Coupled electron-nuclear dynamics beyond BornOppenheimer: A fresh look at potential energy surfaces and Berry phases in the time domain

E.K.U. Gross

Max-Planck Institute for Microstructure Physics
 Halle (Saale)

Hamiltonian for the complete system of \mathbf{N}_{e} electrons and N_{n} nuclei

$$
\hat{\mathrm{H}}=\hat{\mathrm{T}}_{\mathrm{n}}(\underline{\underline{\mathrm{R}}})+\hat{\mathrm{W}}_{\mathrm{nn}}(\underline{\underline{\mathrm{R}}})+\hat{\mathrm{T}}_{\mathrm{e}}(\underline{\underline{r}})+\hat{\mathrm{W}}_{\mathrm{ee}}(\underline{\underline{\mathrm{r}}})+\hat{\mathrm{V}}_{\mathrm{en}}(\underline{\underline{\mathrm{R}}, \underline{\underline{r}}})
$$

with $\quad\left(\mathbf{r}_{1} \cdots \mathbf{r}_{\mathrm{N}_{\mathrm{e}}}\right) \equiv \underline{\underline{\mathbf{r}}} \quad\left(\mathbf{R}_{1} \cdots \mathbf{R}_{\mathrm{N}_{\mathrm{n}}}\right) \equiv \underline{\underline{\mathbf{R}}}$
$\hat{T}_{n}=\sum_{v=1}^{N_{n}}-\frac{\nabla_{v}^{2}}{2 M_{v}} \quad \hat{T}_{e}=\sum_{i=1}^{N_{e}}-\frac{\nabla_{i}^{2}}{2 m} \quad \hat{W}_{m n}=\frac{1}{2} \sum_{\substack{\mu, v \\ \mu \neq v}}^{N_{n}} \frac{Z_{\mu} Z_{v}}{R_{\mu}-R_{v} \mid}$
$\hat{W}_{e e}=\frac{1}{2} \sum_{\substack{\mathrm{j}, \mathrm{k} \\ \mathrm{j} \neq k}}^{\mathrm{N}_{\mathrm{c}}} \frac{1}{\mathrm{r}_{\mathrm{j}}-\mathrm{r}_{\mathrm{k}} \mid} \quad \hat{\mathrm{V}}_{\mathrm{en}}=\sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{c}}} \sum_{\mathrm{v}=1}^{\mathrm{N}_{\mathrm{n}}}-\frac{\mathrm{Z}_{v}}{\left|\mathrm{r}_{\mathrm{j}}-\mathrm{R}_{\mathrm{v}}\right|}$
Full Schrödinger equation: $\quad \hat{\mathrm{H}} \Psi(\underline{\underline{\mathrm{r}}, \underline{\underline{R}}})=\mathrm{E} \Psi(\underline{\underline{\underline{r}}, \underline{\underline{R}}})$

Born-Oppenheimer approximation

solve

$$
\left(\hat{\mathrm{T}}_{\mathbf{e}}(\underline{\underline{r}})+\hat{\mathrm{W}}_{\mathrm{ee}}(\underline{\underline{r}})+\hat{\mathrm{V}}_{\mathrm{e}}^{\mathrm{ext}}(\underline{\underline{r}})+\hat{\mathrm{V}}_{\mathrm{en}}(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})\right) \Phi_{\underline{\underline{\mathrm{R}}}}^{\mathrm{BO}}(\underline{\underline{r}})=\epsilon^{\mathrm{BO}}(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{R}}}^{\mathbf{B O}}(\underline{\underline{r}})
$$

for each fixed nuclear configuration $\underline{\underline{R}}$.

Make adiabatic ansatz for the complete molecular wave function:

$$
\underbrace{\Psi^{\mathrm{BO}}(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathrm{R}}}}^{\mathrm{BO}}(\underline{\underline{r}}) \cdot \chi^{\mathrm{BO}}(\underline{\underline{\mathrm{R}}})}
$$

and find best χ^{BO} by minimizing $<\Psi^{\mathrm{BO}}|\mathrm{H}| \Psi^{\mathrm{BO}}>$ w.r.t. χ^{BO} :

Nuclear equation

$$
\begin{aligned}
& {\left[\hat{T}_{n}(\underline{\underline{R}})+\hat{W}_{n n}(\underline{\underline{R}})+\hat{V}_{n}^{\text {ext }}(\underline{\underline{R}})+\sum_{v} \frac{1}{M_{v}} A_{v}^{\text {Bo }}(\underline{\underline{R}})\left(-i \nabla_{v}\right)+\epsilon^{\text {Bo }}(\underline{\underline{R}})\right.} \\
& \left.+\int \Phi_{\underline{\underline{R}}}^{\mathrm{BO}} *(\underline{\underline{\mathrm{r}}}) \hat{\mathrm{T}}_{\mathbf{n}}(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{R}}}^{\mathrm{BO}}(\underline{\underline{\underline{r}}}) \mathrm{d} \underline{\underline{\underline{r}}}\right] \chi^{\mathrm{BO}}(\underline{\underline{\mathrm{R}}})=\mathrm{E} \chi^{\mathrm{BO}}(\underline{\underline{\mathrm{R}}}) \\
& \text { Berry connection } \longleftarrow \\
& \mathbf{A}_{v}^{\text {BO }}(\underline{\underline{\mathbf{R}}})=\int \Phi_{\underline{\underline{\mathbf{R}}}}^{\text {BO }}(\underline{\underline{\mathbf{r}}})\left(-\mathbf{i} \nabla_{v}\right) \Phi_{\underline{\underline{\mathbf{R}}}}^{\text {BO }}(\underline{\underline{\mathbf{r}}}) \mathbf{d r}
\end{aligned}
$$

$$
\gamma^{\mathrm{BO}}(\mathbf{C})=\oint_{\mathrm{C}} \overrightarrow{\mathrm{~A}}^{\mathrm{BO}}(\underline{\underline{\mathbf{R}}}) \cdot \mathrm{d} \overrightarrow{\mathbf{R}} \text { is a geometric phase }
$$

In this context, potential energy surfaces $\epsilon^{\mathrm{BO}}(\underline{\underline{\mathbf{R}}})$ and the Berry potential $\overrightarrow{\mathbf{A}}^{\mathrm{BO}}(\underline{\underline{\mathbf{R}}})$ follow from an APPROXIMATION (the BO approximation).

