!

Conceptual problems in QED

Part I: Polarization density of the vacuum $($ photon $=$ classical field $)$

Part II: Bare, physical particles, renormalization (photon $=$ independent particle)

Rainer Grobe
Intense Laser Physics Theory
Illinois State University

Coworkers

Prof. Q. Charles Su
Dr. Sven Ahrens

QingZheng Lv

Will Bauer

Questions

Can we visualize the dynamics of QED interactions with space-time resolution?

Relationship between virtual and real particles?

Dynamics of virtual particles?

Is this picture correct?

Peskin Schroeder Fig. 7.8

, Greiner Fig. 1.3a

Quantum mechanics:

(1) know: $\phi(\mathrm{x}, \mathrm{t}=0)$ and $\mathrm{h}(\mathrm{t})$
(2) solve: $i \partial_{t} \phi(x, t)=h(t) \phi(x, t) \quad$ for the initial state ONLY (3) compute: observables $\langle\phi(\mathrm{t})| \mathrm{O}|\phi(\mathrm{t})\rangle$

Quantum field theory:

(1) know: $|\Phi(\mathrm{t}=0)\rangle$ and $\mathrm{H}(\mathrm{t})$
(2) solve: $i \partial_{t} \phi_{E}(x, t)=H(t) \quad \phi_{E}(x, t) \quad$ for $\mathbf{E A C H}$ state $\phi_{E}(x)$ of ENTIRE Hilbert space
(3) compute: observables $\langle\Phi(\mathrm{t}=0)| \mathrm{O}\left(\right.$ all $\left.\phi_{\mathrm{E}}(\mathrm{x}, \mathrm{t})\right)|\Phi(\mathrm{t}=0)\rangle$

Charge

density $\rho(\mathrm{z}, \mathrm{t})$

$$
\rho(\mathrm{z}, \mathrm{t})=\langle\Phi(\mathrm{t}=0)|-\left[\Psi^{\dagger}(\mathrm{z}, \mathrm{t}), \Psi(\mathrm{z}, \mathrm{t})\right] / 2|\Phi(\mathrm{t}=0)\rangle
$$

example: single electron

$$
|\Phi(\mathrm{t}=0)\rangle=\mathrm{b}_{\mathrm{P}}^{\dagger}|\mathrm{vac}\rangle
$$

$$
\rho(\mathrm{z}, \mathrm{t})=-\left|\phi_{\mathrm{P}}(+; \mathrm{z}, \mathrm{t})\right|^{2}+\left(\Sigma_{\mathrm{E}(+)}\left|\phi_{\mathrm{E}}(+; \mathrm{z}, \mathrm{t})\right|^{2}-\Sigma_{\mathrm{E}(-)}\left|\phi_{\mathrm{E}}(-; \mathrm{z}, \mathrm{t})\right|^{2}\right) / 2
$$

electron's wave function (trivial)
vacuum's polarization density
(not understood)
$\mathrm{t}=0: \quad \mathrm{h}_{0} \phi_{\mathrm{E}}=\mathrm{E} \phi_{\mathrm{E}}$
$\mathrm{t}>0: \quad \mathrm{i} \partial_{\mathrm{t}} \phi_{\mathrm{E}}(\mathrm{t})=\mathrm{h} \quad \phi_{\mathrm{E}}(\mathrm{t})$

$$
\phi_{\mathrm{E}}(-)-\mathrm{mc}^{2} \quad \mathrm{mc}^{2}
$$

$$
\phi_{\mathrm{E}}(+)
$$

Quick overview

(1) Computational approach

- Steady state vacuum polarization $\rho(z)$
- Space-time evolution of $\rho(z, t)$
- Steady state and time averaged dynamics
(2) Analytical approaches
- Phenomenological model
- Decoupled Hamiltonians
- Perturbation theory
(3) Applications
- Coupling ρ to Maxwell equation
- Relevance for pair-creation process
- Relationship to traditional work

2. Example: $\quad \rho(\mathbf{z})$ for the dressed vacuum state |VAC \rangle

$$
\rho_{\mathrm{pol}}(\mathrm{z})=\langle\mathrm{VAC}|-\left[\Psi^{\dagger}(\mathrm{z}), \Psi(\mathrm{z})\right] / 2|\mathrm{VAC}\rangle
$$

Dirac equation

$$
\left[\mathrm{c} \sigma_{1} \mathrm{p}_{\mathrm{z}}+\mathrm{mc}^{2} \sigma_{3}+\mathrm{V}_{\mathrm{ext}}(\mathrm{z})\right] \Phi_{\mathrm{E}}(\mathrm{z})=\mathrm{E} \Phi_{\mathrm{E}}(\mathrm{z})
$$

$$
\rho_{\mathrm{pol}}(\mathrm{z})=\left(\sum_{\mathrm{E}(+)}\left|\Phi_{\mathrm{E}}(+; \mathrm{z})\right|^{2}-\sum_{\mathrm{E}(-)}\left|\Phi_{\mathrm{E}}(-; \mathrm{z})\right|^{2}\right) / 2
$$

Width w of external potential $\mathbf{V}_{\text {ext }}(\mathrm{z})$ determines $\rho(\mathrm{z})$

$$
\mathrm{V}_{\mathrm{ext}}(\mathrm{z})=\mathrm{V}_{0} \exp \left[-(\mathrm{z} / \mathrm{w})^{2}\right]
$$

