

Precision Photo Electron Spectra Discretization, Boundaries, Gauge

Armin Scrinzi Ludwig Maximilians University, Munich

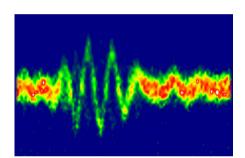
Frontiers of Intense Laser Physics KITP Santa Barbara, August 19, 2014

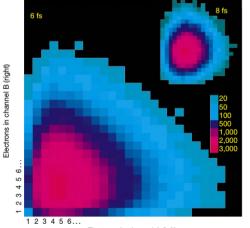
Vienna Computational Materials Science FWF Special Research Program

Marie Curie ITN

Vinay Majety 2-electron & molecules

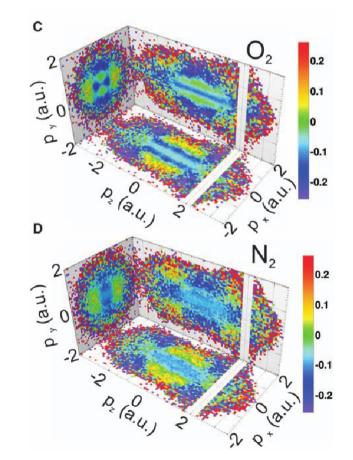
Mattia Lupetti Solids and surfaces

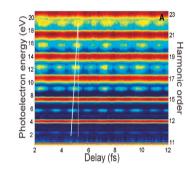

Alejandro "the convergator" Zielinski 1-e elliptic 2-electron


Jakob Liss Solids and surfaces

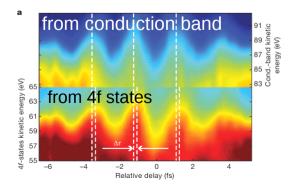
A wealth of measured photo-electron spectra...

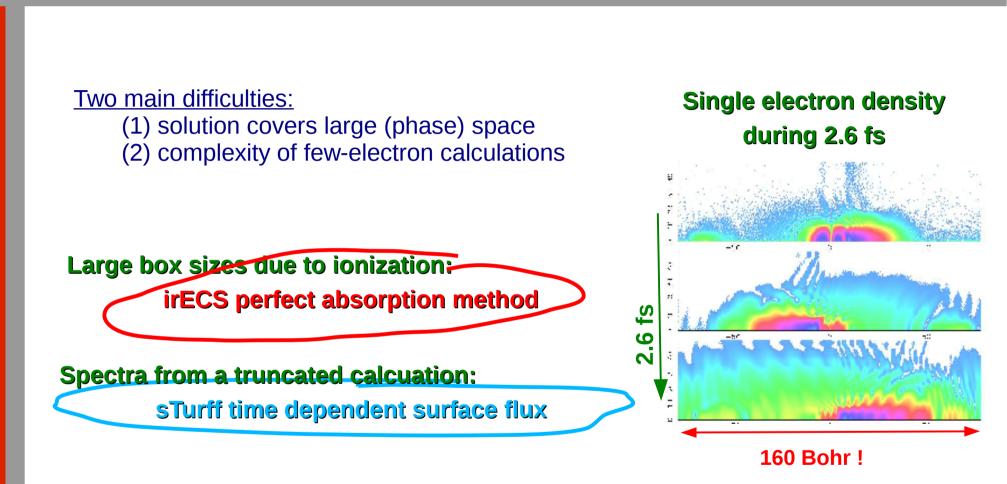
Few-cycle IR pulse


The first stereo-ATI result


Electrons in channel A (left)

Laser-Induced Electron Tunneling and Diffraction


M. Meckel,^{1,2} D. Comtois,³ D. Zeidler,^{1,4} A. Staudte,^{1,2} D. Pavičić,¹ H. C. Bandulet,³ H. Pépin,³ J. C. Kieffer,³ R. Dörner,² D. M. Villeneuve,¹ P. B. Corkum¹*


RABITT spectrogram

Emission from surface

...but modelling and calculation are hard

Messages: Methods

(1) Advertisement for the flexibility of finite element discretizations

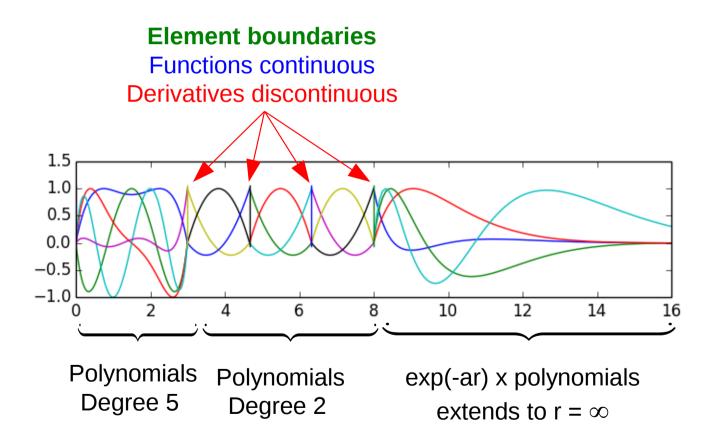
- (2) irECS The problem of absorbing boundary conditions for the TDSE is solved for all practical purposes
- (3) tSURFF computing photo-electron spectra without spectral projections
- (4) Mixing of length and velocity gauges in the same calculations Unites <u>numerical efficiency</u> of length gauge with intuitive modeling of length gauge It is <u>mandatory for numerical modeling</u> using quantum chemical structure

Messages: Results & Code

(5) Single photo-electron spectra of He, H₂, N₂ converged @ 400 nm wave-length

(6) Fano line-shapes, IR control: numerics + analytic theory

(7) Double photo-electron spectra of He converged at XUV wave length


(8) Correlation in double emission and its measure

(9) tRecX – the code that does it all is available for use!

on the Discretization (Finite Elements)

Finite elements

Flexible, can be adjusted to local properties of the solution

Discretization: why finite elements?

Required basis sizes

d degrees of freedom phase space volume *V*

 $N \gtrsim V/\hbar^d$

There are no smart tricks to beat this number unless we have additional information

Additional information

E.g. perturbative ionization, i.e. initial state or free motion or: SFA: initial state or Volkov wave packet or: we "know" only bound states play a role or ...