GOING BEYOND BORN-OPPENHEIMER

Standard procedure:

Expand full molecular wave function in complete set of BO states:

$$
\mathbf{\Psi}_{\mathbf{K}}(\underline{\underline{\mathbf{r}}, \underline{\mathbf{R}}})=\sum_{\mathbf{J}} \boldsymbol{\Phi}_{\underline{\underline{\mathbf{R}}, \mathbf{J}}}^{\mathbf{B O}}(\underline{\underline{\mathbf{r}}}) \cdot \chi_{\mathbf{K}, \mathbf{J}}(\underline{\underline{\mathbf{R}}})
$$

and insert expansion in the full Schrödinger equation \rightarrow standard non-adiabatic coupling terms from T_{n} acting on $\Phi_{\underline{\underline{R}}, \mathbf{J}}^{B O}(\underline{\underline{r}})$.

GOING BEYOND BORN-OPPENHEIMER

Standard procedure:

Expand full molecular wave function in complete set of BO states:

$$
\mathbf{\Psi}_{\mathbf{K}}(\underline{\underline{\mathbf{r}}, \underline{\mathbf{R}}})=\sum_{\mathbf{J}} \boldsymbol{\Phi}_{\underline{\underline{\mathbf{R}}, \mathbf{J}}}^{\mathbf{B O}}(\underline{\underline{\mathbf{r}}}) \cdot \chi_{\mathbf{K}, \mathbf{J}}(\underline{\underline{\mathbf{R}}})
$$

and insert expansion in the full Schrödinger equation \rightarrow standard non-adiabatic coupling terms from T_{n} acting on $\Phi_{\underline{\underline{R}}, \mathbf{J}}^{B O}(\underline{\underline{r}})$.

Drawbacks:

- $\chi_{\mathrm{J}, \mathrm{K}}$ depends on 2 indices: \rightarrow looses nice interpretation as "nuclear wave function"
- In systems driven by a strong laser, many BO-PES can be coupled.

$$
\Psi_{0}(\underline{\underline{\mathbf{r}}}, \underline{\underline{\mathbf{R}}}) \approx \chi_{00}(\underline{\underline{\mathbf{R}}}) \Phi_{0, \underline{\underline{\mathbf{R}}}}^{\mathrm{BO}}(\underline{\underline{\mathbf{r}}})+\chi_{01}(\underline{\underline{\mathbf{R}}}) \Phi_{1, \underline{\underline{\mathbf{R}}}}^{\mathrm{BO}}(\underline{\underline{\mathbf{r}}})
$$

For few degrees of freedom, BO PES provide essential insight in the dynamics of molecules, and can even be measured by femto-second pump-probe spectroscopy: A. Zewail, J. Phys. Chem. 104, 5660, (2000)

Example: NaI femtochemistry

Example: NaI femtochemistry

Effect of tuning pump wavelength (exciting to different

 points on excited surface)

T.S. Rose, M.J. Rosker, A. Zewail, JCP 91, 7415 (1989)

For larger systems one would like to (one has to) treat the nuclei classically.

For larger systems one would like to (one has to) treat the nuclei classically.

But what's the classical force when the nuclear wave packet splits??

For larger systems one would like to (one has to) treat the nuclei classically.

But what's the classical force when the nuclear wave packet splits??

For larger systems one would like to (one has to) treat the nuclei classically.

But what's the classical force when the nuclear wave packet splits??

Outline

- Show that the factorisation
$\Psi(\underline{\underline{r}}, \underline{\underline{R}})=\Phi_{\underline{\underline{R}}}(\underline{\underline{r}}) \cdot \chi(\underline{\underline{\mathrm{R}}})$
can be made exact
- Concept of exact PES and exact Berry phase
- Concept of exact time-dependent PES
- Mixed quantum-classical treatment
- Concept of time-dependent PES acting on the electrons

THANKS

Federica Agostini

Yasumitsu Suzuki

Seung Kyu Min

Neepa Maitra (CUNY)

Nikitas Gidopoulos (Durham University)

Theorem I

The exact solutions of

$$
\hat{\mathrm{H}} \Psi\left(\underline{\left.\underline{\mathrm{r}}, \underline{\underline{\mathrm{R}}})=\mathrm{E} \Psi(\underline{\underline{\mathrm{r}}, \underline{\underline{\mathrm{R}}}})) ~()^{2}\right)}\right.
$$

can be written in the form

$$
\Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}) \cdot \chi(\underline{\underline{\mathrm{R}}})
$$

where $\int \operatorname{dr}\left|\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}})\right|^{2}=1 \quad$ for each fixed $\underline{\underline{R}}$.
N.I. Gidopoulos, E.K.U. Gross,

Phil. Trans. R. Soc. 372, 20130059 (2014); arXiv cond-mat/0502433

Proof of Theorem I:

Given the exact electron-nuclear wavefuncion $\Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})$

Choose: $\quad \chi\left(\underline{\underline{\mathrm{R}})}:=\mathrm{e}^{\mathrm{i}\left(\underline{\underline{\mathrm{R}})} \sqrt{\int \mathrm{dr}} \mid \Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})^{2}\right.}\right.$

$$
\text { with some real-valued funcion } S(\underline{\underline{R}})
$$

$$
\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}):=\Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}}) / \chi(\underline{\underline{\mathrm{R}}})
$$

Then, by construction, $\left.\quad \int \operatorname{dr} \mid \Phi_{\underline{\underline{\mathbf{R}}}}^{\underline{\underline{\mathrm{r}}}}\right)\left.\right|^{2}=1$
N.I. Gidopoulos, E.K.U. Gross, Phil. Trans. R. Soc. 372, 20130059 (2014); arXiv cond-mat/0502433

Immediate consequences of Theorem I:

1. The diagonal $\Gamma(\underline{\underline{\mathbf{R}}})$ of the nuclear \mathbf{N}_{n}-body density matrix is identical with $|\chi(\underline{\underline{\mathbf{R}}})|^{2}$

$$
\text { proof: } \quad \Gamma(\underline{\underline{\mathbf{R}}})=\int \mathbf{d r} \mid \Psi(\left.\underline{=}(\underline{\underline{\mathbf{r}}}, \underline{\underline{\mathbf{R}}})\right|^{2}=\underbrace{\int \mathbf{d r}\left|\Phi_{\underline{\mathbf{R}}}(\underline{\underline{\mathbf{r}}})\right|^{2}}_{1}|\chi(\mathbf{R})|^{2}=\mid \chi\left(\left.\underline{\underline{\mathbf{R}})}\right|^{2}\right.
$$

\Rightarrow in this sense, $\chi(\underline{\underline{\mathbf{R}}})$ can be interpreted as a proper nuclear wavefunction.
2. $\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}})$ and $\chi(\underline{\underline{\mathrm{R}}})$ are unique up to within the "gauge transformation"

$$
\widetilde{\Phi}_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}}):=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathbf{R}}})} \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \quad \tilde{\chi}(\underline{\underline{\mathrm{R}}}):=\mathrm{e}^{-\mathrm{i} \theta(\underline{\underline{\mathbf{R}}})} \chi(\underline{\underline{\mathrm{R}}})
$$

proof: Let $\phi \cdot \chi$ and $\tilde{\phi} \cdot \tilde{\chi}$ be two different representations of an exact eigenfunction Ψ i.e.

$$
\begin{aligned}
& \Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}) \chi(\underline{\underline{\mathrm{R}}})=\tilde{\Phi}_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}) \tilde{\chi}(\underline{\underline{\mathrm{R}}}) \\
& \Rightarrow \frac{\widetilde{\Phi}_{\underline{\mathbf{R}}}(\underline{\underline{\mathrm{r}}})}{\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}})}=\frac{\chi(\underline{\underline{\mathrm{R}}})}{\widetilde{\chi}(\underline{\underline{\mathrm{R}}})} \equiv G(\underline{\underline{\mathrm{R}}}) \quad \Rightarrow \quad \widetilde{\Phi}_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}})=G(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \\
& \Rightarrow \underbrace{\int \operatorname{dr}\left|\tilde{\Phi}_{\underline{\underline{R}}}(\underline{\underline{r}})\right|^{2}}_{1}=|G(\underline{\underline{R}})|^{2} \underbrace{\int \operatorname{dr}\left|\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})\right|^{2}}_{1} \\
& \Rightarrow \quad|\mathrm{G}(\underline{\underline{\mathrm{R}}})|=1 \quad \Rightarrow \mathrm{G}(\underline{\underline{\mathrm{R}}})=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathrm{R}}})} \\
& \Rightarrow \quad \tilde{\Phi}_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}})=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathbf{R}}})} \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \quad \tilde{\chi}(\underline{\underline{\mathrm{R}}})=\mathrm{e}^{-\mathrm{i} \mathrm{\theta}(\underline{\underline{\mathbf{R}}})} \chi(\underline{\underline{\mathrm{R}}})
\end{aligned}
$$

Theorem II: $\Phi_{\underline{\underline{R}}}(\underline{\underline{\mathrm{r}}})$ and $\chi(\underline{\underline{\mathrm{R}}})$ satisfy the following equations:

Eq. 1

$$
\begin{aligned}
& (\underbrace{\hat{\mathrm{T}}_{\mathrm{e}}+\hat{\mathrm{W}}_{\mathrm{ee}}+\hat{\mathrm{V}}_{\mathrm{e}}^{\mathrm{ext}}+\hat{\mathrm{V}}_{\mathrm{en}}}_{\hat{\mathrm{H}}_{\mathrm{BO}}}+\sum_{v}^{\mathrm{N}_{\mathrm{n}}} \frac{1}{2 \mathrm{M}_{v}}\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}\right)^{2} \\
& \left.\quad+\sum_{v}^{\mathrm{N}_{\mathrm{n}}} \frac{1}{\mathrm{M}_{v}}\left(\frac{-\mathrm{i} \nabla_{v} \chi}{\chi}+\mathrm{A}_{v}\right)\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}\right)\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{r}})=\in(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{R}}}(\underline{\underline{r}})
\end{aligned}
$$

Eq. (2) $\left(\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-\mathrm{i} \nabla_{v}+\mathrm{A}_{v}\right)^{2}+\hat{W}_{\mathrm{nn}}+\hat{\mathrm{V}}_{\mathrm{n}}^{\mathrm{ext}}+\in(\underline{\underline{R}})\right) \chi(\underline{\underline{\mathrm{R}}})=\mathrm{E} \chi(\underline{\underline{\mathrm{R}}})$
where

$$
\mathrm{A}_{v}(\underline{\underline{\mathrm{R}}})=-\mathrm{i} \int \Phi_{\underline{\underline{\mathbf{R}}}}^{*}(\underline{\underline{\mathrm{r}}}) \nabla_{v} \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \mathrm{dr}
$$

N.I. Gidopoulos, E.K.U. Gross, Phil. Trans. R. Soc. 372, 20130059 (2014); arXiv cond-mat/0502433

Theorem II: $\Phi_{\underline{\underline{\underline{R}}}}(\underline{\underline{\mathrm{r}}})$ and $\chi(\underline{\underline{\mathrm{R}}})$ satisfy the following equations:

Eq. 1

$$
\begin{aligned}
& (\underbrace{\hat{\mathrm{T}}_{\mathrm{e}}+\hat{\mathrm{W}}_{\mathrm{ee}}+\hat{\mathrm{V}}_{\mathrm{e}}^{\mathrm{ext}}+\hat{\mathrm{V}}_{\mathrm{en}}}_{\hat{\mathrm{H}}_{\text {BO }}}+\sum_{v}^{\mathrm{N}_{\mathrm{n}}} \frac{1}{2 \mathrm{M}_{v}}\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}\right)^{2} \\
& \left.\quad+\sum_{v}^{\mathrm{N}_{\mathrm{n}}} \frac{1}{\mathrm{M}_{v}}\left(\frac{-\mathrm{i} \nabla_{v} \chi}{\chi}+\mathrm{A}_{v}\right)\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}\right)\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{r}})=\in(\underline{\underline{R}}) \Phi_{\underline{\underline{R}}}(\underline{\underline{r}})
\end{aligned}
$$

