EXPERIENCE WITH THE TIME-DEPENDENT DIRAC EQUATION

Eva Lindroth

Stockholm University

Frontiers of Intense Laser Physics, KITP Aug. 28 2014

Marcus Dahlström, Stockholm-Hamburg: Attosecond delay in photoionization

Jimmy Vinbladh

XUV pump IR Probe simulation involving resonances - helium and towards many-elecron atoms

Luca Argenti, Madrid

Thomas Carette

Discussion here based on: The Time-Dependent Dirac Equation Selstø, E. L., Bengtsson PRA79, 043418 and Vanne & Saenz PRA85, 033411

Sølve Selstø, Oslo

Tor Kjellsson

Eva Lindroth (Stockholm University)

WHY THE DIRAC EQUATION?

- Intense fields drive the electron to relativistic velocities
- High nuclear charges drive the electron to relativistic velocities
- High nuclear charges (ions or heavy elements) requires relativistic structure. E.g. attosecond delays in high-Z elements.

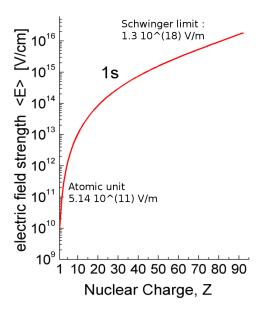
MAGNETIC EFFECTS?

 Is there any point in solutions of the Dirac equation in the dipole-approximation?

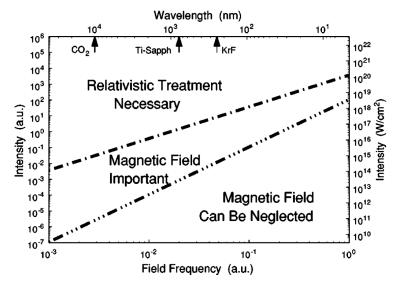
More QED?

 e⁻e⁺ Pair-production for extreme fields - should be a window where Schrödinger is insufficient and pair-production can be neglected.

FIELD & NUCLEAR CHARGE?

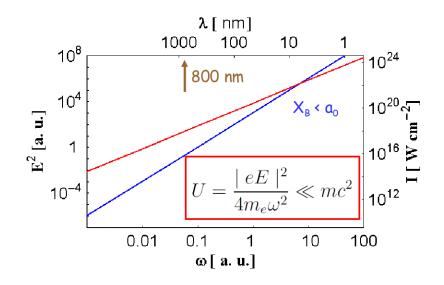


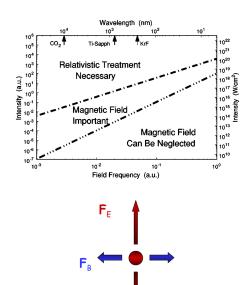
FIELDS & PHOTON ENERGIES?



From Reiss PRA63, 013409

FIELDS & PHOTON ENERGIES?





Relativistic

$$U = \frac{|e\mathbf{E_0}|^2}{4m_e\omega^2} \sim mc^2$$

Should be included if $U_p \approx mc^2/10$

Magnetic part cannot be neglected if the magnetic drift per cycle $\sim a_0$.

$$x_B \sim rac{\mid e \mathbf{E_0} \mid^2}{m^2} rac{1}{c \omega^3} \sim a_0$$

The time-dependent Dirac Equation

$$i\hbar \frac{\partial}{\partial t} \Psi = \left\{ c \boldsymbol{\alpha} \cdot (\mathbf{p} + e\mathbf{A} (\omega t - \mathbf{k} \cdot \mathbf{r})) + V(Z) + \beta mc^2 \right\} \Psi$$

E.g. electric field in z- direction and magnetic field i y- direction:

$$\mathbf{A} = A(\omega t - kx)\hat{z}$$

Solutions with A = 0 & spherically symmetric V

$$\Psi_{n,\kappa,j,m}(\mathbf{r}) = \begin{pmatrix} F_{n,\kappa,j,m}(\mathbf{r}) \\ iG_{n,\kappa,j,m}(\mathbf{r}) \end{pmatrix} = \frac{1}{r} \begin{pmatrix} P(r) \chi_{\kappa,j,m} \\ iQ(r) \chi_{-\kappa,j,m} \end{pmatrix}$$

with continuum energies from $-\infty$ to $-mc^2,$ and from mc^2 to ∞

$$F_{LARGE} \sim \Psi_{nrel}, \ G_{SMALL} \sim \frac{\sigma \cdot \mathbf{p}}{2mc} F_{LARGE}, \ \text{positive energy states}$$

vice versa for negative energy states.