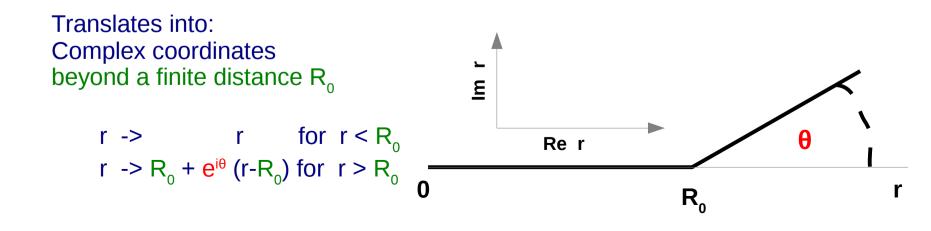
Basis sets

Pseudo-spectral (e.g. field-free eigenstates, momentum-space) Build energy or momentum information into ansatz

Local basis sets (B-splines, finite-element, FEM-DVR)

Exploit **locality** of operators (differentiation, multiplication) Numerically robust

High order finite elements


Locally adjustable (\rightarrow irECS) Well-defined points of non-analyticity (element boudaries) Rapid convergence due to high order (e.g. 10-20) Boundary conditions (aka Absorption)

Exterior complex scaling (ECS)

General principle for perfect absorbers (PML, ECS) [A.S., H-P. Stimming, N. Mauser, J. Comp. Phys. 269, 98 (2014)] Outside some inner region $[0, R_0]$ analytically continue a unitary transformation U_{λ} (e.g. coordinate scaling) to contractive (non-unitary) U_{θ} $i \frac{d}{dt} \Psi = H(t) \Psi \rightarrow i \frac{d}{dt} \Psi_{\theta} = U_{\theta} H(t) U_{\theta}^{-1} \Psi_{\theta}$

Unitarity + analyticity guarantee unchanged solution Ψ_{θ} on $[0, R_0]$ <u>III Caution: Domain issues for $U_{\theta}HU_{\theta}^{-1}$.</u>

Note: analytic continuation is $\lambda \rightarrow \theta$ (not in coordinate r)

Implementation of exterior complex scaling

Important technical complications

Bra and ket functions are not from the same set!!!

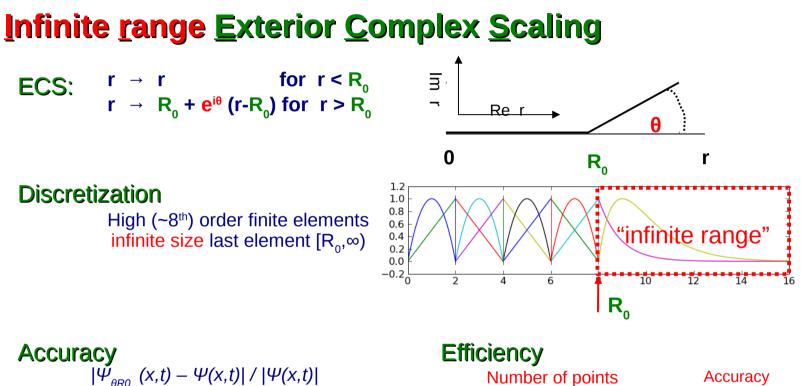
Exterior scaled Laplacian $\Delta_{R0,\Theta}$ is defined on discontinuous functions

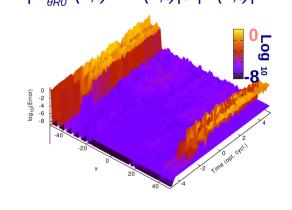
$$\Psi(R_0 - 0) = e^{3i\theta/2}\Psi(R_0 + 0)$$

Discontinuity as we need unitarity for real transformation

Discontinuity is reversed for the left hand functions

$$\Psi^*(R_0 - 0) = (e^{-3i\theta/2}\Psi)^*(R_0 + 0)$$

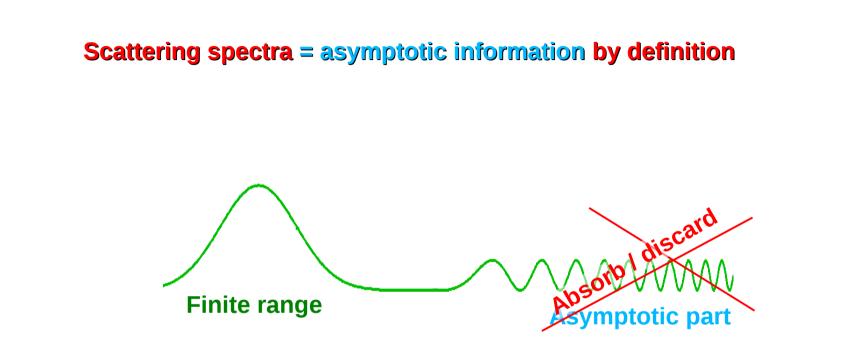

Matrix elements of $\Delta_{R0,\Theta}$


are computed by piece-wise integration $[0,R_0] + [R_0,\infty)$

Conditions easy to implement with a local basis set

irECS – a perfect absorber

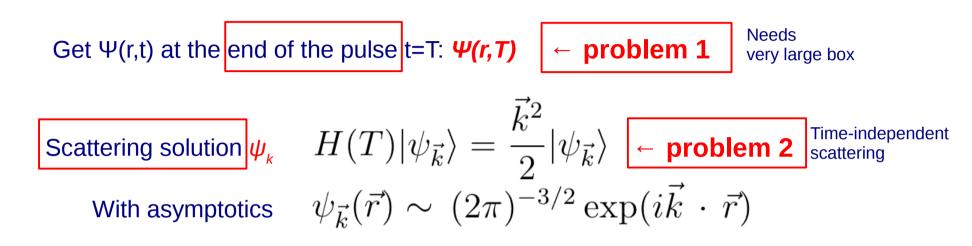
[A.S., Phys. Rev. A81, 53845 (2010)]


Accuracy inside $R_0 \sim 10^{-7}$

Number of points			Accuracy
Method		A θ or σ	q $\mathcal{E}[-R_0,R_0]$
irECS	$\frac{M_A}{21}$	∞ 0.6 -	-2×10^{-15}
ECS	20	10 0.6 -	-2×10^{-4}
ECS	40	20 0.5 -	-1×10^{-7}
CAP	20	$10 10^{-4}$	$4 3 \times 10^{-3}$
CAP	20	$10\ 2 \times 10^{-6}$	$6 4 \times 10^{-3}$
CAP	40		$4 3 \times 10^{-4}$
CAP	60	$30 \ 6 \times 10^{-7}$	$4 1 \times 10^{-5}$

CAP = complex absorbing potential

tSURFF – how to obtain spectra from a finite range wave function


If we solve only on a finite range, exactly the asymptotic information is missing

Solution:

Continue beyond the box using some known solution - Volkov

[Caillat et al., Rev. A 71, 012712 (2005)] [L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]