3. Example: Dynamics of the polarization density

$$
\left.\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})=\langle\text { bare vac }|-[\Psi \dagger(\mathrm{z}, \mathrm{t}), \Psi(\mathrm{z}, \mathrm{t})] / 2 \mid \text { bare vac }\right\rangle
$$

$$
\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})=\left(\sum_{\mathrm{E}(+)}\left|\phi_{\mathrm{E}}(+; \mathrm{z}, \mathrm{t})\right|^{2}-\sum_{\mathrm{E}(-)}\left|\phi_{\mathrm{E}}(-; \mathrm{z}, \mathrm{t})\right|^{2}\right) / 2
$$

$\phi_{\mathrm{E}}(-) \mathrm{mc}^{2} \mathrm{mc}^{2} \quad \phi_{\mathrm{E}}(+)$
time-dependent Dirac equation:
$\mathrm{i} \hbar \partial_{\mathrm{t}} \phi_{\mathrm{E}}(\mathrm{z}, \mathrm{t})=\left[\mathrm{c} \sigma_{3} \mathrm{p}_{\mathrm{z}}+\mathrm{mc}^{2} \sigma_{3}+\mathrm{V}(\mathrm{z})\right] \phi_{\mathrm{E}}(\mathrm{z}, \mathrm{t})$

Temporal evolution of $\rho(\mathbf{x}, \mathbf{t})$

$$
V_{\text {ext }}(x) \quad l \quad \rho_{\text {poi }}(x, t)
$$

$$
\rho_{\text {steady }}(\mathrm{x})=\mathrm{T}^{-1} \int \mathrm{~T} \mathrm{dt} \rho(\mathrm{x}, \mathrm{t})
$$

$\mathrm{t}=0.000145947$

Quick overview

(1) Computational approach

- Steady state vacuum polarization $\rho(z)$
- Space-time evolution of $\rho(\mathrm{z}, \mathrm{t})$
- Steady state and time averaged dynamics
(2) Analytical approaches
- Phenomenological model
- Decoupled Hamiltonians
- Perturbation theory
(3) Applications
- Coupling ρ to Maxwell equation
- Relevance for pair-creation process
- Relationship to traditional work

Maxwell
$\mathrm{q}_{\text {ext }}(\mathrm{z}) \quad\left(\quad \mathrm{V}_{\text {ext }}(\mathrm{z})\right.$
Dirac

Phenomenological model for $\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})$

$$
\left.\left(\partial_{\mathrm{ct}}^{2}-\partial_{\mathrm{z}}^{2}\right) \rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})=8 \pi \chi \mathrm{q}_{\mathrm{ext}}(\mathrm{z}) \quad \chi=\alpha^{3} /\left(2 \pi \lambda_{\mathrm{C}}^{2}\right) \text { (guess }\right)
$$

exact solution:

$$
\begin{aligned}
\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t}) & =\chi\left[2 \mathrm{~V}_{\mathrm{ext}}(\mathrm{z})-\mathrm{V}_{\mathrm{ext}}(\mathrm{z}-\mathrm{ct})-\mathrm{V}_{\mathrm{ext}}(\mathrm{z}+\mathrm{ct})\right] \\
\mathrm{j}_{\mathrm{pol}}(\mathrm{z}, \mathrm{t}) & =\chi \mathrm{c}\left[\mathrm{~V}_{\mathrm{ext}}(\mathrm{z}+\mathrm{ct})-\mathrm{V}_{\mathrm{ext}}(\mathrm{z}-\mathrm{ct})\right]
\end{aligned}
$$

if width of $\mathrm{V}_{\text {ext }}>\lambda_{\mathrm{C}} \Rightarrow>$ predictions for $\rho_{\text {pol }}(\mathrm{z}, \mathrm{t})$ are highly accurate
$\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})$ and $\mathrm{j}_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})$ for an external

$$
\rho(\mathrm{z}, \mathrm{t})=\chi[2 \mathrm{~V}(\mathrm{z})-\mathrm{V}(\mathrm{z}-\mathrm{ct})-\mathrm{V}(\mathrm{z}+\mathrm{ct})]
$$

point charge +

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{ext}}(\mathrm{z})=\mathrm{q} \delta(\mathrm{z}) \\
& \mathrm{V}_{\mathrm{ext}}(\mathrm{z})=-2 \pi \mathrm{q}|\mathrm{z}|
\end{aligned}
$$

$\rho_{\text {pol }}(z, t)$

- charge conservation \checkmark
- $\lim _{\mathrm{L}, \mathrm{t} \rightarrow \infty} \rho(\mathrm{z}=0, \mathrm{t}) \rightarrow \infty \boldsymbol{\checkmark}$

$$
\mathrm{j}(\mathrm{z}, \mathrm{t})=\chi \mathrm{c}[\mathrm{~V}(\mathrm{z}+\mathrm{ct})-\mathrm{V}(\mathrm{z}-\mathrm{ct})]
$$