PROBLEMS

- The form of the interaction
- The negative energy states
- computer time & space

The form of the interaction

For example a simple pulse in the dipole approximation

$$A_0 \sin^2\left(\frac{\pi t}{T}\right) \cos\left(\omega t\right) \stackrel{\Longrightarrow}{\underset{\text{Lorentz inv.}}{\Longrightarrow}} A_0 \sin^2\left(\frac{\pi \left(\omega t - kx\right)}{\omega T}\right) \cos\left(\omega t - kx\right)$$

with spatial dependence in both carrier and envelope Standard procedure: expand spatial part of **A** in plane waves

$$e^{\pm i \mathbf{k} \cdot \mathbf{r}} \sim \sum_{\lambda \mu} (\pm i)^k j_\lambda (kr) Y^*_{\lambda \mu} \left(\hat{k}
ight) C^\lambda_\mu (heta, \phi)$$

 $\pmb{lpha}\cdot \pmb{\mathsf{A}}$ leads to matrix elements of:

$$C^{\lambda}_{\mu} \alpha_{q} = \sum_{L=\lambda-1}^{\lambda+1} \dots \left\{ \boldsymbol{\alpha} \cdot \mathbf{C}^{\lambda} \right\}_{M=q+\mu}^{L}$$

 $\lambda=0, L=1$ electric dipole, $\lambda=1, L=1$ magnetic dipole, $\lambda=1, L=2$ electric quadrupole . . .

Eva Lindroth (Stockholm University)

THE FORM OF THE INTERACTION

Straightforward:

$$\cos(\omega t - kx) \rightarrow \sum_{\lambda,\mu} \sum_{L=\lambda-1}^{\lambda+1} \dots j_{\lambda}(kr) \left\{ \alpha \cdot \mathbf{C}^{\lambda} \right\}_{M=q+\mu}^{L} \times \sin(\omega t) / \cos(\omega t)$$

- truncate the sum over λ , *L*?
- expand $j_{\lambda}(kr)$ ok for $kr \ll 1$?
- $\Delta m_j = M$ the number of couplings increases very fast.

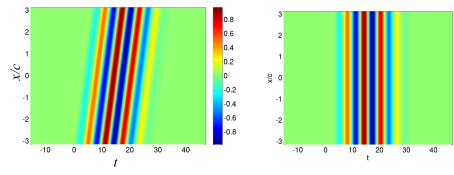
BUT, what to do with the envelope?

- Just skip the spatial part in the envelope? Should be OK for long pulses.
- Fourier expansion? Note! gives trains of pulses. Problem for long propagations times.

THE SPATIAL PART OF THE ENVELOPE?

$$A_0 sin^2 \left(rac{\pi \left(\omega t - kx
ight)}{\omega T}
ight) cos \left(\omega t - kx
ight)$$

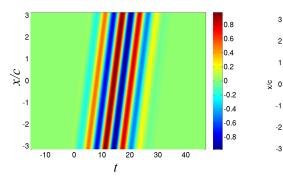
 $\omega = 2a.u.$



The actual field. Atomic units.

The dipole field. Atomic units

THE SPATIAL PART OF THE ENVELOPE?



The actual field. Atomic units.

Envelope purely time-dependent.

t

20

30

40

10

0

3

2

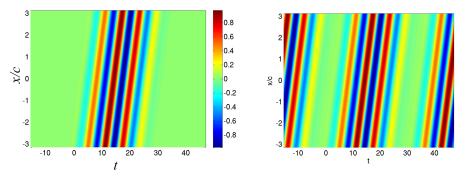
-1

-2

-3

-10

The spatial part of the envelope?