How we usually calculate spectra from TDSE

Spectrally analyze $\Psi(x,t)$ b

$$\phi(\vec{k}) = \langle \psi_{\vec{k}} | \Psi(T) \rangle$$

Spectral density

$$\sigma(\vec{k}) \propto |b^2(\vec{k})|$$

Solve by using additional information

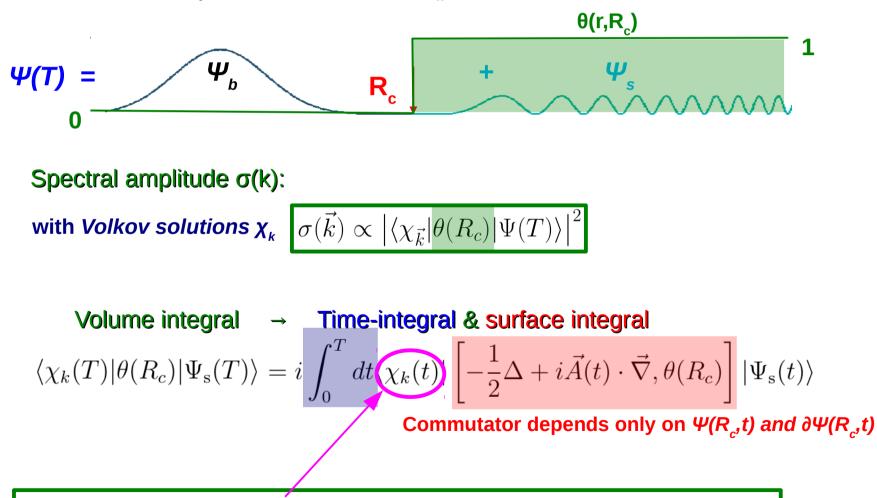
(1) TDSE is a 2nd order PDE

Value and derivative at a surface $r = R_c$ suffice to continue the solution beyond the surface

(2) Beyond distances $R_c \sim 50$ a.u. motion is ~ free

Use Volkov solution for free motion in the field instead of numerically solving

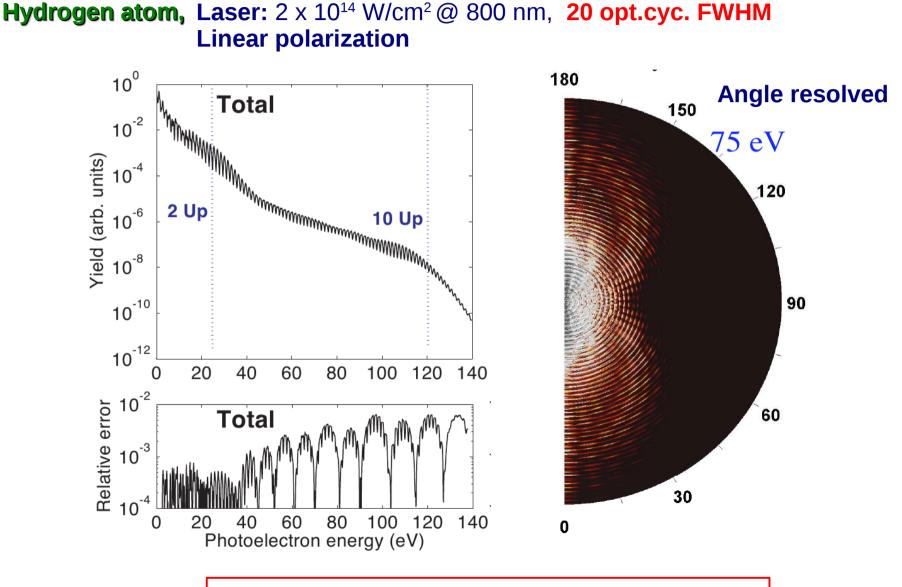
Compare R-matrix theory!


How things are done...

- → for a given pulse, **solve** with irECS absorption (box size ~ 50 a.u., laser-dependent)
- save values and derivatives at surface(s) as function of time
- properly time-integrate surface values for asymptotic momenta *p* of your choice (one integration for each *p*, ordinary integrals, very cheap!)
- → can zoom in onto areas of interest (important for 2-electron problems)
- → Effort grows only <u>linearly</u> with pulse duration T (cf. T² ~ T⁴ if time <u>and box-size</u> grow)

tSURFF – time-dependent surface flux method [L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]

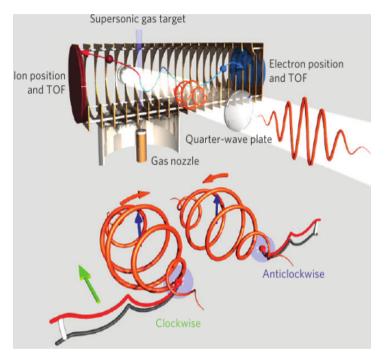
Propagate until large T where bound Ψ_{b} and scattering Ψ_{s} parts separate

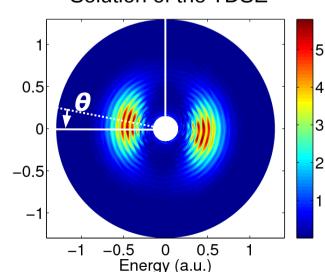

Beyond distance R_c scattering solutions χ_k are known

Note: need time-dependent bra-solutions ≈ Volkov (or better, if available)

Single photo-electron spectra

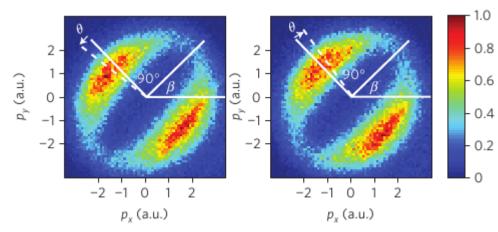
Photo-electron spectra – single electron, 3d [L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]


