Laser intensity at nonlinear QED:

A realizable scheme

C. H. Raymond Ooi

Associate Professor

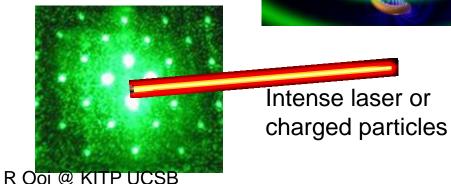
Department of Physics, Faculty of Science

50603 Kuala Lumpur, Malaysia

rooi@um.edu.my

R Ooi @ KITP UCSB

Motivation & Vision


 How to produce laser field with intensity that makes quantum vacuum nonlinear? Nonlinear QED: A New Science

Gravitational force of light

K S Ng and C H Raymond Ooi, (2013) "Gravitational Force of Bessel Light Beam", Laser Physics 23, 035003.

Shield for Directed Energy

9/3/2014

A super laser that can destroy an asteriod and save mankind?

"Dinosaur-Killer" Asteroid Crater Imaged for First Time National Geographic News March 7, 2003

A high-resolution map from NASA's Shuttle Radar Topography Mission (SRTM), released yesterday, has provided the most telling visible evidence to date of a 112-mile (180-kilometer) wide, 3,000-foot (900-meter) deep impact crater, the result of a collision with a giant comet or asteroid on one of Earth's all-time worst days.

Laser stargate

Consequences of Dirac's Theory of the Positron

Zeitschr. Phys. 98, 714 (1936).

Folgerungen aus der Diracschen Theorie des Positrons.

Von W. Heisenberg und H. Euler in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

$$\mathfrak{L} = \frac{1}{2} (\mathfrak{E}^2 - \mathfrak{B}^2) + \frac{e^2}{\hbar c} \int_0^\infty e^{-\eta} \frac{d\eta}{\eta^3} \left\{ i \eta^2 (\mathfrak{E} \mathfrak{B}) \cdot \frac{\cos{(\frac{\eta}{|\mathfrak{E}_k|} \sqrt{\mathfrak{E}^2 - \mathfrak{B}^2 + 2i(\mathfrak{E} \mathfrak{B})}) + \mathrm{conj.}}}{\cos{(\frac{\eta}{|\mathfrak{E}_k|} \sqrt{\mathfrak{E}^2 - \mathfrak{B}^2 + 2i(\mathfrak{E} \mathfrak{B})}) - \mathrm{conj.}}} \right. \\ \left. + |\mathfrak{E}_k|^2 + \frac{\eta^2}{3} (\mathfrak{B}^2 - \mathfrak{E}^2) \right\}$$

VOLUME 91, NUMBER 8

PHYSICAL REVIEW LETTERS

week ending 22 AUGUST 2003

Light Intensification towards the Schwinger Limit

Sergei V. Bulanov,* Timur Esirkepov,† and Toshiki Tajima

REVIEWS OF MODERN PHYSICS, VOLUME 78, APRIL-JUNE 2006

Nonlinear collective effects in photon-photon and photon-plasma interactions

Mattias Marklund* and Padma K. Shukla*

PHYSICAL REVIEW A 81, 022122 (2010)

Nonperturbative multiphoton electron-positron-pair creation in laser fields

Guido R. Mocken,* Matthias Ruf,† Carsten Müller,‡ and Christoph H. Keitel§

PHYSICAL REVIEW LETTERS PRL **100**, 010403 (2008)

week ending 11 JANUARY 2008

Nonperturbative Vacuum-Polarization Effects in Proton-Laser Collisions

A. Di Piazza,* K. Z. Hatsagortsyan,† and C. H. Keitel‡

New Journal of Physics 14 (2012) 103002

Photon-photon scattering in collisions of intense laser pulses B King1,2 and C H Keitel1

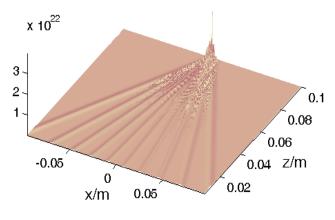
PHYSICAL REVIEW LETTERS Volume 79, Number 9

1 September 1997

Positron Production in Multiphoton Light-by-Light Scattering

PHYSICAL REVIEW LETTERS PRL 97, 121302 (2006)

22 SEPTEMBER 2006


Signatures of the Unruh Effect from Electrons Accelerated by Ultrastrong Laser Fields

R Ooi @ KITP UCSB Ralf Schützhold, 1,* Gernot Schaller, 1 and Dietrich Habs² 9/3/2014

5

Outline

- Recent related works on nonlinear QED
- Scheme to generate superintense laser field
- Synchronization method
- Design constraints
- Theoretical justifications
- Simulated results of intensity distributions