Decoupled Hamiltonian model

$$
\begin{array}{ll}
\mathrm{H}(+)=\left[\mathrm{m}^{2} \mathrm{c}^{4}+\mathrm{c}^{2} \mathrm{p}^{2}\right]^{1 / 2}+\mathrm{V}_{\mathrm{ext}}(\mathrm{z}) & \Rightarrow \text { bound states } \\
\mathrm{H}(-)=\left[\mathrm{m}^{2} \mathrm{c}^{4}+\mathrm{c}^{2} \mathrm{p}^{2}\right]^{1 / 2}-\mathrm{V}_{\mathrm{ext}}(\mathrm{z}) & \Rightarrow \text { scattering states } \\
& \\
\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})=\left(\sum_{\mathrm{E}(+)}\left|\phi_{\mathrm{E}}(+; \mathrm{z}, \mathrm{t})\right|^{2}-\sum_{\mathrm{E}(-)}\left|\phi_{\mathrm{E}}(-; \mathrm{z}, \mathrm{t})\right|^{2}\right) / 2
\end{array}
$$

predictions for $\rho_{\text {pol }}(z, t)$ are highly accurate
=> transitions between positive and negative Dirac states irrelevant

Traditional perturbation theory

$$
\begin{aligned}
& \left|\Psi_{\mathrm{E}}^{(1)}\right\rangle=\left|\phi_{\mathrm{E}}\right\rangle+\Sigma_{\mathrm{E}},\left\langle\phi_{\mathrm{E} \square}\right| \mathrm{V}_{\mathrm{ext}}\left|\phi_{\mathrm{E} \square}\right\rangle /\left(\mathrm{E}_{\mathrm{E}} \mathrm{E}^{\prime}\right)\left|\phi_{\mathrm{E} \square}\right\rangle+\ldots \\
& \left|\Psi_{\mathrm{E}}^{(1)}\right\rangle=\left|\phi_{\mathrm{E}}\right\rangle-\Sigma_{\mathrm{E}},\left\langle\phi_{\mathrm{E} \square}\right| \mathrm{V}_{\mathrm{ext}}\left|\phi_{\mathrm{E} \square}\right\rangle /\left(\mathrm{E}-\mathrm{E}^{\prime}\right)\left|\phi_{\mathrm{E} \square}\right\rangle+\ldots
\end{aligned}
$$

$$
\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})=\left(\sum_{\mathrm{E}}\left|\Psi_{\mathrm{E}}^{(1)}(\mathrm{z})\right|^{2}-\sum_{\mathrm{E}}\left|\Psi_{\mathrm{E}}^{(1)}(\mathrm{z})\right|^{2}\right) / 2
$$

predictions for $\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})$ are highly accurate
$=>$ perturbative approach applicable also to 2 and 3D ?

Intermediate summary

$$
\left(\partial_{\mathrm{ct}}^{2}-\partial_{\mathrm{z}}^{2}\right) \rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})=8 \pi \chi \mathrm{q}_{\mathrm{ext}}(\mathrm{z}) \quad \text { with } \quad \chi=\alpha^{3} /\left(2 \pi \lambda_{\mathrm{C}}^{2}\right)
$$

4 independent approaches:
(steady, dynamics, phenom, decoupled hamiltonian) predict:

massless virtual positive particles accumulate around positive charges

=> Is the energy conserved?
=> What if real particles are created in addition?
=> Consistent with traditional QED methods?

Quick overview

(1) Computational approach

- Steady state vacuum polarization $\rho(z)$
- Space-time evolution of $\rho(\mathrm{z}, \mathrm{t})$
- Steady state and time averaged dynamics
(2) Analytical approaches
- Phenomenological model
- Decoupled Hamiltonians
- Perturbation theory
(3) Applications
- Coupling ρ to Maxwell equation
- Relevance for pair-creation process
- Relationship to traditional work

Coupled Dirac-Maxwell equation

$$
\rho_{\mathrm{pol}}(\mathrm{z}, \mathrm{t})=\left(\sum_{\mathrm{E}(+)}\left|\phi_{\mathrm{E}}(+; \mathrm{z}, \mathrm{t})\right|^{2}-\sum_{\mathrm{E}(-)}\left|\phi_{\mathrm{E}}(-; \mathrm{z}, \mathrm{t})\right|^{2}\right) / 2
$$

Dirac equation:

$$
\mathrm{i} \partial_{\mathrm{t}} \phi_{\mathrm{E}}(\mathrm{z}, \mathrm{t})=\left[\mathrm{c} \sigma_{1}\left[\mathrm{p}_{\mathrm{z}}-\mathrm{A}(\mathrm{z}, \mathrm{t}) / \mathrm{c}\right]+\mathrm{mc}^{2} \sigma_{3}+\mathrm{V}(\mathrm{z}, \mathrm{t})\right] \phi_{\mathrm{E}}(\mathrm{z}, \mathrm{t})
$$

Maxwell equation:

$$
\begin{aligned}
& {\left[\partial_{\mathrm{ct}}^{2}-\partial_{\mathrm{z}}^{2}\right] \mathrm{V}(\mathrm{z}, \mathrm{t})=4 \pi \rho(\mathrm{z}, \mathrm{t})} \\
& {\left[\partial_{\mathrm{ct}}^{2}-\partial_{\mathrm{z}}^{2}\right] \mathrm{A}(\mathrm{z}, \mathrm{t})=4 \pi \mathrm{j}(\mathrm{z}, \mathrm{t}) / \mathrm{c}}
\end{aligned}
$$