90 radial discretization points, 30 angular momenta


Attoclock – ionization by elliptically polarized IR

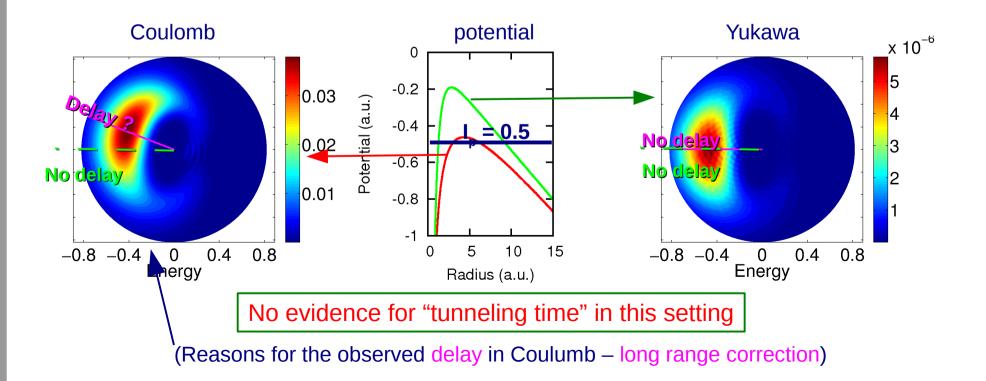
Angle-resolved photo-electron spectra

Peak emission direction deviates from Peak field direction

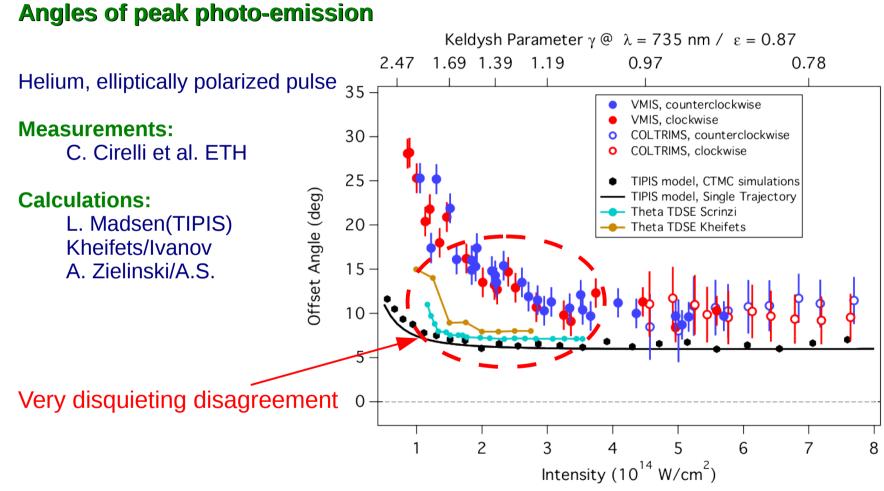

=> deduce delay in release of electron

Solution of the TDSE

Use oppositely handed polarizations to calibrate peak field direction


Tunneling times (?) in IR ionization

Is the offset angle *O* related to a "tunneling time"?


If the time-delay is related to tunneling, expect wider barrier longer tunneling delay?

Numerical result

Laser: 800nm, single cycle, 10¹⁴W/cm², ellipticity as in Pfeiffer et al. Ionization potential: 0.5 a.u. (Hydrogen)

Comparison theory and experiment

Note: calculations are all single-electron...

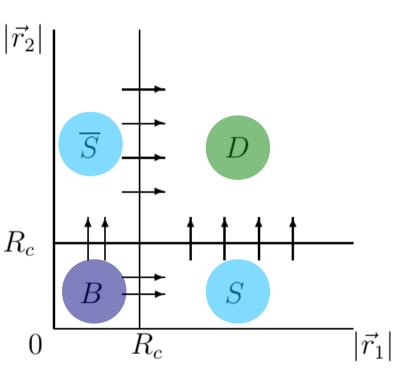
Multi-electron effects?

Two-electron systems

Extension of tSURFF to multi-channel emission

Extension to double-emission

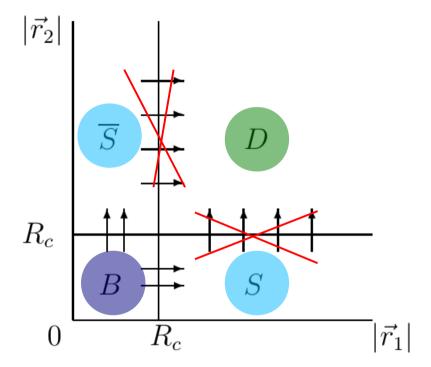
Technical remarks


✓ Fano-resonances, correlation in double emission

tSURFF for 2-electron systems

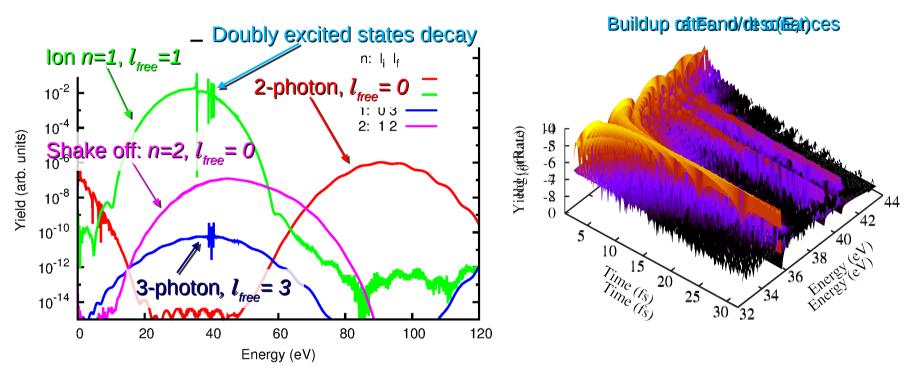
[A. S., New. J. Phys., 14, 085008 (2012)]

- B... $|\mathbf{r}_1|, |\mathbf{r}_2| < \mathsf{R}_c$ "bound" region Numerical solutions on \mathbf{r}_1 and \mathbf{r}_2
- S... $|\mathbf{r}_2| < \mathbb{R}_c$, $|\mathbf{r}_1| > \mathbb{R}_c$ "singly asympttic" region Numerical ionic solution on \mathbf{r}_2 : $\Phi_c(\mathbf{r}_2, t)$ Volkov solution on \mathbf{r}_1
- D... $|\mathbf{r}_1|, |\mathbf{r}_2| > \mathsf{R}_c$ "doubly asymptotic" region Volkov solutions on \mathbf{r}_1 and \mathbf{r}_2


R_c as before:

Multi-channel single emssion

Computational tasks for ionic channels reduces to:

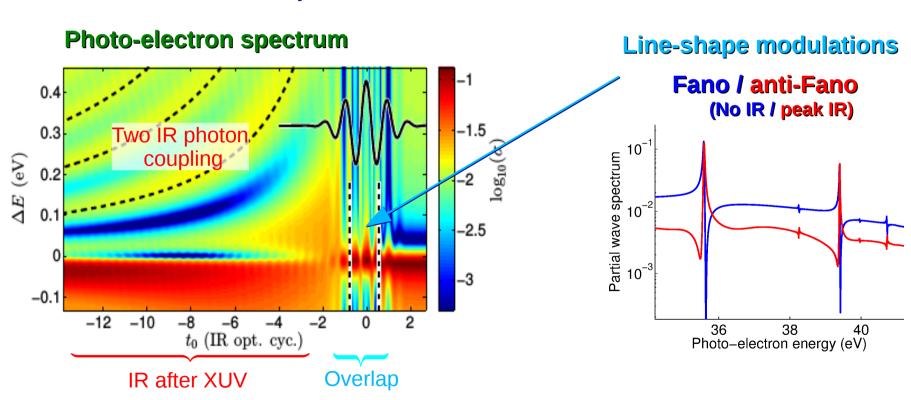

- solve full 2-electron problem on B
- for each single ionization channel, solve a single ionic problem in [0,R]