Schwinger's limit

Schwinger field
$$E_S=m_0c^2/e\lambda_c$$
 1. $3233\times 10^{18}~{
m V/m}$ $\lambda_c=\hbar/mc\sim c\delta t$ ~0.386pm, Compton length

Schwinger intensity $I_S = 10^{29} \text{ W/cm}^2 \text{ or } 10^{33} \text{ W/m}^2$

The probability of spontaneous production of pair creation per unit time per unit volume

$$w = \frac{1}{\pi^2} \frac{\alpha}{\delta t} \frac{1}{\lambda_c^3} \left(\frac{E}{E_S}\right)^2 \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-n\pi \frac{E_S}{E}\right)$$
J. Schwinger, Phys. Rev. 82, 664 (1951). $\delta t = \hbar/m_0 c^2$

The number of pair creation $N = V \tau_p w$

1 pair at 10²⁷ W/cm²

Petawatt-class ultra-short quantum beam facility(UQBF) of the APRI, GIST

ASILS 4 2008

	Erg/J	Duration /fs	P/PW	I/W/cm2	waist	focus
LLNL	660	440	1.5	0.7^21	3.2cm 10 ¹⁴	5mic
HERCULES	20	60	0.3	0.5^23	4inch or 10cm	1.3mic
UK/Vulcan						

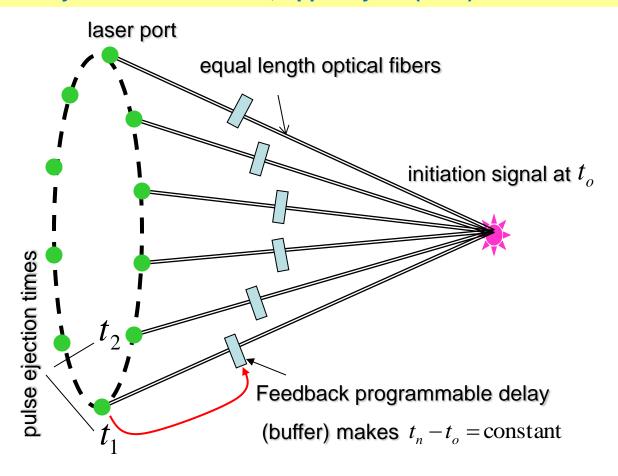
Table top max intensity 10^23 W/cm² For higher intensity we need larger beam size and pump power

NIF & LMJ:

2MJ at 350nm in 3ns

5MJ at 530nm in 10-20ns => pump CPA giving 1 MJ in 10fs (1 micron²) $I \sim P_{th} / \lambda^2$

Fsat of amplifier = hv/sigma ~1 for Ti:Sap , ~40 for Yb:glass


Grating: 10m, Fd ~ $1 J/m^2$

Phase controlled by deformable parabolic mirror

Merging of Multiple PW pulses - Unfocused Zvacuum Θ_n (x_n, \check{z}_n) **X** 10¹⁹ x 10¹⁹ I(W/m²) N=30 I(W/m²) N=20 z/λ Z/λ 0 9/3/2014 4 106 R Ooi @ KITP UCSB $-2 x/\lambda^0$ -2 χ/λ

Pulse synchronization / initiation scheme

Superintense laser fields in circular array: effects of phase and pulse jitters, C H Raymond Ooi & TY Tou, Appl Phys B (2010) 101: 825–833

Optical buffer compensates for the different amplification duration of each laser

Advanced Ti:Sa OPCPA can produce femtosecond laser pulse with

$$U_o = \frac{1}{2} \varepsilon_0 E_0^2 c \tau A_o = 200 J$$
 duration $\tau = 50 f$ s and a waist of $w_0 = 3.6 mm$ (cross section $A_o = \pi (w_0/2)^2 = 10^{-5} m^2$).