Eq. ${ }^{2}$

$$
\left(\sum_{v}^{\mathrm{N}_{\mathrm{n}}} \frac{1}{2 \mathrm{M}_{v}}\left(-\mathrm{i} \nabla_{v}+\mathrm{A}_{v}\right)^{2}+\hat{\mathrm{W}}_{\mathrm{nn}}+\hat{\mathrm{V}}_{\mathrm{n}}^{\mathrm{ext}}+\in(\underline{\underline{\mathrm{R}}})\right) \chi(\underline{\underline{\mathrm{R}}})=\mathrm{E} \chi(\underline{\underline{\mathrm{R}}})
$$

Exact PES

where

$$
\mathrm{A}_{v}(\underline{\underline{\mathrm{R}}})=-\mathrm{i} \int \Phi_{\underline{\underline{\mathbf{R}}}}^{*}(\underline{\underline{\mathrm{r}}}) \nabla_{v} \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \mathrm{dr}
$$

Proof of theorem II (basic idea)

Find the variationally best $\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}})$ and $\chi \underline{\underline{\underline{R}}) \text { by making stationary the total energy }}$
 equations:

$\underline{\text { Eq. } 2} \frac{\delta}{\delta \chi(\underline{\underline{\mathrm{R}})}}\left(\frac{\langle\Phi \chi| \hat{\mathrm{H}}|\Phi \chi\rangle}{\langle\Phi \chi \mid \Phi \chi\rangle}\right)=0$

OBSERVATIONS:

- Eq. © is a nonlinear equation in $\Phi_{\underline{\underline{\mathbf{R}}}}^{(\underline{\underline{r}})}$
- Eq. © contains $\chi(\underline{\underline{R}}) \Rightarrow$ selfconsistent solution of \mathcal{O} and © required
- Neglecting the $\mathbf{1} / \mathbf{M}_{v}$ terms in $0, B O$ is recovered
- There is an alternative, equally exact, representation $\Psi=\Phi_{\underline{\underline{r}}}(\underline{\underline{R}}) \chi(\underline{\underline{r}})$ (electrons move on the nuclear energy surface)
- Eq. © and © are form-invariant under the "gauge" transformation

$$
\begin{aligned}
& \Phi \rightarrow \widetilde{\Phi}=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathrm{R}}})} \Phi \\
& \chi \rightarrow \widetilde{\chi}=\mathrm{e}^{-\mathrm{i} \mathrm{\theta} \theta(\underline{\underline{\mathrm{R}}})} \chi \\
& \mathrm{A}_{v} \rightarrow \tilde{\mathrm{~A}}_{v}=\mathrm{A}_{v}+\nabla_{v} \theta(\underline{\underline{\mathrm{R}}})
\end{aligned}
$$

$$
\in(\underline{\underline{\mathrm{R}}}) \rightarrow \tilde{\in}(\underline{\underline{\mathrm{R}}})=\in(\underline{\underline{\mathrm{R}}}) \quad \text { Exact potential energy surface is gauge invariant. }
$$

- $\gamma(\mathrm{C}):=\oint_{\mathrm{C}} \overrightarrow{\mathrm{A}} \cdot \mathrm{d} \overrightarrow{\mathrm{R}}$ is a (gauge-invariant) geometric phase the exact geometric phase

How do the exact PES look like?

MODEL

S. Shin, H. Metiu, JCP 102, 9285 (1995), JPC 100, 7867 (1996)

Nuclei (1) and (2) are heavy: Their positions are fixed

Exact Berry connection

$A_{v}(\underline{\underline{R}})=\int d \underline{\underline{\underline{R}}} \Phi_{\underline{\underline{g}}}^{*}(\underline{\underline{\mathrm{r}}})\left(-\mathrm{i} \nabla_{v}\right) \Phi_{\underline{\underline{\underline{g}}}}(\underline{\underline{\underline{r}}})$

Insert: $\quad \Phi_{\underline{\underline{R}}}(\underline{\underline{r}})=\Psi(\underline{\underline{r}}, \underline{\underline{R}}) / \chi(\underline{\underline{\mathrm{R}}})$

$$
\chi(\underline{\underline{\mathrm{R}}}):=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathrm{R}}})}|\chi(\underline{\underline{\mathrm{R}}})|
$$

$$
\mathrm{A}_{v}(\underline{\underline{\mathrm{R}}})=\operatorname{Im}\left\{\int \mathrm{dr} \Psi^{*}(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}}) \nabla_{v} \Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})\right\} /|\chi(\underline{\underline{\mathrm{R}}})|^{2}-\nabla_{v} \theta
$$

$$
\mathrm{A}_{v}(\underline{\underline{R}})=\mathrm{J}_{v}(\underline{\underline{R}}) / \mid \chi(\underline{\underline{R}})^{2}-\nabla_{v} \theta(\underline{\underline{R}})
$$

with the exact nuclear current density $\mathbf{J}_{\mathbf{v}}$

Another way of reading this equation:

$$
\mathrm{J}_{v}(\underline{\underline{\mathrm{R}}})=|\chi(\underline{\underline{\mathrm{R}}})|^{2} \mathrm{~A}_{v}(\underline{\underline{\mathrm{R}}})+\nabla_{v} \theta(\underline{\underline{\mathrm{R}}})
$$

Conclusion: The nuclear Schrödinger equation

$$
\left(\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-i \nabla_{v}+\mathrm{A}_{v}\right)^{2}+\hat{W}_{n \mathrm{n}}+\hat{\mathrm{V}}_{n}^{\text {ext }}+\epsilon(\underline{\underline{R}})\right) \chi(\underline{\underline{\mathrm{R}}})=\mathrm{E} \chi(\underline{\underline{\mathrm{R}}})
$$

yields both the exact nuclear N -body density and the exact nucler N -body current density
A. Abedi, N.T. Maitra, E.K.U. Gross, JCP 137, 22A530 (2012)

Question: Can the true vector potential be gauged away, i.e. is the true Berry phase zero?

Question: Can the true vector potential be gauged away, i.e. is the true Berry phase zero?