The actual field. Atomic units.

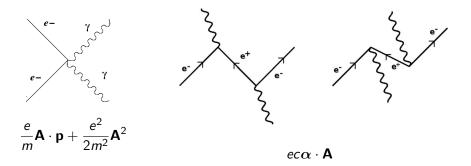
Fourier expansion

Propagation from $t = 0 \rightarrow T$? Expanding atom \rightarrow interaction time > T risk for interaction with the next (unphysical) pulse. Keep more Fourier components...

NEG. ENERGY STATES/(VIRTUAL) PAIR PROD. Atomic structure

$$E_{nrel} pprox Z^2 a.u. \ \Delta E_{Dirac} pprox lpha^2 Z^4 a.u. \ \Delta E_{virtual pairs} pprox lpha^3 Z^4 a.u.$$

Thomson scattering: relativistic versus non-relativistic frame work



Low photon energy limit: The whole contribution arises from negative energy state. (Dirac 1930)

Eva Lindroth (Stockholm University)

Time Dependent Dirac Equation

NEG. ENERGY STATES/(VIRTUAL) PAIR PROD. Dirac equation:

$$(c\alpha \cdot (\mathbf{p} + e\mathbf{A}) + V(Z) + (\beta - 1)mc^2)\Psi = (E - mc^2)\Psi$$

In two-component form:

$$VF + c\sigma \cdot (e\mathbf{A} + \mathbf{p}) \ G = \varepsilon F$$
$$c\sigma \cdot (e\mathbf{A} + \mathbf{p}) F + (V - 2mc^2) \ G = \varepsilon G$$

Foldy-Wouthuysen type expansion (PR78, 29, 1950):

$$F_{LARGE} pprox \Psi_{nrel}, \ G_{SMALL} pprox rac{1}{2mc} \left(e \mathbf{A} + \mathbf{p}
ight) F_{LARGE}$$

gives the Schrödinger equation back

$$V F_{LARGE} + \frac{1}{2m} (e\mathbf{A} + \mathbf{p})^2 F_{LARGE} = \varepsilon F_{LARGE},$$

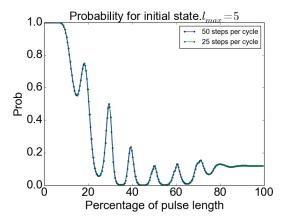
 A^2 term reappearing - through the small-component contribution

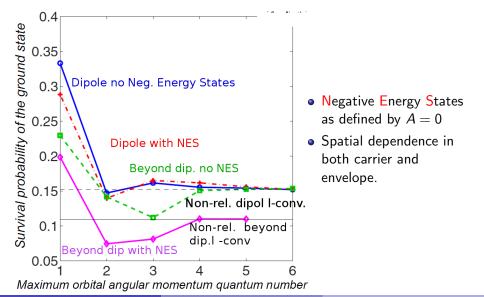
Eva Lindroth (Stockholm University)

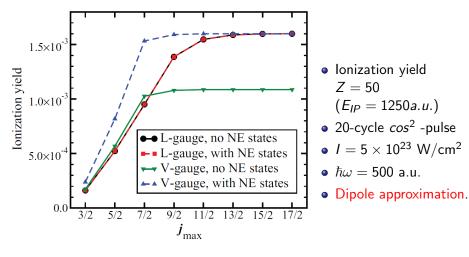
$$\frac{\langle \psi_{e-} \mid c\boldsymbol{\alpha} \cdot \mathbf{A} \mid \psi_{e-}' \rangle \langle \psi_{e-}' \mid c\boldsymbol{\alpha} \cdot \mathbf{A} \mid \psi_{e-} \rangle}{\Delta E} \approx \frac{\langle F_{e-} \mid c\boldsymbol{\sigma} \cdot \mathbf{A} \mid G_{e-}' \rangle \langle G_{e-}' \mid c\boldsymbol{\sigma} \cdot \mathbf{A} \mid F_{e-} \rangle}{\Delta E \approx 1} + \dots \approx |A_0|^2$$
$$\frac{\langle \psi_{e-} \mid c\boldsymbol{\alpha} \cdot \mathbf{A} \mid \psi_{e+}' \rangle \langle \psi_{e+}' \mid c\boldsymbol{\alpha} \cdot \mathbf{A} \mid \psi_{e-} \rangle}{\Delta E} \approx$$