$$P_{o} = \frac{1}{2} \varepsilon_{0} E_{0}^{2} c A_{o} = 4PW,$$

$$I_{o} = \frac{1}{2} \varepsilon_{0} E_{0}^{2} c = 4 \times 10^{20} W/m^{2}$$

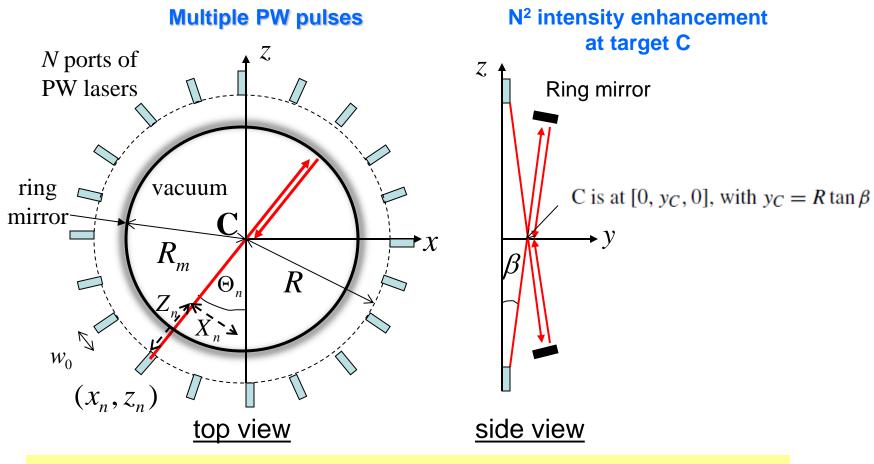
$$E_{0} = 5 \times 10^{11} V/m$$

Below damage threshold $10^{22}W/m^2$ of optical surfaces, multiple beams can still be manipulated by optics.

For N = 10 beams directed from the edge of a circle to the center, intensity increases by 100 time to $4 \times 10^{22} W/m^2$.

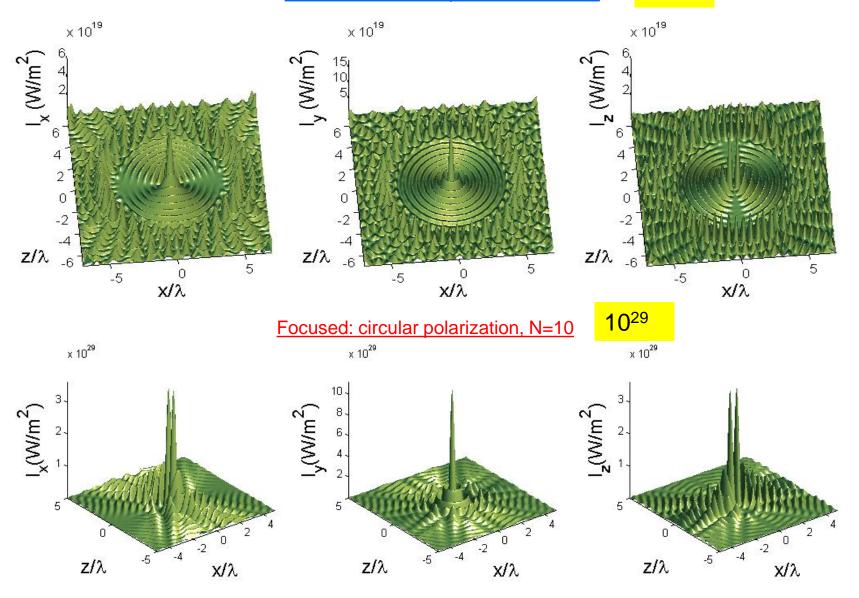
Intensity is still (10⁴ times) lower than the current record $5 \times 10^{26} Wm^{-2}$.

Output waist is not focused to diffraction limit in order to avoid strong energy spread upon propagation towards C.

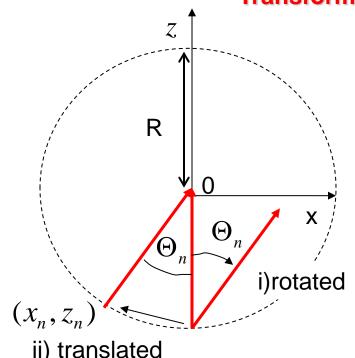

If PW lasers focused to the diffraction limit of $3.6\mu m$ intensity would increase 10^6 times, towards $4 \times 10^{28} W/m^2$.

We don't stop at PW

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 5, 031301 (2002)


Zettawatt-exawatt lasers and their applications in ultrastrong-field physics

The Scheme: Multiple lasers in circular geometry



CH Raymond Ooi, JOURNAL OF APPLIED PHYSICS 107, 043110 2010

The ring mirror does the "focusing" effect, replacing deformable mirror

Transformation to circular geometry

$$X_n = (x - x_n)\cos\Theta_n - (z - z_n)\sin\Theta_n$$

$$Z_n = (x - x_n)\sin\Theta_n + (z - z_n)\cos\Theta_n$$

$$x_n = -R\sin\Theta_n, z_n = -R\cos\Theta_n$$

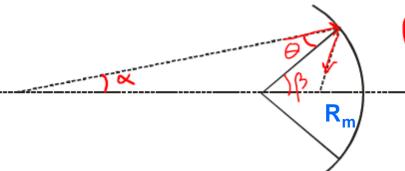
ii) translated

$$\mathbf{E}_{n}(x, y, z, t) = \hat{u}_{n} E_{o} e^{-i(\omega \tau_{n} + \varphi_{n})} F(Z_{n}) \exp\{-F(Z_{n}) \rho_{n}^{2}\} \exp\{-(\frac{\tau_{n} + \delta_{n}}{T})^{2}\}$$