Look at Shin-Metiu model in 2D:

BO-PES of 2D Shin-Metiu model

BO-PES of 2D Shin-Metiu model

- Non-vanishing Berry phase results from a non-analyticity in the electronic wave function $\Phi_{\underline{\underline{\mathbf{R}}}}^{\mathrm{BO}}(\underline{\underline{r}})$ as function of R .
- Such non-analyticity is found in BO approximation.
- Non-vanishing Berry phase results from a non-analyticity in the electronic wave function $\Phi_{\underline{\underline{R}}}^{\text {BO }}(\underline{\underline{\underline{r}}})$ as function of R .
- Such non-analyticity is found in BO approximation.

Does the exact electronic wave function show such non-analyticity as well (in 2D Shin-Metiu model)?

Look at

$$
\mathrm{D}(\mathbf{R})=\int \mathbf{r} \Phi_{\mathbf{R}}(\mathbf{r}) \mathbf{d r}
$$

as function of nuclear mass \mathbf{M}.
S.K. Min, A. Abedi, K.S. Kim, E.K.U. Gross, arXiv: 1402.0227 (2014)

D(R)

D(R)

Open Question: Can one prove in general that the exact molecular Berry phase vanishes? Are there systems where the non-analyticity associated with the molecular Berry phase survives as true feature of nature.

Time-dependent case

Hamiltonian for the complete system of \mathbf{N}_{e} electrons with coordinates $\left(\mathbf{r}_{1} \cdots \mathbf{r}_{\mathbf{N}_{\mathrm{e}}}\right) \equiv \underline{\underline{\mathbf{r}}}$ and \mathbf{N}_{n} nuclei with coordinates $\left(\mathbf{R}_{1} \cdots \mathbf{R}_{\mathbf{N}_{\mathrm{n}}}\right) \equiv \underline{\underline{\mathbf{R}}}$, masses $\mathrm{M}_{1} \cdots \mathrm{M}_{\mathrm{N}_{\mathrm{n}}}$ and charges $\mathrm{Z}_{1} \cdots \mathrm{Z}_{\mathrm{N}_{\mathrm{n}}}$.

$$
\hat{\mathrm{H}}=\hat{\mathrm{T}}_{\mathrm{n}}(\underline{\underline{\mathrm{R}}})+\hat{\mathrm{W}}_{\mathrm{nn}}(\underline{\underline{\mathrm{R}}})+\hat{\mathrm{T}}_{\mathrm{e}}(\underline{\underline{r}})+\hat{\mathrm{W}}_{\mathrm{ee}}(\underline{\underline{r}})+\hat{\mathrm{V}}_{\mathrm{en}}(\underline{\underline{\mathrm{R}}}, \underline{\underline{r}})
$$

with $\hat{T}_{n}=\sum_{v=1}^{N_{n}}-\frac{\nabla_{v}^{2}}{2 M_{v}} \quad \hat{T}_{e}=\sum_{i=1}^{N_{e}}-\frac{\nabla_{i}^{2}}{2 m} \quad \hat{W}_{n n}=\frac{1}{2} \sum_{\substack{\mu, v \\ \mu \neq v}}^{N_{n}} \frac{Z_{\mu} Z_{v}}{\left|R_{\mu}-R_{v}\right|}$

$$
\hat{W}_{e e}=\frac{1}{2} \sum_{\substack{j, k \\ j \neq k}}^{N_{e}} \frac{1}{\left|r_{j}-r_{k}\right|} \quad \hat{V}_{e n}=\sum_{j=1}^{N_{c}} \sum_{v=1}^{N_{n}}-\frac{Z_{v}}{\left|r_{j}-R_{v}\right|}
$$

Time-dependent Schrödinger equation

$$
\begin{aligned}
& \mathrm{i} \frac{\partial}{\partial \mathrm{t}} \Psi(\underline{\underline{r}}, \underline{\underline{R}}, \mathrm{t})=\left(\mathrm{H}(\underline{\underline{r}}, \underline{\underline{R}})+\mathrm{V}_{\text {laser }}(\underline{\underline{r}}, \underline{\underline{R}}, \mathrm{t})\right) \psi(\underline{\underline{r}, \underline{R}, \mathrm{t}}) \\
& \mathrm{V}_{\text {laser }}(\underline{\underline{r}, \underline{R}, \mathrm{t}})=\left(\sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{e}}} \mathrm{r}_{\mathrm{j}}-\sum_{v=1}^{\mathrm{N}_{\mathrm{n}}} Z_{v} R_{v}\right) \cdot \mathrm{E} \cdot \mathrm{f}(\mathrm{t}) \cdot \cos \omega \mathrm{t}
\end{aligned}
$$

Theorem T-I

The exact solution of

$$
\mathrm{i} \partial_{\mathrm{t}} \Psi(\underline{\underline{\mathrm{r}}, \underline{\underline{R}}, \mathrm{t}})=\mathrm{H}(\underset{\underline{\mathrm{r}}, \underline{\underline{R}}, \mathrm{t}}{\underline{\underline{r}}}) \Psi(\underline{\underline{r}}, \underline{\underline{R}}, \mathrm{t})
$$

can be written in the form

$$
\begin{aligned}
& \Psi(\underline{r}, \underline{\underline{R}}, \mathrm{t})=\Phi_{\underline{\underline{R}}}(\underline{\underline{r}}, \mathrm{t}) \chi(\underline{\underline{R}, \mathrm{t}}) \\
& \text { where } \int \mathrm{dr}\left|\Phi_{\underline{\underline{R}}}(\underset{\underline{r}}{\mathrm{r}}, \mathrm{t})\right|^{2}=1 \quad \text { for any fixed } \underline{\underline{R}}, \mathrm{t}
\end{aligned}
$$

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010) JCP 137, 22A530 (2012)

Theorem T-II

$\Phi_{\underline{\underline{R}}}(\underline{\underline{\underline{R}}}, \mathrm{t})$ and $\chi(\underline{\underline{\mathrm{R}}}, \mathrm{t})$ satisfy the following equations