$$\frac{\langle F_{e-} \mid c\boldsymbol{\sigma} \cdot \mathbf{A} \mid G'_{e+} \rangle \langle G'_{e+} \mid c\boldsymbol{\sigma} \cdot \mathbf{A} \mid F_{e-} \rangle}{\Delta E \approx 2mc^2} + \ldots \approx |A_0|^2$$

Example: Survival probability in hydrogen ground state $I = 3 \times 10^{19} \text{ W/cm}^2$ 5 cycle pulse (~ 380as), $\hbar\omega = 2 \text{ a.u.}$







Vanne & Saenz PRA85 033411

GAUGES

AND THE IMPORTANCE OF NEGATIVE ENERGY STATES

- Substantial matrix elements between positive and negative energy states for operators mixing upper & lower wave function components.
- Gauge transformations?

 $ec\alpha \cdot \mathbf{A}$, negative energy states in leading order

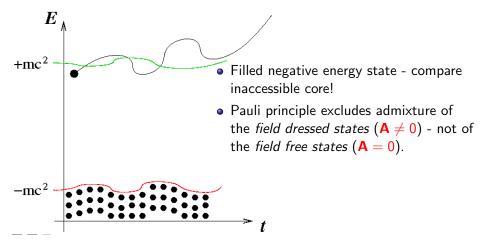
$$UH_D U^{\dagger} + i\hbar \frac{\partial U}{\partial t} U^{\dagger},$$

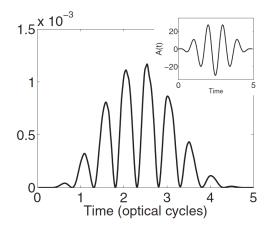
Negative energy states in relative order α^2 ? Use:

$$U = e^{i\mathbf{e}\mathbf{A}\cdot\mathbf{r}/\hbar} \rightarrow e\mathbf{r}\cdot\mathbf{E} + ec\left(\mathbf{\alpha}\cdot\mathbf{k}\right)\left(\mathbf{r}\cdot\frac{\partial\mathbf{A}}{\partial\eta}\right), \ \eta = \omega t - kx$$

Negative energy states in relative order α^4 ? Use:

$$U = e^{e\beta\boldsymbol{\alpha}\cdot\mathbf{A}/2mc} \rightarrow \frac{e}{m}\beta\mathbf{A}\cdot\mathbf{p} + \frac{e^2}{2m}\beta\mathbf{A}^2 + \frac{e\hbar}{2m}\beta\boldsymbol{\sigma}\cdot\mathbf{B} + O\left(\beta\frac{ec\boldsymbol{\alpha}\cdot\mathbf{A}}{mc^2}\right)$$





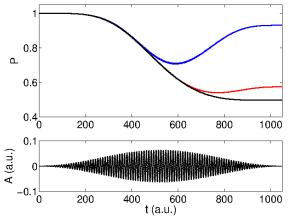
- Filled negative energy state compare inaccessible core!
- Pauli principle excludes admixture of the *field dressed states* - not of the *field free states*

Population of negative energy states to (defined with A = 0) during the pulse.

Population of negative energy states to H(t) zero to machine accuracy!