3d He: shake up photo-electron spectra @ XUV

Ionic channels & partial waves

(Laser: 2 opt.cyc. FWHM @ hv=54eV, perturbative intensity regime)

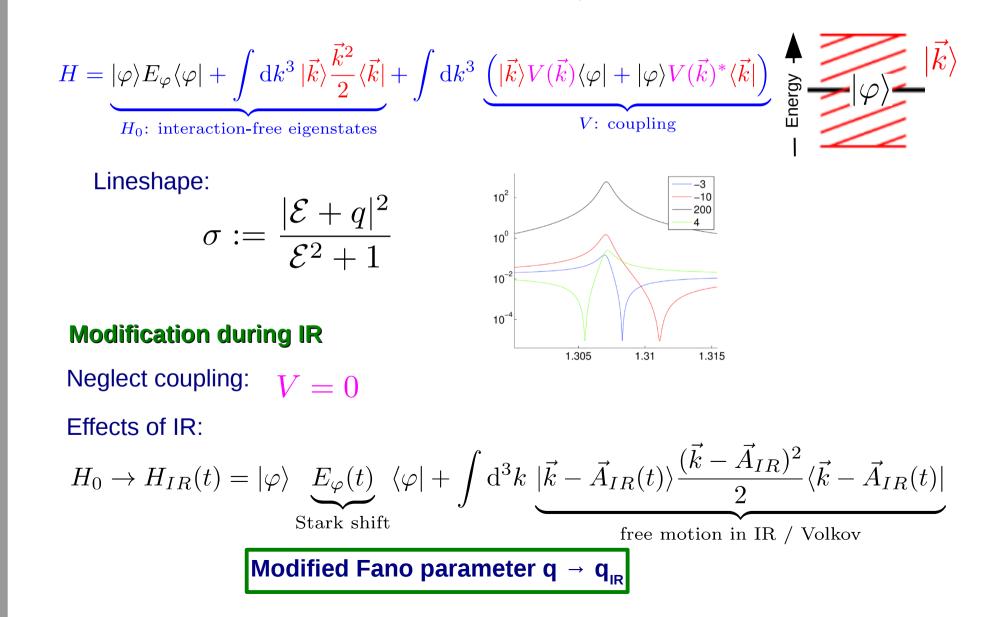
Note:


Doubly excited content after the end of the pulse can also be obtained by projection / window operator

Control of a Helium Fano line shape by IR

[A. Zielinski et al., arXiv:1405.4279]

Pulse parameters


XUV @ 21 nm, 150 as duration Time-delayd 800 nm few-cycle IR probe Intensity 2 x 10¹² W/cm²

Compare experiment by Ott et al. Science 340, 716 (2013)

[A. Zielinski et al., arXiv:1405.4279]

Standard Fano Hamiltonian – resonant state $|\varphi\rangle$ embedded in continuum $|k\rangle$

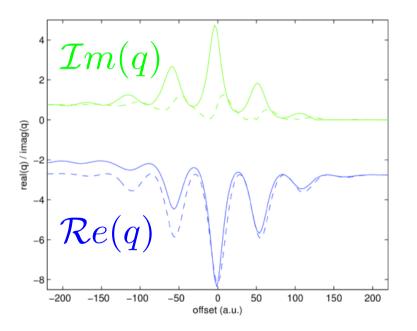
Complex Fano q-parameter

[A. Zielinski et al., arXiv:1405.4279]

Modification of Fano q-parameter

IR-induced phase shifts

$$\mathbf{q}_{\mathrm{IR}} = q + \alpha \left[e^{-\mathrm{i} \int_{t_0}^{t_1} \mathrm{d}t \left(E_{\varphi}(t) - E_{\varphi}^{(0)} \right) + \frac{\mathrm{i}}{2} \int A_{IB}^2} \int \mathcal{J}(A_{\mathrm{IR}}, k) - 1 \right]$$
coupling


Click for details...

Model vs. TDSE

Solid: fit to full 2-electron TDSE Dashed: q_{IR}

Need complex q_{IR} !

(no time-reversal symmetry)

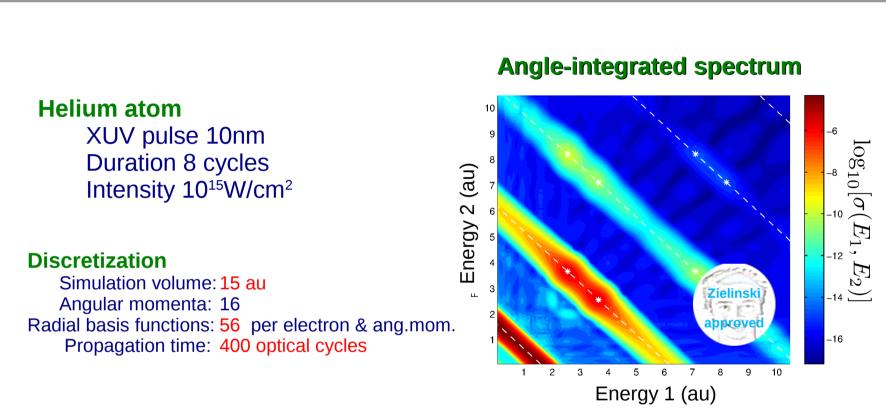
Double-ionization

t-SURFF for two-electron systems: double ionization

[A. S., New. J. Phys., 14, 085008 (2012)]

Spectrum in D – integrate flux $S \rightarrow D$

$|\vec{r_2}|$ S-D-surface values/derivatives Flux S Need solution in region S \overline{S} DDynamics is entangled: Independently for each Volkov k, solve <u>one</u> ionic problem in $[0, R_c]$ Flux $S \rightarrow D$ R_c (perfectly parallelizable) Flux S Volkov BSimilar for flux $\overline{S} \rightarrow D$ B→Sō R_c k₁ $|\vec{r_1}|$ 0


Equations on S

$$b(k_1, n, t) \dots \text{ coefficients for ionic basis } |\xi_n > \text{ in } [0, \mathbb{R}_c]$$

$$i \frac{d}{dt} b(\vec{k}_1, n, t) = \sum_m \langle \xi_n | H_{ion}(t) | \xi_m \rangle b(\vec{k}_1, m, t) \dots \text{ ionic time-evolution}$$

$$- \langle \vec{k}_1, t | [H_v(t), \theta_1] \langle \xi_n | \Psi(t) \rangle \rangle \dots \text{ flux } \mathbb{B} \to \mathbb{S}$$