Eq. 1

$$
\begin{aligned}
& (\underbrace{\hat{\mathrm{T}}_{e}+\hat{\mathrm{W}}_{\text {ee }}+\hat{\mathrm{V}}_{\mathrm{e}}^{\text {ext }}(\underline{\underline{r}}, \mathrm{t})+\hat{\mathrm{V}}_{\text {en }}(\underline{\underline{r}}, \underline{\underline{R}})}_{\hat{H}_{\text {Bo }}(t)}+\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}(\underline{\underline{R}}, \mathrm{t})\right)^{2} \\
& \left.+\sum_{v}^{N_{n}} \frac{1}{\mathrm{M}_{v}}\left(\frac{-\mathrm{i} \nabla_{v} \chi(\underline{\underline{R}}, \mathrm{t})}{\chi(\underline{\underline{R}}, \mathrm{t})}+\mathrm{A}_{v}(\underline{\underline{R}}, \mathrm{t})\right)\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}\right)-\in(\underline{\underline{R}}, \mathrm{t})\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{\mathrm{r}}})=\mathrm{i} \partial_{\mathrm{t}} \Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\underline{R}}}, \mathrm{t})
\end{aligned}
$$

Eq. ${ }^{2}$

$$
\left(\sum_{v}^{N_{n}} \frac{1}{2 M_{v}}\left(-i \nabla_{v}+A_{v}(\underline{\underline{R}}, t)\right)^{2}+\hat{W}_{n n}(\underline{\underline{R}})+\hat{V}_{n}^{\text {ext }}(\underline{\underline{R}}, t)+\in(\underline{\underline{R}}, t)\right) \chi(\underline{\underline{R}}, t)=i \partial_{t} \chi(\underline{\underline{R}}, t)
$$

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010) JCP 137, 22A530 (2012)

Theorem T-II

$\Phi_{\underline{\underline{R}}}(\underline{\underline{\underline{n}}}, \mathrm{t})$ and $\chi(\underline{\underline{\mathrm{R}}}, \mathrm{t})$ satisfy the following equations
Eq. 1

$$
\begin{aligned}
& (\underbrace{\hat{T}_{e}+\hat{W}_{\text {ee }}+\hat{V}_{e}^{\text {ext }}(\underline{r}, t)+\hat{V}_{\text {en }}(\underline{\underline{r}}, \underline{\underline{R}})}_{\hat{H}_{\text {Bo }}(t)}+\sum_{v}^{N_{n}} \frac{1}{2 M_{v}}\left(-i \nabla_{v}-A_{v}(\underline{\underline{R}}, t)\right)^{2} \\
& \left.+\sum_{v}^{N_{n}} \frac{1}{M_{v}}\left(\frac{-i \nabla_{v} \chi(\underline{\underline{R}}, t)}{\chi(\underline{\underline{R}}, t)}+A_{v}(\underline{\underline{R}}, t)\right)\left(-i \nabla_{v}-A_{v}\right)-\in(\underline{\underline{R}}, t)\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{\underline{r}}})=i \partial_{t} \Phi_{\underline{\underline{R}}}(\underline{\underline{(r}}, t)
\end{aligned}
$$

Eq. 2 Exact Berry potential

Exact TDPES

$\left(\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-i \nabla_{v}+\hat{A}_{v}(\underline{\underline{R}}, \mathrm{t})\right)^{2}+\hat{\mathrm{W}}_{\mathrm{nn}}(\underline{\underline{R}})+\hat{\mathrm{V}}_{\mathrm{n}}^{\text {ext }}(\underline{\underline{R}}, \mathrm{t})+\in(\underline{\underline{R}}, \mathrm{t})\right) \chi(\underline{\underline{R}}, \mathrm{t})=\mathrm{i} \partial_{\mathrm{t}} \chi(\underline{\underline{R}}, \mathrm{t})$
A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010) JCP 137, 22A530 (2012)

$$
\in(\underline{\underline{R}}, \mathrm{t})=\int \mathrm{dr} \underline{\underline{r}}_{\underline{\underline{R}}}^{*}(\underline{\underline{r}}, \mathrm{t})\left(\mathrm{H}_{\mathrm{Bo}}(\mathrm{t})+\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}(\underline{\underline{\mathrm{R}}, \mathrm{t}})\right)^{2}-\mathrm{i} \partial_{\mathrm{t}}\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{r}}, \mathrm{t})
$$

EXACT time-dependent potential energy surface

$$
\mathrm{A}_{v}(\underline{\underline{\mathrm{R}}}, \mathrm{t})=-\mathrm{i} \int \Phi_{\underline{\underline{\mathrm{R}}}}^{*}(\underline{\underline{\mathrm{r}, \mathrm{t}}}) \nabla_{v} \Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}, \mathrm{t}) \mathrm{dr} \underset{\underline{\underline{r}}}{\text { EXACT time-dependent }} \begin{aligned}
& \text { Berry connection }
\end{aligned}
$$

N-body version of Runge-Gross theorem guarantees that $\epsilon(R, t)$ and $A(R, t)$ are UNIQUE (up to within a gauge transformation)

How does the exact time-dependent PES look like?

Example: Nuclear wave packet going through an avoided crossing (Zewail experiment)

A. Abedi, F. Agostini, Y. Suzuki, E.K.U.Gross, PRL 110, 263001 (2013)
F. Agostini, A. Abedi, Y. Suzuki, E.K.U. Gross, Mol. Phys. 111, 3625 (2013)

Potential Energy Surfaces for electronic motion (ePES)

Traditionally: Electrons provide a soup that modifies the interactions between bare nuclei leading to the BO (or exact) potential energy surface.

Whenever the nuclei move as fast as electrons or faster, nuclei provide a soup that modifies the potential the electrons are exposed to.

Question:

Can one write down a purely electronic Hamiltonian with a suitable PES such that the resulting many-electron wave function yields the true N-electron density and current density (that one would get from the full electron-nuclear wave function $\Psi(\mathbf{R}, \mathrm{r})$)?

