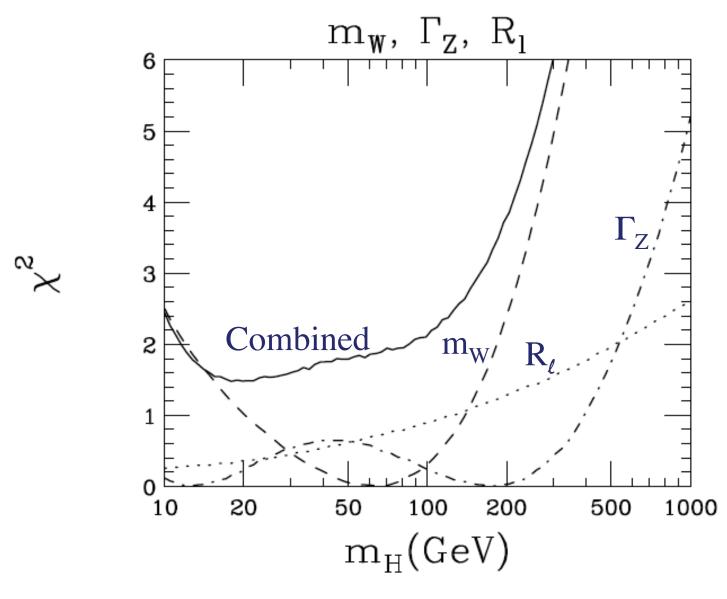

Poor quality of fits suggests statistics, systematics, or new physics specifically within the Higgs sector.


How reliable is m_H prediction from SM fit?

M. Chanowitz


Components of the SM fit


χ^2 Distributions: Leptonic Asymmetries


χ^2 Distributions: Hadronic Asymmetries

χ^2 Distributions: Leptonic vs. Hadronic

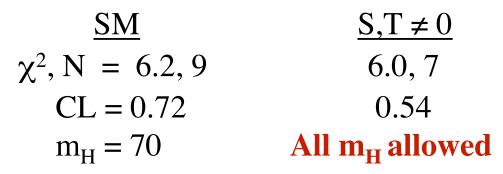
 χ^2 Distributions: m_H sensitive, nonasymmetry