Imperfect sync

$$F(Z_n) = \frac{1}{1 - iZ_n^r / z_R}$$

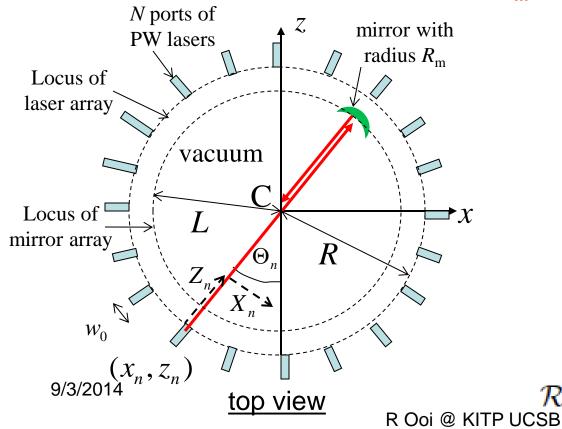
$$z_R = k_0 w_0^2 / 2$$

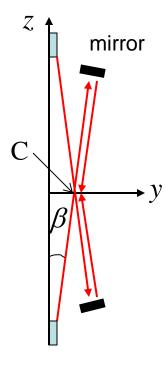

$$F(Z_n) = \frac{1}{1 - iZ_n^r / z_R} \qquad z_R = k_0 w_0^2 / 2 \qquad \rho_n = \sqrt{X_n^2 + y_n^{r^2}} / w_0 \qquad \tau_n = t - Z_n^r / c$$

$$\begin{pmatrix} Z_n^r \\ y_n^r \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} Z_n \\ y_n \end{pmatrix} \quad X_n = \Delta x_n \cos \Theta_n - \Delta z_n \sin \Theta_n \quad \Delta x_n = x - x_n, x_n = -R \sin \Theta_n, \\ Z_n = \Delta x_n \sin \Theta_n + \Delta z_n \cos \Theta_n \quad \Delta z_n = z - z_n, z_n = -R \cos \Theta_n$$
9/3/2014 R Ooi @ KITP UCSB

$$Z_n = \Delta x_n \sin \Theta_n + \Delta z_n \cos \Theta_n$$
R Ooi @ KITP UCSB

$$\Delta x_n = x - x_n, x_n = -R \sin \Theta$$
$$\Delta z_n = z - z_n, z_n = -R \cos \Theta$$


Reflection off mirror



Ring mirror : $L=R_m$ but focus will NOT be at C the center of the circle C but at $R_m/2$

C H Raymond Ooi & TY Tou, Appl Phys B (2010) 101: 825–833

Using piecewise mirrors with R_m=2L: Focus will be at C

$$\mathcal{R} = \frac{R}{\cos \beta}$$
 and $\mathcal{L} = \frac{L}{\cos \beta}$ 16

Electric field after reflection by mirror

$$\mathbf{E}_n' = \mathbf{E}_{n,o}' e^{-i(\omega \tau_n' + \varphi_n)} \mathcal{F}_n e^{-\mathcal{F}_n \rho_n'^2} e^{-(\frac{\tau_n' + \delta_n}{T})^2}$$

$$\mathcal{F}_n = \mathcal{F}(Z'_n) = i \frac{z_{Rm}}{q_m(Z'_n)}$$
 $\rho'_n = \sqrt{X'_n^2 + (y''_n)^2}/w_0$

$$z_{Rm} = k_0 w_m^2 / 2, \ q_m(Z_n') = Z_n' + i z_{Rm} \qquad w_m \simeq w_0 \mathcal{L} / z_R$$

$$X'_n = x \cos \Theta_n - z \sin \Theta_n$$

$$Z_n' = x \sin \Theta_n + z \cos \Theta_n$$

$$\tau_n' = t - (R + 2R_m)/c + Z_n'/c$$

$$w_m = w_0 \sqrt{\Lambda^2 \left(\frac{S^2}{z_R^2} + 1\right) + \mathcal{L}\frac{(2\Lambda S + \mathcal{L})}{z_R^2}} = w_0 \xi \tag{7}$$

where
$$S = \mathcal{L} + \mathcal{R}$$
, $\mathcal{L} = \frac{L}{\cos \beta}$, $\mathcal{R} = \frac{R}{\cos \beta}$ and $\Lambda = 1 - \frac{2\mathcal{L}}{R_m}$