Double-ionization of Helium at XUV wave length

Matches in detail with calculations by S. Nagele et al., box size ~ 1000 au

Run time:

4 hours on 16 CPUs (2-electron part) 3* hours on 128 CPUs (spectra from surfaces)

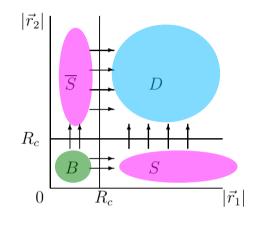
(*)Spectral calculation is fully parallel, effort $\propto \sqrt{\text{number of spectral points}}$

Effort for two-electron calculations

Inner region (B)

Box sizes $R_c \times R_c \sim 20 \times 20$ a.u. Radial discretization points $N_1 \times N_2 \sim 40 \times 40$ Angular momenta: wave-length dependent XUV: $M \times L_1 \times L_2 \sim 2 \times 4 \times 4$ NIR: $M \times L_1 \times L_2 \sim 4 \times 40 \times 40$

Single ionization spectra (S)


Solve one (hydrogen-like) ionic TDSE for each channel **c**

One time-integral for each momentum **p** in the channel

Double ionization spectra (D)

One ionic TDSE with source term for each momentum p_2 ,

One time-integral for each momentum pair (p_1, p_2)

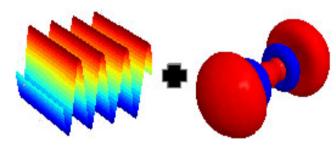
$$i\frac{d}{dt}\Phi_{\boldsymbol{c}}(\vec{r}_1) = H_{ion}(\vec{r}_1)\Phi_{\boldsymbol{c}}(\vec{r}_1)$$
$$\int dt \ \mathbf{f}[\vec{p}, \Phi_{\boldsymbol{c}}(|\vec{r}_1| = R_c)]$$

$$i\frac{d}{dt}\Phi_{\vec{p}_{2}}(\vec{r}_{1}) = H_{ion}(\vec{r}_{1})\Phi_{\vec{p}_{2}}(\vec{r}_{1}) + S_{\vec{p}_{2}}(\vec{r}_{1})$$
$$\int dt \ g[\vec{p}_{1}, \Phi_{\vec{p}_{2}}(|\vec{r}_{1}| = R_{c}, t)]$$

Complex atoms and small molecules

- ✓ Integration with quantum chemistry (COLUMBUS)
- ✓ Technical remarks
- \checkmark Emission from Ar and N₂

Ionic core dynamics (quantum chemical)


Anti aumonatriza

for molecular photo-emission...

Combine complex scaled basis χ_i with ionic CI functions Φ_c (COLUMBUS) Goals: Reliable strong-field ionization rates Accurate photo-electron spectra

$$\psi_{i,c}(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_n) = \mathcal{A}\left[\chi_i(\vec{r}_1) \Phi_c(\vec{r}_2, \dots, \vec{r}_n)\right]$$

$$\Psi = \sum_{c=1}^{N_{core}} \sum_{i} C_{i,c}(t) \psi_{i,c}$$

Difficulties:

Get CI wave function (solved) Basis size (endless story) Messy matrix elements (solved) Over-completeness issues (solved) Gauge (solved) Many thanks for access to COLUMBUS <u>wave functions</u> H. Lischka Th. Müller J. Pittner

Core-dynamics Anti-Symmetrization Gauge

Gauge dependence of the approach

Idea of the quantum chemistry basis

Core electron dynamics largely within field free bound states Ψ_{i}

Length gauge:

x and p have their standard meaning

Functions Ψ_i correspond to field free states also in presence of IR

<u>Velocity gauge:</u>

Corresponds to a time-dependent boost $p \rightarrow p + eA(t)/c$ Functions $e^{-i\vec{r}\cdot\vec{A}(t)}\Psi_i(\vec{r})$ correspond to field free state

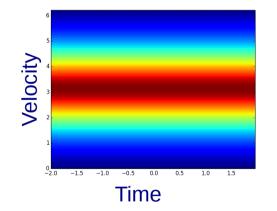
At strong IR fields exp[-irA(t)] can strongly differ from 1 across the Ψ_i

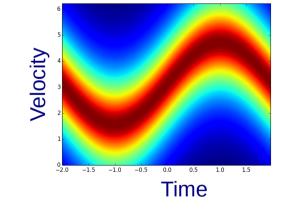
(Compare the debate about the "correct" gauge in SFA)

Computations more efficient in velocity gauge => local gauge transform on the bound state range (tricky business)

Physics implications of gauge

Gauge is nothing but math – multiply everything by $U(t) = \exp[-i\vec{A}(t)\cdot\vec{r}]$


Velocity gauge is an accelerated frame of reference


Change of momentum coordinate $\vec{p} \rightarrow \tilde{\vec{p}} = \vec{p} + \vec{A(t)}$

Velocity distribution of $\Phi_0(\vec{r}) = \exp(-r)$

Velocity gauge

So, which distribution is your choice?

Length gauge is the natural* choice IF we believe the system remains close to $oldsymbol{\Phi}_{0}$

(*) for SFA, Coupled-Channels, R-matrix,...

Numerical aspects of gauge

While length gauge may be more "natural"...

Velocity gauge is "better" for numerical calculations

Smaller momenta

When the laser-imposed boosts become comparable to the initial state momentum spread

the canonical momentum-range covered is smaller

- → Fewer phase-wiggles in your wave-function
- \rightarrow Fewer angular momenta $L = \vec{r} \times \vec{p}$ important at large |r|

Efficient absorption

irECS – the by far most efficient (and the only exact) absorption method for TDSE requires velocity gauge

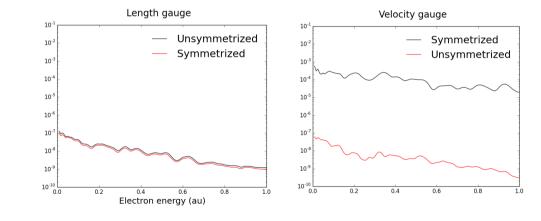
Break the spell – mix the gauges!