Theorem

The exact solution of

$$
\mathrm{i} \partial_{\mathrm{t}} \Psi(\underline{\underline{\mathrm{r}}, \underline{\underline{R}}, \mathrm{t}})=\mathrm{H}(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}, \mathrm{t}}) \Psi(\underline{\underline{\mathrm{r}}, \underline{\underline{R}}, \mathrm{t}})
$$

can be written in the form

$$
\Psi(\underline{\underline{\mathrm{r}}, \underline{\underline{R}}, \mathrm{t}})=\Phi(\underline{\underline{\mathrm{r}}, \mathrm{t}}) \chi_{\underline{\underline{\underline{I}}}}(\underline{\underline{\mathrm{R}}, \mathrm{t}})
$$

where $\int d \underline{\underline{R}}\left|\chi_{\underline{\underline{r}}}(\underline{\underline{R}}, t)\right|^{2}=1$ for any fixed $\underline{\underline{\underline{r}}}, \mathrm{t}$.
Y. Suzuki, A. Abedi, N.T. Maitra, K. Yamashita, E.K.U.Gross, Phys. Rev. A 89, R040501 (2014)

$$
\begin{aligned}
& \left(\sum_{\mathrm{j}}^{\mathrm{N}_{\mathrm{N}}} \frac{1}{2}\left(-\mathrm{i} \nabla_{\mathrm{j}}-\tilde{\mathrm{A}}_{\mathrm{j}}(\underline{\underline{\underline{r}}, \mathrm{t}})\right)^{2}+\hat{\mathrm{W}}_{\text {ee }}(\underline{\underline{\underline{r}}})+\tilde{\epsilon}(\underline{\underline{\underline{\mathrm{r}}}, \mathrm{t})}) \Phi(\underline{\underline{\mathrm{r}}, \mathrm{t})})=\mathrm{i} \partial_{\mathrm{t}} \Phi(\underline{\underline{\underline{r}}, \mathrm{t}})\right. \\
& \tilde{\epsilon}(\underline{\underline{\mathrm{r}}, \mathrm{t}})=\int \mathrm{d} \underline{\underline{R}} \chi_{\underline{\underline{\underline{r}}}}^{*}(\underline{\underline{\mathrm{R}}, \mathrm{t}})\left(\mathrm { H } _ { \text { nuc } } [\Phi] \left(\underline{\left.\underline{\mathrm{R}}, \underline{\underline{r}}, \mathrm{t})-\mathrm{i} \partial_{\mathrm{t}}\right) \chi_{\underline{\underline{\underline{r}}}}(\underline{\underline{\mathrm{R}}, \mathrm{t}})}\right.\right.
\end{aligned}
$$

EXACT electronic potential energy surface

$$
\tilde{A}_{\mathrm{j}}(\underline{\underline{\underline{r}}, \mathrm{t}})=-\mathrm{i} \int \chi_{\underline{\underline{I}}}^{*}(\underline{\underline{\mathrm{R}}, \mathrm{t}}) \nabla_{\mathrm{j}} \chi_{\underline{\underline{\underline{I}}}}(\underline{\underline{\mathrm{R}}, \mathrm{t}}) \mathrm{d} \underline{\underline{\mathrm{R}}}
$$

EXACT electronic Berry connection

Study electron localization in the dissociation of $\mathrm{H}_{2}{ }^{+}$in suitably shaped laser pulse using exact electronic surface.

Experiments by M. Vrakking (Max Born Institute, Berlin)

electrostatic potential produced by nuclear density

New MD scheme:

Perform classical limit of the nuclear equation, but retain the quantum treatment of the electronic degrees of freedom.

A. Abedi, F. Agostini, E.K.U.Gross, EPL 106, 33001 (2014)

Theorem T-II

Eq. (1)

$$
\begin{aligned}
& (\underbrace{\hat{\mathrm{T}}_{e}+\hat{\mathrm{W}}_{\text {ex }}+\hat{\mathrm{V}}_{\mathrm{e}}^{\text {ext }}(\underline{\underline{r}}, \mathrm{t})+\hat{\mathrm{V}}_{\text {en }}(\underline{\underline{r}}, \underline{\underline{R}})}_{\hat{H}_{\text {Bo }}(t)}+\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}(\underline{\underline{R}}, \mathrm{t})\right)^{2} \\
& \left.\left.+\sum_{v}^{N_{n}} \frac{1}{\mathrm{M}_{v}}\left(\frac{-\mathrm{i} \nabla_{v} \chi(\underline{\underline{R}}, \mathrm{t})}{\chi(\underline{\underline{R}}, \mathrm{t})}+\mathrm{A}_{v}(\underline{\underline{\mathrm{R}}, \mathrm{t}})\right)\left(-\mathrm{i} \nabla_{v}-\mathrm{A}_{v}\right)-\in(\underline{\underline{R}}, \mathrm{t})\right) \Phi_{\underline{\underline{\mathrm{R}}}}^{\underline{\underline{\mathrm{r}}}} \underline{\underline{\underline{R}}}\right)=\mathrm{i} \partial_{\mathrm{t}} \Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\underline{R}}}, \mathrm{t})
\end{aligned}
$$

Eq. ${ }^{2}$

$$
\left(\sum_{v}^{N_{n}} \frac{1}{2 M_{v}}\left(-i \nabla_{v}+A_{v}(\underline{\underline{R}}, t)\right)^{2}+\hat{W}_{n n}(\underline{\underline{R}})+\hat{V}_{n}^{\text {ext }}(\underline{\underline{R}}, t)+\in(\underline{\underline{R}}, t)\right) \chi(\underline{\underline{R}}, t)=i \partial_{t} \chi(\underline{\underline{R}}, t)
$$

Nuclear wavefunction

$$
\chi(\mathrm{R}, \mathrm{t})=\mathrm{e}^{\frac{\mathrm{i}}{\bar{\xi}} s(\mathrm{R}, \mathrm{t})}|\chi(\mathrm{R}, \mathrm{t})|
$$

Classical limit

$$
\left\{\begin{array}{l}
|\chi(\mathrm{R}, \mathrm{t})|^{2} \rightarrow \delta\left(\mathrm{R}-\mathrm{R}_{\mathrm{c}}(\mathrm{t})\right) \\
\nabla_{\mathrm{R}} \mathrm{~S}(\mathrm{R}, \mathrm{t}) \rightarrow \mathrm{P}_{\mathrm{c}}(\mathrm{t})
\end{array}\right.
$$