Boundary condition: Matching the fields at Eo and Eo' at the mirror

$$E_o F_n(\mathcal{L} + \mathcal{R}) = E_o' \mathcal{F}_n(\mathcal{L})$$
 at the reflection points \mathbf{R}_n^m

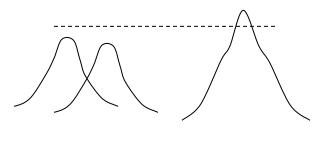
mirror position
$$\mathbf{R}_n^m = [-\frac{L}{R}x_n, (R+L)\tan\beta, -\frac{L}{R}z_n]$$

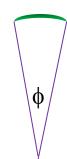
Field enhancement factor

The boundary condition gives
$$E'_o = E_o \frac{1 - i \mathcal{L}/z_{Rm}}{1 - i (\mathcal{L} + \mathcal{R})/z_R}$$

After reflection from the mirror, the intensity (at origin C) increases by a factor of

$$\epsilon = \frac{\mathcal{L}^2/z_{Rm}^2 + 1}{(\mathcal{L} + \mathcal{R})^2/z_R^2 + 1}$$


Intensity enhancement for N laser pulses at point C after reflection from the mirror


$$\eta = \frac{I_N}{I_o} = N^2 \epsilon \simeq \frac{N^2 \mathcal{L}^2}{z_{Rm}^2} = \frac{N^2 \mathcal{L}^2 \lambda^2}{\pi^2 w_m^4} = (N \frac{z_R}{\mathcal{L}})^2$$

boosted by a small L radius of mirror array?

Constraints

Mirror radius cannot be reduced below a value such that the beams overlap, and constructive interference creates region of intensity beyond the damage threshold

$$2\pi R = \alpha' N R 2\phi'$$
 with $\alpha' \ge 1$

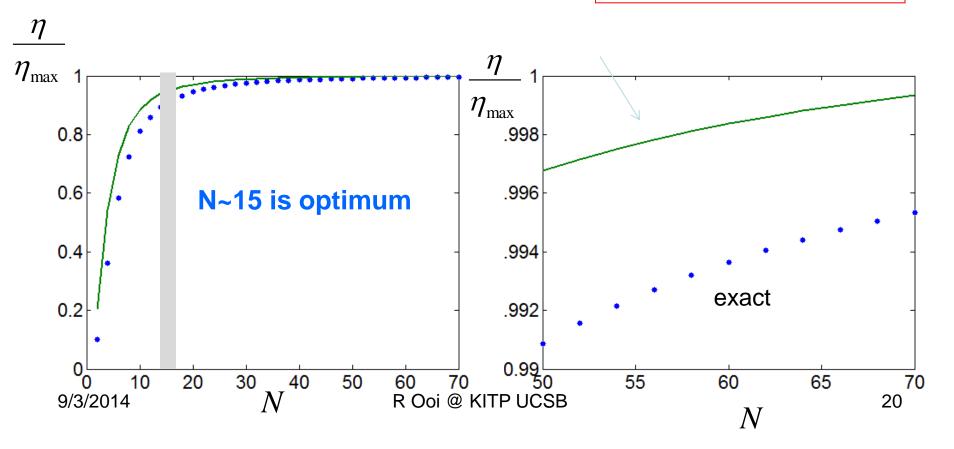
$$\begin{array}{ccc}
 & 2\pi R = \alpha' N R 2 \phi' & \text{with } \alpha' \geq 0 \\
 & \phi & L = \frac{w_0}{\sin \phi} = \frac{w_0}{\sin \frac{\pi}{\alpha N}} \simeq \frac{\alpha N w_0}{\pi}
\end{array}$$

Paraxial approximation

$$\theta^2 = \left(\frac{\lambda}{\pi w_m}\right)^2 \simeq \left(\frac{w_0}{\mathcal{L}}\right)^2 \simeq \left(\frac{2w_0}{R_m}\cos\beta\right)^2 << 1$$

Combined constraint
$$\theta = \cos \beta \sin(\pi/\alpha N) \ll 1$$

$$N_{\min} = \frac{\pi}{\alpha \sin^{-1}(\theta_{\max}/\cos \beta)}$$


$$E_{\min} = \frac{w_0 \cos \beta}{\theta_{\max}}$$

Optimum number of lasers

$$\eta \simeq \left(\frac{Nz_R}{\mathcal{L}}\right)^2 = \left(\frac{N\pi w_0}{\lambda} \sin \frac{\pi}{\alpha N} \cos \beta\right)^2$$

Limit of very large N gives maximum enhancement

$$\eta_{\text{max}} = \left(\frac{\pi^2 w_0}{\alpha \lambda} \cos \beta\right)^2$$