Energy conservation

$$
E_{\text {tot }}=E_{\text {mat }}(t)+E_{\text {int }}(t)+E_{\text {field }}(t)
$$

$$
\begin{aligned}
& \mathrm{E}_{\text {mat }}(\mathrm{t})=\int \mathrm{dz}\left\langle\Psi^{\dagger}(\mathrm{z}, \mathrm{t})\left\{\mathrm{c} \sigma_{1} \mathrm{p}+\sigma_{3} \mathrm{mc}^{2}\right\} \Psi(\mathrm{z}, \mathrm{t})\right\rangle \\
& \mathrm{E}_{\text {int }}(\mathrm{t})=\mathrm{q} \int \mathrm{dz}\left\langle\Psi^{\dagger}(\mathrm{z}, \mathrm{t})\left\{\mathrm{V}(\mathrm{z}, \mathrm{t})-\sigma_{1} \mathrm{~A}(\mathrm{z}, \mathrm{t})\right\} \Psi(\mathrm{z}, \mathrm{t})\right\rangle \\
& \mathrm{E}_{\text {field }}(\mathrm{t})=(8 \pi)^{-1} \int \mathrm{dz}\left\{\left[\partial_{\mathrm{ct}} \mathrm{~A}(\mathrm{z}, \mathrm{t})\right]^{2}-\left[\partial_{\mathrm{z}} \mathrm{~V}(\mathrm{z}, \mathrm{t})\right]^{2}\right\}
\end{aligned}
$$

Temporal gauge:
$\mathrm{E}_{\text {int }}(\mathrm{t})=-\mathrm{q} \int \mathrm{dz}\left\langle\Psi^{\dagger}(\mathrm{z}, \mathrm{t}) \sigma_{1} \mathrm{~A}(\mathrm{z}, \mathrm{t}) \Psi(\mathrm{z}, \mathrm{t})\right\rangle$
$\mathrm{E}_{\text {field }}(\mathrm{t})=(8 \pi)^{-1} \int \mathrm{dz} \mathrm{E}^{2}(\mathrm{z}, \mathrm{t})$

Energy is conserved despite $\mathbf{q}_{\text {pol }} \rightarrow \infty$

Pair creation regime: $\rho_{\mathrm{pol}}=\rho_{\mathrm{vac}}+\rho_{\mathrm{e}-\mathrm{e}+}$

real particles reduce the total charge density induced and real particles obey opposite "force laws"

More quantitatively: mass density of real particles

$$
\Psi(\mathrm{z}, \mathrm{t}) \equiv \Psi\left(\mathrm{e}^{-}\right)+\mathrm{C} \Psi\left(\mathrm{e}^{+}\right)
$$

effective charge density

$$
\begin{aligned}
\mathrm{m}\left(\mathrm{e}^{-} ; \mathrm{z}, \mathrm{t}\right) & \equiv\langle\operatorname{vac}| \Psi^{\dagger}\left(\mathrm{e}^{-}\right) \Psi\left(\mathrm{e}^{-}\right)|\mathrm{vac}\rangle \\
\mathrm{m}\left(\mathrm{e}^{+} ; \mathrm{z}, \mathrm{t}\right) & \equiv\langle\operatorname{vac}| \Psi^{\dagger}\left(\mathrm{e}^{+}\right) \Psi\left(\mathrm{e}^{+}\right)|\mathrm{vac}\rangle
\end{aligned}
$$

$$
\begin{gathered}
\stackrel{\rho_{\mathrm{eff}}(\mathrm{z})}{\equiv} \\
\mathrm{m}\left(\mathrm{e}^{+} ; \mathrm{z}\right)-\mathrm{m}\left(\mathrm{e}^{-} ; \mathrm{z}\right)
\end{gathered}
$$

Traditional pert. QED approach:

$$
\mathrm{q}_{\mathrm{ext}}(\mathbf{r})=\mathrm{e} \delta(\mathrm{z})
$$

Peskin-Schroeder Eq. 7.93

$$
\Pi_{2}=4 \alpha\left[\mathrm{k}^{-2}-4 \mathrm{c}^{4} \mathrm{k}^{-3}\left(4 \mathrm{c}^{4}-\mathrm{k}^{2}\right)^{-1 / 2} \arctan \left[\mathrm{k}\left(4 \mathrm{c}^{4}-\mathrm{k}^{2}\right)^{-1 / 2}\right]\right]
$$

necessary: regularization ($\mathrm{P}-\mathrm{V}$ or dim.) and charge renormalization

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{int}}(\mathrm{z})=(2 \pi)^{-1} \int \mathrm{dk} \exp (\mathrm{ikz}) \mathrm{e}^{2} \mathrm{k}^{-2}\left[1-\Pi_{2}\right]^{-1} \\
& \cong \underbrace{-2 \pi \mathrm{e}^{2}|\mathrm{z}|}_{\text {Coulomb }} \\
& \underbrace{-\alpha \mathbf{e}^{2} 4 \pi / 3|\mathbf{z}|^{3}}_{\text {vac. pol. correction }}+\ldots
\end{aligned}
$$

Traditional pert. QED approach:

$$
\mathrm{E}_{\mathrm{int}}(\mathrm{z}) \cong \underbrace{-2 \pi \mathrm{e}^{2}|\mathrm{z}|}_{\text {Coulomb }} \underbrace{-\alpha \mathrm{e}^{2} 4 \pi / 3|\mathbf{z}|^{3}}_{\text {vac. pol. correction }}+\ldots
$$

