Centre - Énergie Matériaux Télécommunications

Outlines

- Imaging proton migration with strong field ionization.
- Recent laser development at ALLS and new perspectives for ultrafast science – Frequency domain Optical Parametric Amplification.

François Légaré, legare@emt.inrs.ca

Imaging proton migration with strong field ionization

Strong field ionization induced Coulomb Explosion

F. Légaré et *al. Phys. Rev. Lett*, **91**, 093002 (2003).

Coulomb Explosion Imaging of simple dynamics

>Sub-5 fs temporal resolution.

➢By using coincidence imaging spectroscopy, one can extend this technique to polyatomics.

F. Légaré et al. Phys. Rev. A 72, 052717 (2005).

Coincidence imaging spectroscopy

 \succ Experimental: P_i^{exp}

- ▶ U(X_i) Coulombien orab initio
 ▶ dP_i/dt = -∂U(X_i)/∂X_i
- > Initial conditions: $X_i(t=0) = X_i^0$
- Solving: $X_i(t)$, $P_i(t)$, $P_i^{\infty} = P_i(t \to \infty)$
- > Varying X_i^0 to minimize $\sum |P_i^{\infty} P_i^{exp}|$

Optimal structure

Hishikawa, et al., PRL 99, 258302 (2007)

Jiang, et al., PRL 105, 263002 (2010)

Experimental scheme

How do we distinguish channels?

Wavelength dependence

Single pulse experiment

Jiang, et al., PRL 105, 263002 (2010)

State assignment: angular dependence Single pulse experiment

266 nm, 110 fs

2 body breakup KER

Pump probe experiment

Newton plot – movie frames Pump probe experiment

Fragment momenta in molecular frame correspond well to position of atoms: H⁺ is much lighter than C⁺

Ibrahim, H. et al. Nat. Commun. 5:4422 doi: 10.1038/ncomms5422 (2014)

1 photon vs. multiphoton ionization

If energy gap of ionization from HOMO vs. HOMO-1 is too large to be overcome by 800 nm (and one has no VUV source at hand) multiphoton ionization is a very efficient way to launch dynamics.

Future directions

- Isotopic effect C₂D₂
- Other systems C_2H_4 , C_3H_4

Figure 1. The left diagram shows the energy levels of the ground and excited states of neutral ethylene, the cation and the dication. On the right is a sketch of a predicted [3, 4, 17] isomerization sequence following EUV-driven population of the excited states of the cation. Note the ethylidene configuration, which is believed to be followed by a H_2 stretching configuration.

Frequency domain Optical Parametric Amplification

High Harmonic Generation

Laser pulse duration since the 60s

Experimental setup for few-cycle IR

CEP stable 1.6 cycles: Opt. Exp. **19**, 6858 (2011)

Idler pulse compression – $1.8\mu m$

B. E. Schmidt et al. APL 96, 121109 (2010).

B. E. Schmidt et *al.* APL 96, 121109 (2010).P. Béjot et al. PRA 81, 063828 (2010).

Frequency domain OPA

Transform Limited seed Pulses

Gain Tailoring

Amplified spectra as a function of pump energy

Energy per pulse as a function of pump energy

<u>CEP stability</u> at 50% amplification: 460 mrad measured over 1000sec, each shot 10 times average (350 mrad stability at input)

B. E. Schmidt et al. Nature Comm. 5, doi:10.1038/ncomms4643.

Advantages of FOPA

- •Amplification of two cycle, 1.5mJ pulses
- •Simultaneous upscaling of peak power and spectral bandwidth
- •Upscaling not limited by aperture size of crystals
- •No extra stretcher / compressor needed
- •Absence of superfluorescence in the output beam
- •No need for clean pump beam profile
- •No Pulse Shaper for dispersion compensation
- •Combination of many pump beams no need for coherent synchronization.
- •Amplification of arbitrary pulse shape possible

Short term plan – with Prof. Z. Chang

FOPA based on Yb (>10 kHz)

- **Expected output:** 75 W at 1.5 μ m, 35 W at 3.5 μ m. Few-cycle pulses. CEP stability. FOPA based on KTA crystals.
- **Future:** Scaling the average/peak power by multiplexing pumping in the Fourier plane.

High brightness attosecond soft X-ray pulses

Scaling HHG (He with 1.8 µm)

B. E. Schmidt et *al.* (in preparation).

Single shot carbon k-edge

Other applications of the IR beamline

THz generation with $\omega/2\omega$

M. Clerici et al. *Phys. Rev. Lett.* **110**, 253901 (2013).

Wavelength dependent parameter:

- Transverse plasma photocurrent $\propto \lambda^2$ Proportionnal to the ponderomotive force ($I\lambda^2$)
- Plasma volume ∝ λ³ Rayleigh range Beam diameter at focus

$$I_{THz}(\lambda) \propto \lambda^{4.6 \pm 0.5}$$

Single cycle THz pulses with 4.4 MV/cm

Longitudinal electron acceleration

041105 (2012).

Dynamic imaging platform

J. Weisshaupt et *al.* CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM1F.5.

- Pumping with tunable CEP stable pulses from NIR to THz.
- Probing using time-resolved soft X-ray measurements
 - absorption
 - reflectivity
 - diffraction
 - photoelectrons
- Ultrafast electron diffraction imaging
- Ultrafast hard X-ray diffraction imaging

Thanks to the team

Conseil de recherches en sciences naturelles et en génie du Canada

Natural Sciences and Engineering Research Council of Canada

INNOVATION.CA

CANADA FOUNDATION FOR INNOVATION FONDATION CANADIENNE POUR L'INNOVATION

Centre - Énergie Matériaux Télécommunications

ATTO 2015

5th International Conference on Attosecond Physics

St-Sauveur, Canada July 6-10, 2015

Conference chairs: F. Légaré & P. B. Corkum