Ultimate Super- field

Laser fluence must be less than the mirror damage threshold

$$\frac{1}{2}\varepsilon_0 E(R_m)^2 cT < F_d \simeq 1J/cm^2$$

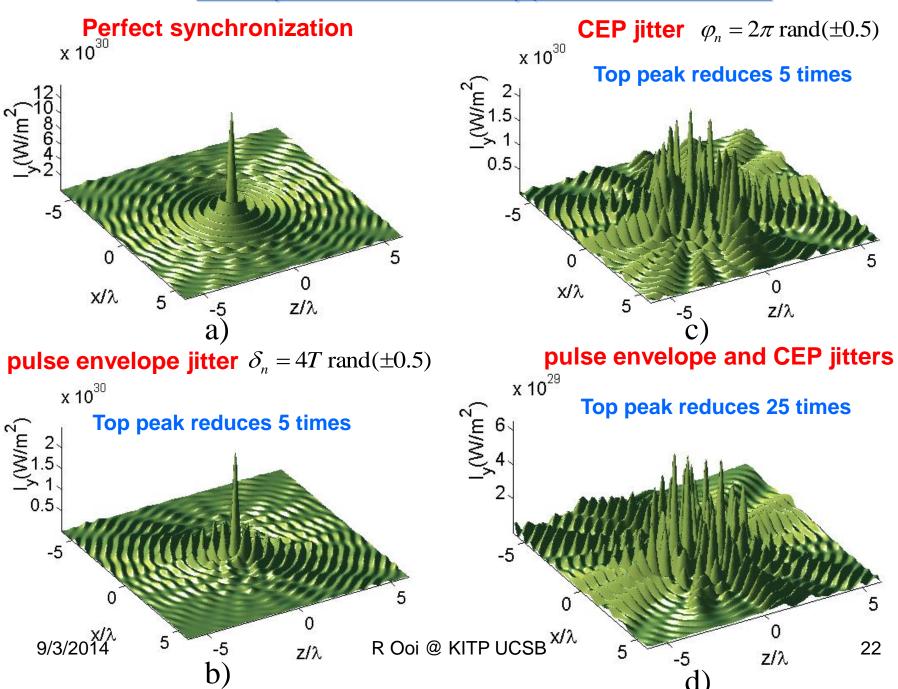
$$T = 100 \text{ fs}$$

$$I_o^{\text{max}} = F_d/T = 10^{17} \text{Wm}^{-2}$$

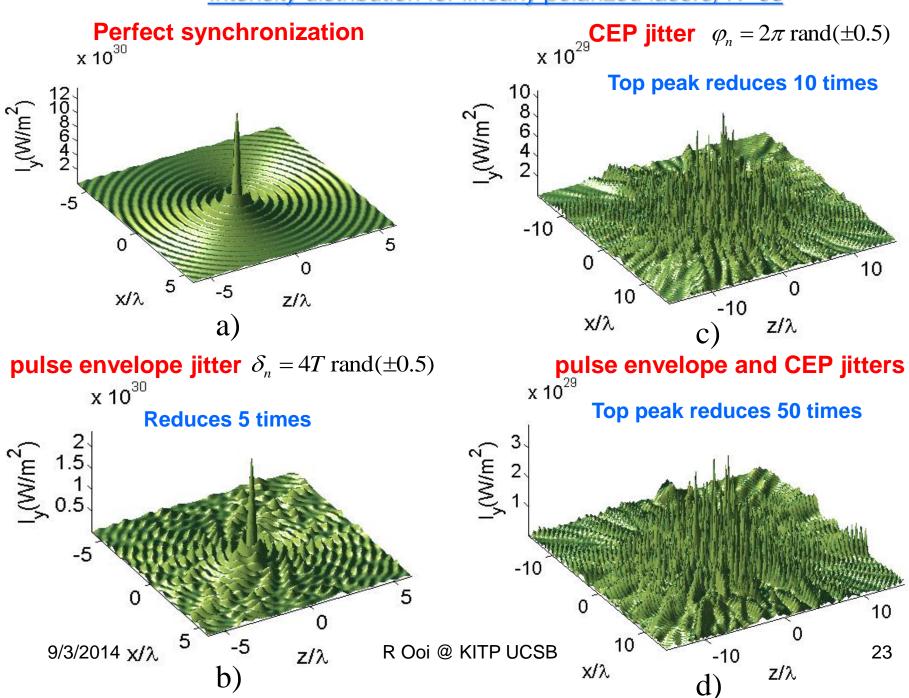
Final expression for superintense field (scales with beam diameter), α =1. β =0

$$I^{\max} = I_o^{\max} \left(\frac{\pi w_0}{\lambda}\right)^2 \frac{10^{27-28} Wcm^{-2}}{10^{31-32} Wm^{-2}}$$