Possible connection to our approach:

$$
\begin{aligned}
& -\partial_{\mathrm{z}}^{2} \mathrm{~V}_{\mathrm{ext}}(\mathrm{z})=4 \pi \mathrm{q}_{\text {ext }}(\mathrm{z})
\end{aligned}
$$

$$
\begin{aligned}
& +\partial_{\mathrm{z}}^{2} \mathrm{~V}_{\mathrm{pol}}(\mathrm{z})=4 \pi \rho_{\mathrm{pol}}(\mathrm{z}) \quad \Rightarrow \mathrm{V}_{\mathrm{pol}}(\mathrm{z})=-8 \pi^{2} / 3 \mathrm{e} \chi|\mathrm{z}|^{3} \\
& =-\alpha \mathbf{e} 4 \pi / 3|z|^{3}
\end{aligned}
$$

regularization and charge renormalization NOT necessary
(Too) many open questions....
$\odot q_{\text {ext }}(z)=\delta(z)=>$ infinite plane: $\lim _{t \rightarrow \infty} \rho(z, t) \rightarrow \infty$
$\bigcirc 1 D \neq 3 \mathrm{D}$ with spatial symmetry (relativity)
\odot implications for 2D and 3D: $\square \rho_{\mathrm{pol}}=8 \pi \chi \mathrm{q}_{\mathrm{ext}}(\mathrm{r})$??
\bigcirc more contact with traditional methods
\bigcirc experimental implications
©
Q.Z. Lv, J. Betke, W. Bauer, Q. Su and R. Grobe, Phys. Rev. Lett. (in preparation)
A. Steinacher, J. Betke, S. Ahrens, Q. Su and R. Grobe, Phys. Rev. A 89, 062016 (2014).
A. Steinacher, R. Wagner, Q. Su and R. Grobe, Phys. Rev. A 89, 032119 (2014).

Conceptual problems in QED

Part I: Polarization density of the vacuum $($ photon $=$ classical field $)$

Part II: Bare, physical particles, renormalization
(photon = independent particle)

5 drawbacks of the S matrix

(1) $\mathrm{T} \rightarrow \infty$ is built in
(2) $d \sigma / d \omega$ is rate based
(3) usually only perturbative
(4) no spatial information
(5) black box approach

What happens inside the interaction zone?

The challenge:

study QED interactions with space-time resolution

\odot construct Hamiltonian H
\odot evolve $|\Psi(\mathrm{t}=0)\rangle$ to $|\Psi(\mathrm{t})\rangle$

$$
\text { by solving } \mathrm{i} \square / \mathrm{t}|\Psi(\mathrm{t})\rangle=\mathrm{H}|\Psi(\mathrm{t})\rangle
$$

\odot convert $|\Psi(\mathrm{t})\rangle$ into observables

The problems:
© Hilbert space is gigantic
© Hamiltonian is "wrong" and requires serious repair
(ब) correct physical operators are unknown

Electron - positron - photon interactions

$$
\begin{gathered}
\mathrm{b}_{\mathrm{p}}^{\square} \\
\mathrm{H}_{0}=\Sigma+\mathrm{dp} \mathrm{E}_{\mathrm{p}} \mathrm{~b}_{\mathrm{p}}^{\square} \mathrm{b}_{\mathrm{p}}+\Sigma+\mathrm{dp} \mathrm{E}_{\mathrm{p}} \mathrm{~d}_{\mathrm{p}} \square \mathrm{~d}_{\mathrm{p}}+\Sigma+\mathrm{dp} \omega_{\mathrm{p}} \\
\mathrm{a}_{\mathrm{p}}^{\square} \mathrm{a}_{\mathrm{p}}
\end{gathered} \quad \begin{aligned}
& \mathrm{a}_{\mathrm{p}} \\
& \mathrm{H}_{\text {int }}=\Sigma++\mathrm{dp} \mathrm{dk} \ldots . \quad 8 \text { basic "processes" }
\end{aligned}
$$

Photon annihilation: $\underset{\sim}{\mathrm{b}} \underset{\mathrm{ba}}{\mathrm{ba}}$

Photon creation:

Three Hamiltonians of quantum field theory

$$
\begin{aligned}
H_{\text {bare }}= & b-b+a \square a+b \square a+\ldots \\
& \odot \text { wrong energies } \\
& \odot \text { bad operators } H \text { b }\lceil 0\rangle \neq E b\lceil 0\rangle
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{H}_{\text {renorm }}= & \mathrm{b} \\
& \odot \text { b correct energies } \checkmark \\
& \odot \text { bad operators }
\end{aligned}
$$

$\mathrm{H}_{\text {dressed }}=\mathrm{B} \mathrm{B}+\mathrm{A} \mathrm{A}+\mathrm{B} \mathrm{B}^{\square} \mathrm{BB}+\ldots ? ? \ldots$
\odot correct energies \downarrow
\odot good operators $\boldsymbol{\checkmark}$

Overview

Repair work I: find $\mathrm{H}_{\text {renom }}$

© compute the physical mass (numerical renormalization)

Dynamics in terms of bare particles
(1) vacuum
(2) single particle
(3) two-particles (e- γ and e-e scattering)

Repair work II: find $\mathrm{H}_{\text {dressed }}$
\otimes^{*} construct physical operators