Hence
$\frac{-\mathrm{i} \hbar \nabla_{\mathrm{R}} \chi}{\chi} \xrightarrow{\hbar \rightarrow 0} \mathrm{P}_{\mathrm{c}}(\mathrm{t})$

Expand the exact electronic wave function in the adiabatic basis:
$\Phi_{\mathrm{R}}(\mathrm{r}, \mathrm{t})=\sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}}(\mathrm{R}, \mathrm{t}) \varphi_{\mathrm{R}, \mathrm{j}}^{\mathrm{BO}}(\mathrm{r})$
Insert this in the (exact) electronic equation of motion:
$\dot{\mathrm{c}}_{\mathrm{j}}(\mathrm{R}, \mathrm{t})=\mathrm{f}_{\mathrm{j}}\left(\left\{\mathrm{c}_{\mathrm{k}}(\mathrm{R}, \mathrm{t})\right\},\left\{\nabla_{\mathrm{R}} \mathrm{c}_{\mathrm{k}}(\mathrm{R}, \mathrm{t})\right\},\left\{\nabla_{\mathrm{R}}^{2} \mathrm{c}_{\mathrm{k}}(\mathrm{R}, \mathrm{t})\right\}\right)$
in the classical limit:
$\nabla_{\mathrm{R}} \mathrm{c}_{\mathrm{k}}(\mathrm{R}, \mathrm{t}), \nabla_{\mathrm{R}}^{2} \mathrm{c}_{\mathrm{k}}(\mathrm{R}, \mathrm{t}) \rightarrow 0$
i.e. in this limit the $c_{k}(R, t)$ become independent of R.

In practice we solve the following equations:

$$
\begin{aligned}
& \dot{\mathrm{c}}_{\mathrm{j}}(\mathrm{t})=-\frac{\mathrm{i}}{\hbar}\left[\varepsilon_{\mathrm{BO}}^{(\mathrm{j})}-\left(\mathrm{V}_{\text {eff }}^{(\mathrm{I})}+\mathrm{i} \mathrm{~V}_{\text {eff }}^{(\mathrm{R})}\right)\right] \mathrm{c}_{\mathrm{j}}(\mathrm{t})-\sum_{\mathrm{k}} \mathrm{c}_{\mathrm{k}}(\mathrm{t}) \mathrm{D}_{\mathrm{jk}} \\
& \mathrm{~V}_{\mathrm{eff}}^{(\mathrm{I})}=\sum_{\mathrm{j}}\left|\mathrm{c}_{\mathrm{j}}\right|^{2} \varepsilon_{\mathrm{R}, \mathrm{j}}^{\mathrm{BO}}+\frac{\mathrm{P} \cdot \mathrm{~A}}{\mathrm{M}}+\frac{\hbar^{2}}{\mathrm{M}} \sum_{\mathrm{j}<\mathrm{k}} \mathfrak{R}\left[\mathrm{c}_{\mathrm{j}}{ }^{*} \mathrm{c}_{\mathrm{k}}\right] \mathrm{d}_{\mathrm{jk}}^{(2)} \\
& \mathrm{V}_{\text {eff }}^{(\mathrm{R})}=-\frac{\hbar^{2}}{\mathrm{M}} \sum_{\mathrm{j}<\mathrm{k}} \mathfrak{J}\left[\mathrm{c}_{\mathrm{j}}{ }^{*} \mathrm{c}_{\mathrm{k}}\right] \nabla_{\mathrm{R}} \cdot \mathrm{~d}_{\mathrm{jk}}^{(1)} \\
& D_{j k}=\frac{P}{M} \cdot d_{j k}^{(1)}-\frac{i \hbar}{2 M}\left(\nabla_{R} \cdot d_{j k}^{(1)}-d_{j k}^{(2)}\right) \\
& \mathrm{d}_{\mathrm{jk}}^{(1)}(\mathrm{R})=\left\langle\varphi_{\mathrm{R}, \mathrm{j}}^{\mathrm{BO}} \mid \nabla_{\mathrm{R}} \varphi_{\mathrm{R}, \mathrm{k}}^{\mathrm{BO}}\right\rangle \quad \mathrm{d}_{\mathrm{jk}}^{(2)}(\mathrm{R})=\left\langle\nabla_{\mathrm{R}} \varphi_{\mathrm{R}, \mathrm{j}}^{\mathrm{BO}} \mid \nabla_{\mathrm{R}} \varphi_{\mathrm{R}, \mathrm{k}}^{\mathrm{BO}}\right\rangle
\end{aligned}
$$

and classical EoM for the nuclear Hamiltonian: $\quad H_{N}=\frac{P^{2}}{2 M}+V_{e f f}^{(\mathrm{R})}$

Shin-Metiu model populations of the BO states as functions of time

nuclear kinetic energy as a function of time

Exact nuclear density vs. histogram constructed from distribution of classical nuclear positions

Exact nuclear density vs. histogram constructed from distribution of classical nuclear positions

Algorithm not good enough to reproduce splitting of nuclear density!

Propagation of classical nuclei on exact TDPES

Measure of decoherence: Quantum:

$$
\int d \underline{\underline{\mathbf{R}}}\left|C_{1}(\underline{\underline{\mathbf{R}}}, t)\right|^{2}\left|C_{2}(\underline{\underline{\mathbf{R}}}, t)\right|^{2}|\chi(\underline{\underline{\mathbf{R}}}, t)|^{2}
$$

Trajectories

$$
N_{t r a j}^{-1} \sum_{I}\left|C_{1}^{(I)}(t)\right|^{2}\left|C_{2}^{(I)}\right|^{2}
$$

Summary:

- $\Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}) \cdot \chi(\underline{\underline{\mathrm{R}}})$ is exact
- Eqs. of motion for $\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}})$ and $\chi(\underline{\underline{\mathrm{R}}})$ lead to
--- exact potential energy surface
--- exact Berry connection
both in the static and the time-dependent case
- Exact Berry phase may vanish when BO Berry phase $\neq 0$
- TD-PES shows jumps resembling surface hopping
- reverse the role of electrons and nuclei: Electronic TDPES
- mixed quantum classical algorithms

*hànoquanta Network of Excellence

SFB 450
SFB 685
SFB 762
SPP 1145