PRACTICAL CONSIDERATIONS

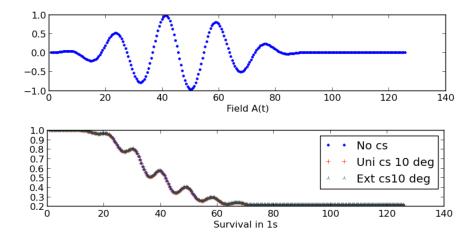
- Finite basis set: Finite difference or B-splines representation (avoid spurious states as Froese-Fisher & Zatsarinny CPC. 180, 879)
- Complex rotation (uniform CS for survival rate & ionization rate) (Complex rotation & Dirac, e.g. Zong, E.L., et al. PRA56, 386,-97)



1s survival rate: 50 basis function per ℓ 100 basis func. per ℓ Complex scaling: 20 basis function per ℓ

PRACTICAL CONSIDERATIONS

• Complex rotation (uniform CS for survival rate & ionization rate)



PRACTICAL CONSIDERATIONS PROBLEMS WITH NEGATIVE ENERGY STATES!

- States with large energy differences important ightarrow many time steps $\Delta t < \hbar/2mc^2$?
- Time propagation with complex scaling diverges ...

How can NES be avoided?

Expansion in eigenstates to H(t)

$$\Psi\left(t+\Delta t
ight)pprox e^{-i\mathcal{H}(t)\Delta t} \;\Psi\left(t
ight)pprox \sum_{j}e^{-i\mathcal{E}_{j}\Delta t}\mid\phi_{j}^{t}
angle\langle\phi_{j}^{t}\mid\Psi\left(t
ight)
angle$$

i.e. diagonalization at every time-step?

- No NES needed until real pair-production sets in
- only rather sparse time-grid required

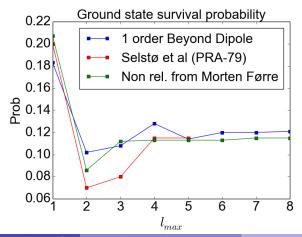
Room for improvements

- Fits well with Krylov (exclude energies $< -mc^2$.) Promising test runs.
- or parallelization: several time steps diagonalized simultaneously (working)

More to study

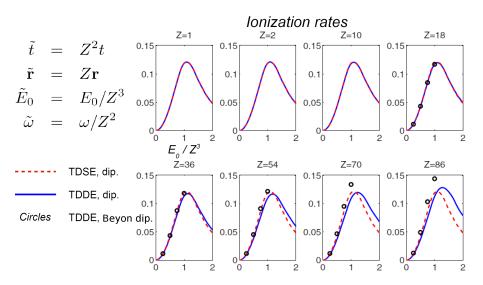
SENSITIVITY TO THE FULL INTERACTION?

$$\sum_{\lambda,\mu,L,M} \dots j_{\lambda} (kr) \left\{ \boldsymbol{\alpha} \cdot \mathbf{C}^{\lambda} \right\}_{M}^{L} \dots ? \quad \text{Keep } \lambda = 0 - 1 \text{ expand } j_{\lambda} (kr)?$$



Eva Lindroth (Stockholm University)

More to do

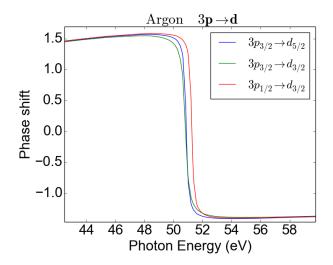


Ionization rates by monochromatic light calculated with TDSE

Eva Lindroth (Stockholm University)

Time Dependent Dirac Equation

ATOMIC STRUCTURE?



Phase shift of the Argon photoelectron close to the Cooper minimum (RPA-caclulation based on the Dirac-Equation).

CONCLUSIONS

- Negative Energy states are important, but can be handled
- The main problem is the size of the problem!
- More to do!

SPURIOUS STATES?

A problem we know how to handle: For example with B-splines(Froese-Fisher & Zatsarinny CPC. 180, 879)

n	Exact	$k=4$ & $\widetilde{k}=5$	$k=5$ & $\widetilde{k}=5$
2	-0.1250020802	-0.1250020802	<u>-0.5000066566</u>
3	-0.5555629517	-0.5555629518	-0.1250020802
4	-0.3125033803	-0.3125033802	-0.5555629518
5	-0.2000018106	-0.2000016849	-0.3125033803

Table: The four lowest electron eigenvalues for $p_{1/2}$