Bare mass $m \neq$ physical mass M

$$
\begin{array}{lr}
\mathrm{H}_{0}=+\mathrm{dp} \mathrm{e}_{\mathrm{p}} \mathrm{~b}_{\mathrm{p}} \mathrm{~b}_{\mathrm{p}}++\mathrm{dk} \omega_{\mathrm{k}} \mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}} & \text { where } \mathrm{e}_{\mathrm{p}}=\left[\mathrm{m}^{2} \mathrm{c}^{4}+\mathrm{c}^{2} \mathrm{p}^{2}\right]^{1 / 2} \\
\mathrm{H}_{\mathrm{int}}=++\mathrm{dp} \mathrm{dk} \mathrm{~g}(\mathrm{p}, \mathrm{k}) \mathrm{b}_{\mathrm{p}+\mathrm{k}} \mathrm{~b}_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{k}}+\mathrm{a}_{-\mathrm{k}}\right)+\ldots & \mathrm{m}=\text { bare mass }
\end{array}
$$

Measurement: physical mass of an electron is $1 \mathrm{~kg}(=\mathrm{M})$ he problem: eigenvalue of H is $\#$ and not m and not 1 kg

$$
\left(\mathrm{H}_{0}+\mathrm{H}_{\text {int }}\right)|\mathrm{P}\rangle=\mathrm{E}_{\mathrm{P}}|\mathrm{P}\rangle \quad \mathrm{E}_{\mathrm{P}}=\left[\#^{2} \mathrm{c}^{4}+\mathrm{c}^{2} \mathrm{P}^{2}\right]^{1 / 2}
$$

The goal: choose m such that \# is the physical mass M

Assume bare mass m and compute physical mass M
$\mathrm{H}=+\mathrm{dp} \mathrm{e}_{\mathrm{p}} \mathrm{b}_{\mathrm{p}} \mathrm{b}_{\mathrm{p}}++\mathrm{dk} \omega_{\mathrm{k}} \mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}+++\mathrm{dpdk} \mathrm{g}(\mathrm{p}, \mathrm{k}) \mathrm{b}_{\mathrm{p}+\mathrm{k}} \mathrm{b}_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{k}}+\mathrm{a}_{-\mathrm{k}}{ }^{\square}\right)+$
(1) use $e_{p}=\sqrt{ }\left(m^{2} c^{4}+c^{2} \mathrm{p}^{2}\right)$ with trial value: $m=1 \mathrm{~kg}$
(2) diagonalize H to determine eigenvalue $E_{P}=\sqrt{ }\left(M^{2} c^{4}+c^{2} p^{2}\right)$ leading to mass $\mathrm{M}=0.7 \mathrm{~kg}$
repeat (1) and (2) with different trial bare mass m until we obtain desired mass $M=1 \mathrm{~kg}$

Complication:

eigenvalue E_{P} depends on maximum momentum Λ if $\Lambda \rightarrow \square$ then $\mathrm{M}->-\square$ (but we want $\mathrm{M}=1 \mathrm{~kg}$)

Solution:

$$
\text { if } \Lambda \rightarrow \square \text { then } \mathrm{m} \rightarrow \square \text { (to keep } \mathrm{M}=1 \mathrm{~kg} \text {) }
$$

QED with photon mass $\neq 0$ \& spin $=0 \Rightarrow$ scalar Yukawa

$$
\mathrm{H}_{\text {bare }}=\mathrm{H}_{0}+\lambda+\mathrm{dx} \psi(\mathrm{x}) \gamma^{0} \psi(\mathrm{x}) \phi(\mathrm{x})
$$

Lowest energy eigenvalue

Renormalization of one-particle energies

$$
\Delta \mathrm{E}(\Lambda):=\mathrm{E}_{\text {num }}\left(\mathrm{m}_{\mathrm{e}}, \mathrm{~m}_{\gamma}, \Lambda\right)-\sqrt{ }\left(\mathrm{M}_{\text {phys }}{ }^{2} \mathrm{c}^{4}+\mathrm{c}^{2} \mathrm{p}^{2}\right)
$$

© find $\left(\mathrm{m}_{\mathrm{e}}, \mathrm{m}_{\gamma}\right)$ for $\mathrm{p}=0$ state to get $\mathrm{M}_{\text {phys }} \mathrm{c}^{2}$
$\odot\left(m_{e}, m_{\gamma}\right)$ works for all other p to get $\sqrt{ }\left(M_{\text {phys }}{ }^{2} c^{4}+c^{2} p^{2}\right)$

Renormalization of two-particle masses

$$
\Delta \mathrm{E}(\Lambda)=\mathrm{E}_{\text {num }}\left(\mathrm{m}_{\mathrm{e}}, \mathrm{~m}_{\gamma}, \Lambda\right)-2 \mathrm{M}_{\mathrm{phys}} \mathrm{c}^{2}
$$

© $\left(\mathrm{m}_{\mathrm{e}}, \mathrm{m}_{\gamma}\right)$ can repair entire spectrum
© 2-fermion bound state energy can now be analyzed
© non-perturbative exact numerical renormalization

```
Dynamics in terms of bare particles
(1) vacuum
(2) single particle
(3) two-particles (e- \(\gamma\) and e-e scattering)
```

Repair work II: find $\mathrm{H}_{\text {dressed }}$
© construct physical operators

The vacuum contains "virtual" particles

$$
\left(\mathrm{H}_{0}+\mathrm{V}\right)|\mathrm{VAC}\rangle=\mathrm{E}_{\mathrm{VAC}}|\mathrm{VAC}\rangle
$$ with LOWEST energy

$$
\mathrm{H}_{0}|0\rangle=0|0\rangle
$$

no particles, no interaction
state with particles $|\mathrm{VAC}\rangle \quad$ can have less energy than $|0\rangle$

I Properties of virtual particles in |VAC>

model in terms of an ensemble of classical particles?