Issues: rapid, time-dependent change or discontinuity of solution in the transition region length ← → veloctiy

Core-discretization is gauge sensitive

Non-interacting system H(x,y) = h(x) + h(y)

Ansatz + exchange (triplet) $\Psi(x, y, t) = \phi(x, t)\chi(y, t) - \chi(x, t)\phi(y, t)$


Matrix element

$$\begin{split} \langle \Psi | H | \Psi \rangle &= \langle \phi | \phi \rangle \langle \chi | h | \chi \rangle + \langle \phi | h | \phi \rangle \langle \chi | \chi \rangle \\ & - \langle \chi | \phi \rangle \langle \phi | h | \chi \rangle - \langle \chi | h | \phi \rangle \langle \phi | \chi \rangle \end{split}$$

 $\langle \chi(t) | \phi(t) \rangle = 0$ for exact time-evolution $\langle \chi(t) | \phi(t) \rangle \neq 0$ for approximate evolution of $| \phi(t) \rangle$

Importance of the effect

System:non-interactingHePulse:1 x 1015 W/cm2400 nmDiscretization:4 coupled channels

- ** Minimize core-polarization (→ length gauge)
- ****** Describe remaining polarization correctly:
 - e.g. xSCF, small phase-space grid for one more electron
- ** Possibly: separate spin from exchange symmetry (?)

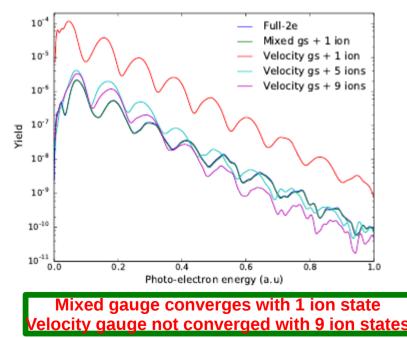
Numerical efficiency of gauges – single electron

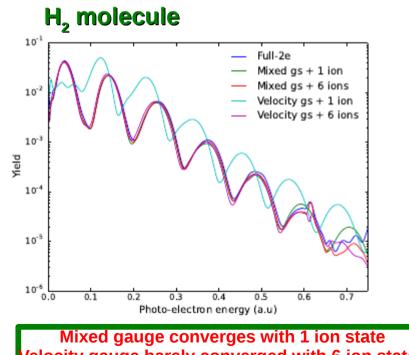
1d model electron density **3d H-atom electron density** Single-cycle pulse, 3-cycle pulse, 800 nm, 25% ionization 800 nm, 16% ionization No absorption (large box) irECS absorption (box 30 au) Discretization adjusted Discretization adjusted for 10⁻⁴ relative error For ~ 10^{-3} relative error 10⁰ 10 Electron density $n_0(x)$ 0 10 10 10 10 10 َتِ^{10^{.2}} 10-3 10' 10 10 10⁰ 10⁰ Velocity L_{max}=21 Velocity gauge N=3000 T=71077 10 L 10⁻¹ 10⁻² 10⁻³ ength gauge N=4000 T=87922 Mixed, length [0, 5] L_{max}=30 Relative error ked sudden N=3000 T=71025 Mixed, length [0,20] L_{max}=35 10 10 10 -1010 x (a.u.) 10 15 r (a.u.) Velocity and mixed comparable Penalty for size of length-gauge region Length less efficient

20

25

Numerical efficiency of gauges – He and H₂


Total photoelectron spectra


3-cycle pulse, 400 nm, 10¹⁴ W/cm²

Compare

Converged 2-electron calculation with ionic core dynamics calculations in velocity and mixed gauges

Helium

Velocity gauge barely converged with 6 ion states

A flavor of the complexity of matrix elements

Two-particle (electron-electron) interaction: $H_2 = \sum_{i,j,i < j} h_{ij}$ Electron + ion basis function:

$$\psi_{i,I} = \mathcal{A}\left[\chi_i(\vec{r}_1)\Phi_I(\vec{r}_2\dots\vec{r}_n)\right]$$

Matrix element:

$$\begin{split} \left| \psi_{i,I} \right| H_{2} \left| \psi_{j,J} \right\rangle &= (n-1) \sum_{kl} \langle \phi_{k} \chi_{i} | \phi_{l} \chi_{j} \rangle \rho_{kl;IJ}^{(1)} \\ &+ \frac{(n-1)(n-2)}{2} \langle \chi_{i} | \chi_{j} \rangle \sum_{klmn} \langle \phi_{k} \phi_{l} | \phi_{m} \phi_{n} \rangle \rho_{klmn;IJ}^{(2)} \\ &- (n-1) \sum_{kl} \langle \phi_{k} \chi_{i} | \chi_{j} \phi_{l} \rangle \rho_{kl;IJ}^{(1)} \\ &- (n-1)(n-2) \sum_{klmn} \langle \phi_{k} \chi_{i} | \phi_{m} \phi_{n} \rangle \rho_{klmn;IJ}^{(2)} \langle \phi_{l} | \chi_{j} \rangle \\ &- (n-1)(n-2) \sum_{klmn} \langle \phi_{k} \phi_{l} | \chi_{j} \phi_{n} \rangle \rho_{klmn;IJ}^{(2)} \langle \chi_{i} | \phi_{m} \rangle \\ &- \frac{(n-1)(n-2)(n-3)}{2} \sum_{abcdef} \langle \phi_{a} \phi_{b} | \phi_{d} \phi_{c} \rangle \rho_{abcdef;IJ}^{(3)} \chi_{i} | \phi_{f} \rangle \langle \phi_{c} | \chi_{j} \rangle \end{split}$$

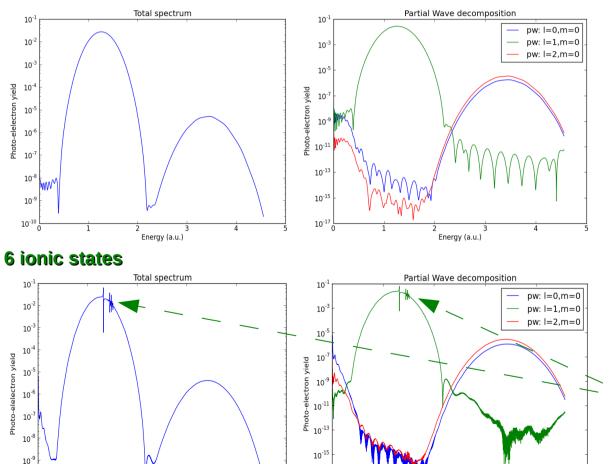
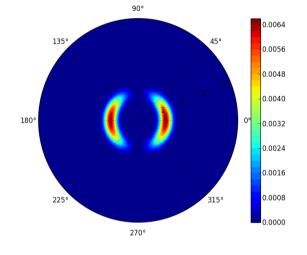

Non-standard 3-particle reduced density matrix for ionic states Φ_{I}, Φ_{J}

Photo-electron spectra of He, H₂, N₂

XUV photo-ionization of Helium

Pulse parameters: λ = 21nm, 3-cycle, cos⁸ envelope, linear polarization

1 ionic state


10⁻¹⁷

10⁻¹⁹

4

0

Energy (a.u.)