M. Chanowitz

KITP - Lattice 4/1/05

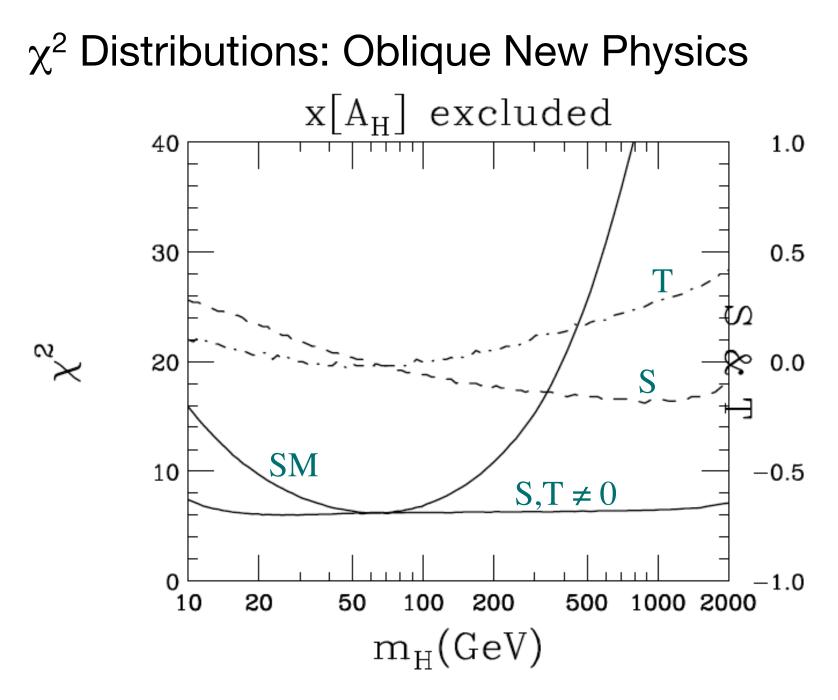
20

SM fits & m_H predictions

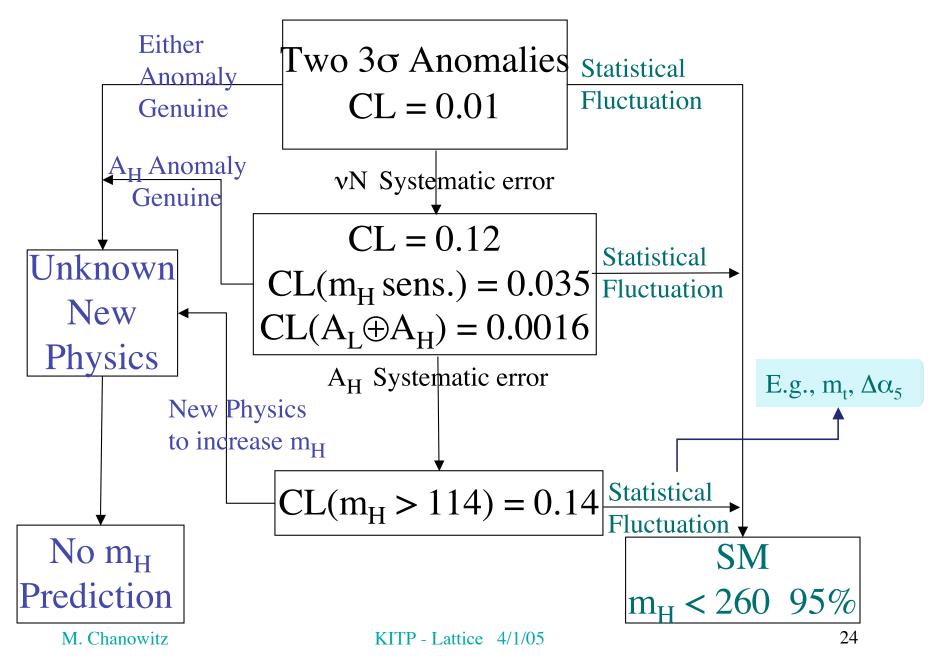

	CL(χ²)	m _H	CL(m _H > 114)
"AII"	0.12	132	0.55
-x[A _H]	0.72	70	0.14
m _H sensitive	0.035	132	0.62
-x[A _H]	0.47	64	0.17
$A_{LR} \oplus m_{W}$	0.84	52	0.12

If $x[A_H]$ is removed from fit, $m_H < 114$ is preferred.

New physics to raise m_H prediction


- New physics to raise the predicted value of m_H could reconcile $x[A_H]$ SM fit with LEPII lower limit on m_H .
- Existing proposals
 - MSSM with 'light' $\widetilde{\nu}$, \widetilde{l} ,...
 - 4'th family, $m_{\rm H} \sim few \ 100 \ GeV$

- Altarelli et al.
 - Okun et al.
- 'Oblique' -- dominant new phys. contribution
 via W, Z, γ vac. pol'ns, parameterized by 'S, T'
 - does not improve $CL(\chi^2)$
 - can raise m_H arbitrarily



M. Chanowitz

E-W Schematic Diagram

Conclusion

 $x[A_{FB}^{b}] - x[A_{LR}]$: a stubborn problem that won't go away.

LEP II limit on m_H makes problem more persistent:

- New physics preferred if A_{FB}^{b} attributed to sys. error or not no prediction for m_{H} until new physics is known.
- SM & usual m_H prediction require O(10%) statistical fluctuations
 certainly possible.

Also possible one of the O(90%) hints of new physics is genuine:

- δA_{FB}^{b} requires O(20%) shift in $Zb_{R}b_{R}$ coupling **WBSM** Way BSM
- Physics (oblique) to increase m_H is easier to imagine.

The precision EW data leaves ample room for surprises: we are fortunate the LHC can search for the mechanism of EWSB over the entire range of energies allowed by unitarity.