II Properties of virtual particles in single particle state

© impact of mass renormalization on dynamics
(-) bare photons = electric field around charge
© electric field depends on velocity

Interactions between particles: "forces"

two charges attract through ...

"understood"

exchange of "mediating particles"

III Impact of virtual particles on forces

time $=0$.

Change Coulomb law by manipulating virtual photons

R.W. , M. Ware et al., Phys. Rev. Lett. 106, 023601 (2011)

Overview

Repair work I: find $\mathrm{H}_{\text {renom }}$

© compute the physical mass (numerical renormalization)

Dynamics in terms of bare particles

(1) vacuum
(2) single particle
(3) two-particles (e- γ and e-e scattering)

Repair work II: find $\mathrm{H}_{\text {dressed }}$
© construct physical operators

Beautiful special case: Greenberg-Schweber model

$$
\mathrm{H}_{\text {bare }}=\mathbf{E}_{\text {bare }} \Sigma_{\mathrm{p}} \mathrm{~b}_{\mathrm{p}} \mathrm{~b}_{\mathrm{p}}+\sum_{\mathrm{k}} \omega_{\mathrm{k}} \mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}-\lambda^{2} \sum_{\mathrm{p}} \Sigma_{\mathrm{k}}\left(2 \omega_{\mathrm{k}}\right)^{-1} \mathrm{~b}_{\mathrm{p}+\mathrm{k}} \mathrm{~b}_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{k}}+\mathrm{a}_{-\mathrm{k}}\right)
$$

$$
\mathbf{B}_{\mathrm{p}}=\mathrm{U} \mathrm{~b}_{\mathrm{p}} \mathrm{U}
$$

$$
\text { with } \mathrm{U} \alpha \exp \left[\lambda \Sigma_{\mathrm{p}} \Sigma_{\mathrm{k}}\left(2 \omega_{\mathrm{k}}^{3}\right)^{-1 / 2} \mathrm{~b}_{\mathrm{p}+\mathrm{k}} \mathrm{~b}_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{k}}-\mathrm{a}_{-\mathrm{k}}\right)\right]
$$

$$
\mathbf{A}_{\mathrm{k}}=\mathrm{U} \mathrm{a}_{\mathrm{k}} \mathrm{U}
$$

$$
\mathrm{H}_{\text {dress }}=\mathbf{E}_{\text {phys }} \sum_{\mathrm{p}} \mathrm{~B}_{\mathrm{p}} \mathrm{~B}_{\mathrm{p}}+\sum_{\mathrm{k}} \omega_{\mathrm{k}} \mathrm{~A}_{\mathrm{k}} \mathrm{~A}_{\mathrm{k}}-\lambda^{2} \sum_{\mathrm{p}} \sum_{\mathrm{q}} \sum_{\mathrm{k}}\left(2 \omega_{\mathrm{k}}^{2}\right)^{-1} \mathrm{~B}_{\mathrm{p}+\mathrm{k}} \mathrm{~B}_{\mathrm{q}} \mathrm{~B}_{\mathrm{p}} \mathrm{~B}_{\mathrm{q}+\mathrm{k}}
$$

$$
\mathrm{H}_{\text {bare }}
$$

$$
\mathbf{E}_{\text {bare }} \sum_{\mathrm{p}} \mathrm{~b}_{\mathrm{p}} \mathrm{~b}_{\mathrm{p}}+\sum_{\mathrm{k}} \omega_{\mathrm{k}} \mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}-\lambda^{2} \sum_{\mathrm{p}} \Sigma_{\mathrm{k}}\left(2 \omega_{\mathrm{k}}\right)^{-1} \mathrm{~b}_{\mathrm{p}+\mathrm{k}} \mathrm{~b}_{\mathrm{p}}\left(\mathrm{a}_{\mathrm{k}}+\mathrm{a}_{-\mathrm{k}}\right)
$$

$$
\begin{gathered}
\mathrm{H}_{\text {dress }}^{=} \\
\mathbf{E}_{\text {phys }} \Sigma_{\mathrm{p}} \mathrm{~B}_{\mathrm{p}} \mathrm{~B}_{\mathrm{p}}+\Sigma_{\mathrm{k}} \omega_{\mathrm{k}} \mathrm{~A}_{\mathrm{k}} \square \mathrm{~A}_{\mathrm{k}}-\lambda^{2} \sum_{\mathrm{p}} \Sigma_{\mathrm{q}} \Sigma_{\mathrm{k}}\left(2 \omega_{\mathrm{k}}^{2}\right)^{-1} \mathrm{~B}_{\mathrm{p}+\mathrm{k}} \mathrm{~B}_{\mathrm{q}} \square \mathrm{~B}_{\mathrm{p}} \mathrm{~B}_{\mathrm{q}+\mathrm{k}}
\end{gathered}
$$