$$10^{27-28} Wcm^{-2}$$
$$10^{31-32} Wm^{-2}$$

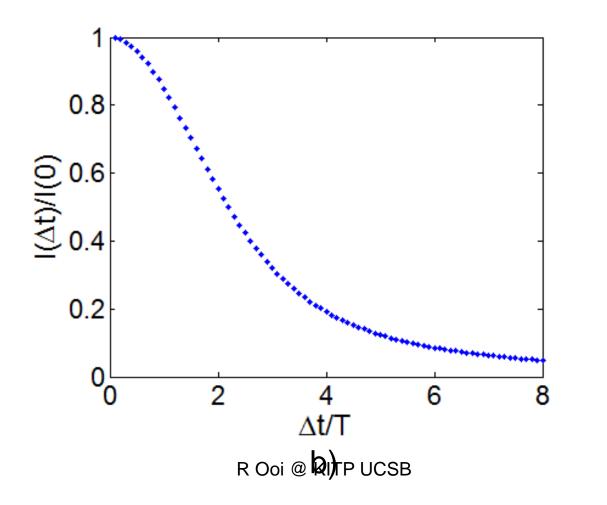

Nonlinear vacuum QED

$$N = 63, w_0 = 1 \text{m}, I_o^{\text{max}} = 10^{17} \text{Wm}^{-2} \text{ and } \lambda = 840 \text{nm},$$


OR shorter (atto) pulses 10fs with w_0 =10cm

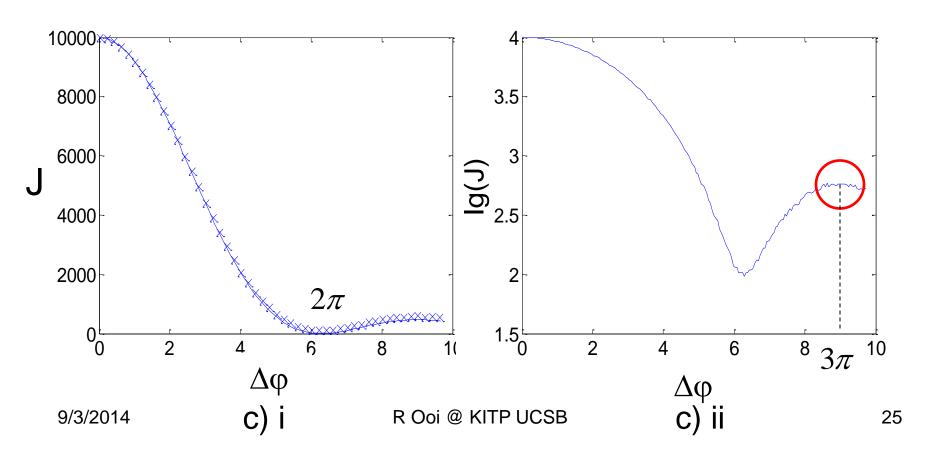
OR smaller laser near UV : w_0 =30cm and λ =280nm

Intensity distribution for linearly polarized lasers, N=20



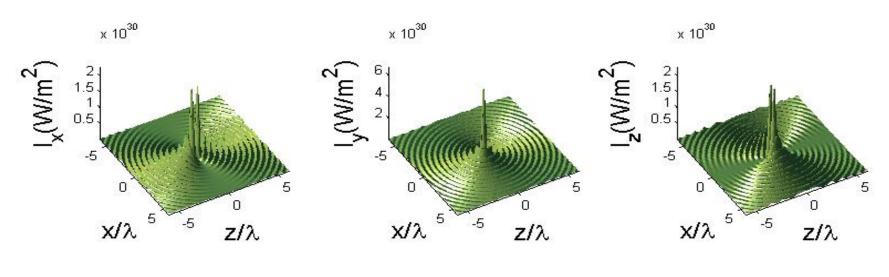
Intensity distribution for linearly polarized lasers, N=63