LUDWIG-

М

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Doubly excited states / Fano resonances

State	Literature[a]	Calculation
2s 2p	1.307	1.313
2s 3p	1.436	1.441
2s 4p	1.466	1.474

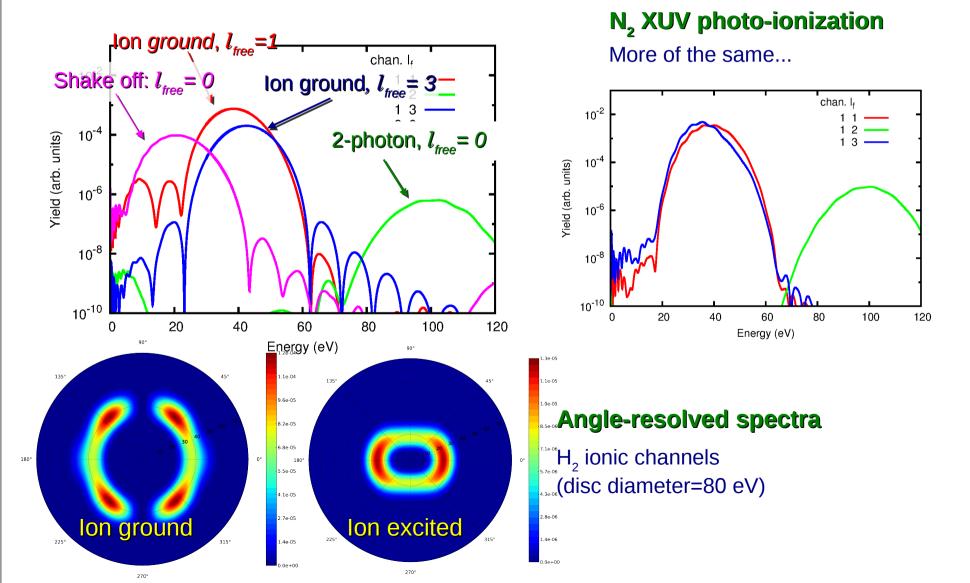
[a] J Chem. Phys. 139, 104314 (2013)

10⁻¹⁰

10-11

0

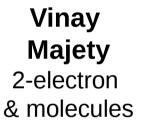
1


2

3 Energy (a.u.)

Photo-ionization of H₂ and N₂

H₂ XUV photo-ionization


Pulse: 21 nm, 3 cycle FWHM, 10¹⁵W/cm²

Frontiers of Intense Laser Science KITP, August 19, 2014 S. 48

Team

Mattia Lupetti Solids and surfaces

Alejandro "the convergator" Zielinski 1-e elliptic 2-electron

Jakob Liss Solids and surfaces

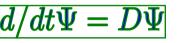
Publications

[A.S., Phys. Rev. A81, 53845 (2010)] [L. Tao and A.S., New. J. Phys. 14, 013021 (2012)] [A. S., New. J. Phys., 14, 085008 (2012)] [A.S., HP. Stimming, N. Mauser, J.Comp.Phys 269, 68 (2014)]

Finances

Munich Advanced Photonics Excellence Cluster

Vienna Computational Materials Science FWF Special Research Program


Marie Curie ITN

Code: tRecX = tSURFF + irECS (working title)

All codes united in a single, C++ code based on recursive structures

General dimensions and coordinate systems

PDEs of the form

(includes e.g. Maxwell's equations)

Preparing for public access Can be made available for collaborations immediately

Doxygen documentation

tRecs: Class Index		
S d file:///home/scrinzi/projects/TDSEsolver/do	c/html/classes.html	🗇 🗸 🕼 🖓 greek alphabet 🛛 🦀 🕌
Google Maps ኣဌ LMU Webmail 🔼 Wetter 🗌 Loretto 🗔	MVV - Fahrplanau 🗌 CAPP 🔹 Verkehr 🖉 Frontier	s in Intens 194 lackundfarbe24 🛅 QuantumOptics 🗸
Recs		
Reus		
Main Page Namespaces Classes Files		Q* Search
Class List Class Index Class Hierarchy Class Mem	bers	
Class Index		
AIBICID	E F G H K L M N 0 P Q R S T	U W Z
_	DiagonalOperator	_
A	Discretization	
ActivePlusIonDisc	DiscretizationDerived	LaguerreIntegrator
Afield	SpectralDiscretization::DontKeepZeros	LaguerrePolynomial
Afield tsurff		lapackWrapper
PseudoPotential::Ag100	E	LaserPulse
PseudoPotential::Ag111	SpectralDiscretization::EigenvalueCriterion	LeftLaguerre
PseudoPotential::Al100	emFieldComponent	LegendreAssociated
PseudoPotential::Al111	emFields	LegendreIntegrator
SpectralDiscretization::AllUpToMaxEigenvalue	Evector	LegendreIntegrator2
ao		LegendrePolynomial
ApplyOperatorClass		PseudoPotential::Li110
Arnoldi	FieldsJakob	IonicBasisDiscretization::LinearIndex
Arnoldi_hev_check1	FunctionSet	IonicBasisDiscretization::LinearIndexUpDow
Arnoldi_hev_sae_disc		Lmr_Proj
Arnoldi_using_root_tracing	G	Lmr_tsurff
Arnoldi_using_s0_inverse	Gauge	PotentialBarrierDisc::localInverseOverlap
Arnoldi_with_extra_projectors	GauntCoeffTable	LU
ArrayOperation	GenDisc	-
ARrcStdEig	GeneralArnoldiComplex	M
PseudoPotential::Au100	GeneralArnoldiDouble	PseudoPotential:material
PseudoPotential::Au111	GeneralDerivedExtension	MatrixStorage::matrix
Axis	GlobalLowRank_Discretization	MatrixStorage
-	Grid	PseudoPotential::Mg0001
в		MinimalDisc
BasicDisc		mo
BasisFunctionsSet	HarmonicDistanceInteraction	mo_store
BasisMat	HarmonicOscillator	ModifiedLegendre
BacieSat	HarmonicOscillatorInteraction	mol eas chalf

tRecX demo input

```
--- coordinates and discretization ---
Axis: coordinate,nCoefficients,lower end, upper end,functions,order
M,1
Eta,3
R,120,0.,60.,legendre,20
--- Hamiltonian for the Hydrogen atom ---
Operator: Hamiltonian
<1><1><1><1/2.dJd-Jr>+<1><1/2.dJ1q2d><rJr>
]
--- laser pulse definition ---
Laser: shape, I(W/cm2), FWHM, lambda(nm),phiCEO
gauss, 0.5e14, 110., 100000.,0
--- what to plot along which coordinates ---
Plot: coordinate,points,lowerBound,upperBound
R,51,0.,12.
Eta,21,-1.,1.
```