physical energy $\mathrm{E}_{\text {phys }}=\mathrm{E}_{\text {bare }}-\lambda^{2} \Sigma_{\mathrm{k}}\left(2 \omega_{\mathrm{k}}^{2}\right)^{-1}$
$\square \mathrm{B}_{\mathrm{P}} \square|0\rangle$ is eigenstate of H , as $\mathrm{H}_{\mathrm{P}} \square|0\rangle=\mathrm{E}_{\mathrm{P}} \mathrm{B}_{\mathrm{P}} \square|0\rangle$
\square no force intermediating virtual photons (no $\mathrm{e}^{-}-\gamma$ interaction)
new $\mathrm{e}^{-}-\mathrm{e}^{-}$interaction: $\mathrm{e}^{-}(\mathrm{q}+\mathrm{k})+\mathrm{e}^{-}(\mathrm{p})-->\mathrm{e}^{-}(\mathrm{q})+\mathrm{e}^{-}(\mathrm{p}+\mathrm{k})$

The construction of the dressed particle Hamiltonian
$\mathrm{H}_{\text {dressed }}=+\mathrm{dp} \mathrm{e} \mathrm{e}_{\mathrm{p}} \mathrm{B}_{\mathrm{p}} \mathrm{B}_{\mathrm{p}}++\mathrm{dp} \mathrm{e}_{\mathrm{p}} \mathrm{D}_{\mathrm{p}}^{\square} \mathrm{D}_{\mathrm{p}}++\mathrm{dp} \omega_{\mathrm{p}} \mathrm{A}_{\mathrm{p}}^{\square} \mathrm{A}_{\mathrm{p}}+\mathrm{V}$
$\mathrm{V}=+++++\alpha\left(\mathrm{p}, \mathrm{q}, \mathrm{p}^{\prime}, \mathrm{q}^{\prime}\right) \mathrm{B}_{\mathrm{p}}{ }^{\square} \mathrm{B}_{\mathrm{q}}{ }^{\square} \mathrm{B}_{\mathrm{p}}, \mathrm{B}_{\mathrm{q}}$,
interaction)
$++++++\beta\left(\mathrm{p}, \mathrm{q}, \mathrm{p}^{\prime}, \mathrm{q}^{\prime}\right) \mathrm{B}_{\mathrm{p}}{ }^{\square} \mathrm{D}_{\mathrm{q}}{ }^{\square} \mathrm{B}_{\mathrm{p}}, \mathrm{D}_{\mathrm{q}}$,
($\mathrm{e}^{-}-\mathrm{e}^{+}$interaction)
$+++++++\gamma\left(\mathrm{p}, \mathrm{q}, \mathrm{p}^{\prime}, \mathrm{q}^{\prime}, \mathrm{q}^{\prime}{ }^{\prime}\right) \mathrm{B}_{\mathrm{p}}{ }^{\square} \mathrm{B}_{\mathrm{q}}{ }^{\square} \mathrm{B}_{\mathrm{p}}, \mathrm{B}_{\mathrm{q}^{\prime}} \mathrm{A}_{\mathrm{q}^{\prime}}$,
($\mathrm{e}^{-}-\gamma$ interaction
$+\ldots$
(1) use $\mathrm{H}_{\text {renorm }}$ to compute scattering matrix S
(2) find α, β, γ etc. to match S

Example: dressed particle Hamiltonian for scalar Yukawa system

$$
\begin{gathered}
\mathrm{H}_{\text {bare }}=\mathrm{H}_{0}+\lambda+\mathrm{dx} \psi(\mathrm{x}) \gamma^{0} \psi(\mathrm{x}) \phi(\mathrm{x}) \\
\mathrm{V}_{\mathrm{e}--\mathrm{e}-}=+++++\alpha\left(\mathrm{p}, \mathrm{q}, \mathrm{p}^{\prime}, \mathrm{q}^{\prime}\right) \mathrm{B}_{\mathrm{p}}{ }^{\square} \mathrm{B}_{\mathrm{q}}{ }^{\square} \mathrm{B}_{\mathrm{p}^{\prime}} \mathrm{B}_{\mathrm{q}^{\prime}} \\
\alpha\left(\mathrm{p}, \mathrm{q}, \mathrm{p}^{\prime}, \mathrm{q}^{\prime}\right) \sim \delta\left(\mathrm{p}+\mathrm{q}-\mathrm{p}^{\prime}-\mathrm{q}^{\prime}\right) /\left[\left(\mathrm{q}-\mathrm{q}^{\prime}\right)^{2}+\mathrm{M}^{2} \mathrm{c}^{2}\right]
\end{gathered}
$$

$\square+d x \exp \left[i\left(q-q^{\prime}\right) x\right] \alpha\left(p, q, p^{\prime}, q^{\prime}\right) \sim \exp (-M|x|)$
\square direct interpretation possible

Summary

R. Wagner

P. Krekora

T. Cheng

C. Gerry

Matt

Emily Kara

Nic

Kevin

- Goal: visualization of QED processes
- Main tool: computational quantum field theory
- First progress: $\mathrm{H}_{\text {bare }}$--> $\mathrm{H}_{\text {renorm }}$
- Early stage progress: $\mathrm{H}_{\text {renorm }}-->\mathrm{H}_{\text {dressed }}$
- many conceptual and computational challenges ...