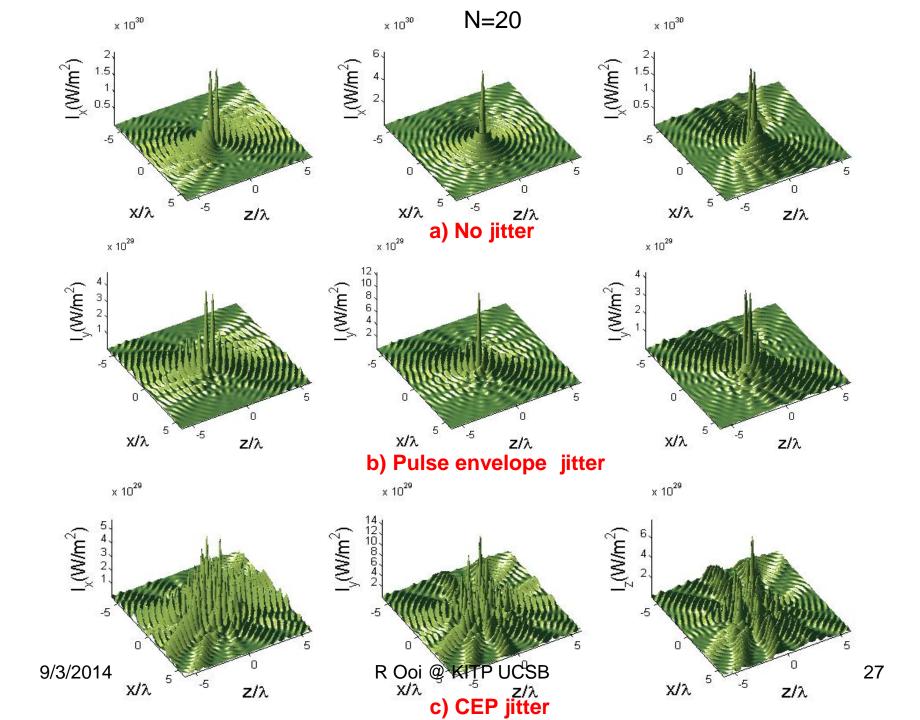
Envelope Jitters


$$\frac{I(\Delta t)}{I(0)} = \frac{1}{(2N+1)^2} \left(2\sum_{n=1}^{N} e^{-(n\Delta t/N2T)^2} + 1 \right)^2$$

CEP Jitters

$$J(\Delta\varphi) = \frac{1}{M} \sum_{k=1}^{M} \left| \sum_{n=1}^{N} e^{i\phi_n} \right|^2 \underset{N \text{ large}}{\simeq} N^2 \frac{\sin^2(\frac{\Delta\varphi}{2})}{(\frac{\Delta\varphi}{2})^2}$$


Number of random trials M=50, N=100, $\Delta \varphi = 2\pi$


Intensity distribution for circularly polarized lasers

$$I^{lin} \approx I_y^{cir} + \sqrt{2}(I_x^{cir} + I_z^{cir}).$$

N=63

a) No jitter

Conclusion

- •Multiple pulses in circular geometry can be scaled up to produce intensity beyond the nonlinear vacuum QED.
- •Unexpectedly, the enhancement does not scale with N² but with area of beam.
- •In the (worst) case without synchronizations of the CEP and the pulse timing, the intensity is sacrificed by a factor of 50 only.
- •Superintense laser is possible and should be developed to safeguard the future of mankind.

Future research

Super laser to destroy/deflect massive objects in space

Postdoc

Quantum & Laser Science group

Shailendra Singh (India)

<u>PhD</u>

C. Y. Lee (M'sia) - nonlinear photonics

PhDs

Nor H (M'sia) - quantum optics

F Mathkoor (Yemen) - quantum correlation

Ho Wai Loon (M'sia) - intense laser interactions

Davoud Ghodsi (Iran) - nanophotonics

KS Ng (M'sia) - relativistic optics

MSc

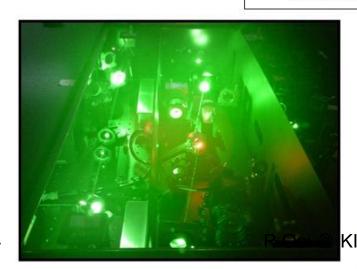
P C Seow (M'sia) - nonlinear scattering

KS Tan(M'sia) - quantum plasmonics

S. Ainisyahida (M'sia) - quantum information

KC Low (M'sia) - micro-nanophotonics

YY Khoo (M'sia) - qtm vacuum


@ KITP UCSB

Quantum and Laser Science, Femtosecond Laser Lab HIR Building, Universiti Malaya

The Femtosecond Laser.

Opening: Visiting Scientists, Post-doc and PhD/MSc students

Department of Physics, Faculty of Science 50603 Kuala Lumpur, Malaysia

Research Topics

- Quantum Optics and Quantum Information
- Nanophotonics and Plasmonics
- Nonclassical Photon Sources
- Nonlinear Optics and Laser Spectroscopy
- Novel Photonic Crystals and Structures
- Ultrafast and Ultraintense Laser Science
- Ultracold Gases, Laser Cooling and Trapping

Offers:

- Scholarships (allowances and tuition fees) for local students (CGPA> 3.2)
- •Research assistantship for foreign students
- Incentives for ISI publications

Contact: Assoc. Prof. Dr Raymond Ooi, rooi@um.edu.my, 03-7967 4092 9/3/2014 R Ooi @ KITP UCSB

