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Questions

Can we visualize the dynamics of QED interactions

with space-time resolution?

Peskin Schroeder Fig. 7.8

Is this picture correct?

Relationship between 

virtual and real particles?

Dynamics of

virtual particles?

Greiner Fig. 1.3a

-

+



Quantum mechanics: 

(1) know: f(x,t=0)  and  h(t)

(2) solve: i ∂t f(x,t) = h(t)  f(x,t)      for the initial state ONLY

(3) compute: observables f(t) O f(t)

Quantum field theory: 

(1) know: F(t=0) and  H(t)

(2) solve: i ∂t fE(x,t) = H(t)  fE(x,t)       for EACH state fE(x)                  

of ENTIRE Hilbert space

(3) compute: observables F(t=0) O( all fE(x,t) ) F(t=0)



Charge

density r(z,t)
r(z, t)  =   F(t=0)  – [Y†(z,t), Y(z,t)]/2   F(t=0)

1. example: single electron         F(t=0)  =   bP
†  vac 

r(z, t)  =  – fP(+;z,t)2 +    (SE(+) fE(+;z,t)2 – SE(–) fE(–;z,t)2) /2

vacuum’s polarization densityelectron’s wave function

(trivial) (not understood)

t=0:    h0 fE = E fE

t>0:     i ∂t fE(t) = h  fE(t)
–mc2 mc2

fE(-) fE(+)

charge operator



Quick overview

(1) Computational approach

 Steady state vacuum polarization r(z) 

 Space-time evolution of r(z,t)

 Steady state and time averaged dynamics

(2) Analytical approaches

 Phenomenological model

 Decoupled Hamiltonians

 Perturbation theory

(3) Applications

 Coupling r to Maxwell equation

 Relevance for pair-creation process

 Relationship to traditional work



2. Example:    r(z) for the dressed vacuum state   VAC 

Dirac equation

rpol(z)  =   VAC  – [Y†(z), Y(z)]/2   VAC 

[c s1 pz + mc2 s3 + Vext (z)] FE(z) = E FE(z)

rpol(z)  = (SE(+) FE(+;z)2 – SE(–) FE(–;z)2) /2



Width w of external potential Vext(z) determines r(z) 

r(z)  ~  w exp[-c|z|] 

Vext(z) = V0 exp[-(z/w)2] qext (z)

z

w

r(z)

r(z)  ~  V(z)

w < lC
lC  > w

10-3

10-4

w=lC/2

w=lC/8

lCompton= 1/c = 7 10-3r(z) r(z)

- - + + + +   - -



3. Example: Dynamics of the polarization density

rpol(z, t) = (SE(+) fE(+;z,t)2 – SE(–) fE(–;z,t)2) /2

time-dependent Dirac equation:

i ħ ∂t fE(z,t) = [c s3 pz + mc2 s3 + V(z)] fE(z,t)

rpol(z, t)  =   bare vac  – [Y†(z,t), Y(z,t)]/2   bare vac

–mc2 mc2
fE(-) fE(+)



Temporal evolution of r(x,t)

Vext(x)        rpol(x,t) 

movies



rsteady(x)  =  T-1 ∫ Tdt  r(x,t)
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Phenomenological model for rpol(z,t)

exact solution:

rpol(z,t) =  c [ 2Vext(z)  – Vext(z-ct) – Vext(z+ct) ]

jpol(z,t) =  c c[ Vext(z+ct) – Vext(z–ct) ]

(∂ct
2 –∂z

2) rpol(z,t)  =  8p c qext(z)        c = a3/(2p lC
2) (guess)

qext(z)         Vext(z)        rpol(z)      

if width of Vext > lC => predictions for rpol(z, t) are highly accurate

Maxwell Dirac



rpol(z,t) and jpol(z,t) for an external       point charge ✚

r(z,t) =  c [2V(z) –V(z-ct) – V(z+ct)]
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j(z,t) =  c c[V(z+ct) – V(z–ct)] 

qext(z) = q d(z) 

Vext(z) = – 2p q |z|

 charge conservation ✓

 lim L, t∞ r(z=0,t)   ∞ ✓

✚ ✚

 j(z) grows everywhere ✓



Decoupled Hamiltonian model

rpol(z, t) = (SE(+) fE(+;z,t)2 – SE(–) fE(–;z,t)2) /2

H(+) =  [m2c4+c2p2]1/2 + Vext(z)                =>  bound states  

H(–) =  [m2c4+c2p2]1/2 – Vext(z)                 =>  scattering states 

predictions for rpol(z, t) are highly accurate

=> transitions between positive and negative Dirac states irrelevant  



Traditional perturbation theory

YE
(1) = fE + SE’  fEVextfE / (E-E’) fE + ...

rpol(z, t) = (SE YE
(1)(z)2 – SE YE

(1)(z)2) /2

YE
(1) = fE – SE’ fEVextfE / (E-E’) fE + ...

predictions for rpol(z, t) are highly accurate

=> perturbative approach applicable also to 2 and 3D ?



Intermediate summary

(∂ct
2 – ∂z

2) rpol(z,t)  =  8p c qext(z)     with    c = a3/(2p lC
2)    

=> Is the energy conserved?

=> What if real particles are created in addition?

=> Consistent with traditional QED methods?  

4 independent approaches:

(steady, dynamics, phenom, decoupled hamiltonian)

predict:

massless virtual positive particles

accumulate around positive charges
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Coupled Dirac-Maxwell equation

rpol(z, t) = (SE(+) fE(+;z,t)2 – SE(–) fE(–;z,t)2) /2

Dirac equation:

i ∂t fE(z,t) = [c s1 [pz – A(z,t)/c] + mc2 s3 + V(z,t)] fE(z,t)

Maxwell equation: 

[∂ct
2 – ∂z

2 ] V(z,t) = 4p r(z,t) 

[∂ct
2 – ∂z

2 ] A(z,t) = 4p j(z,t)/c



Energy conservation

Etot = Emat(t)  +  Eint(t)  +  Efield(t) 

Emat (t) = ∫ dz  Y†(z,t) {c s1 p + s3 mc2} Y(z,t) 

Eint (t)  = q ∫ dz  Y†(z,t) {V(z,t) – s1 A(z,t)} Y(z,t) 

Efield (t) = (8p)-1∫ dz  { [∂ct A(z,t)]2 – [∂zV(z,t)]2 } 

Temporal gauge:

Eint (t)   =  – q ∫ dz  Y†(z,t) s1 A(z,t) Y(z,t) 

Efield (t) =  (8p)-1 ∫ dz E2(z,t) 



Energy is conserved despite qpol  ∞

Efield

Emat+ Eint

Efield   +   Emat + Eint

+

–

qext(x) rpol(x,t)



Pair creation regime:  rpol =  rvac + re-e+
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More quantitatively: mass density of real particles

m(e-; z, t)    vac  Y†(e-)Y(e-)  vac 

m(e+; z, t)    vac  Y†(e+)Y(e+)  vac 

Y(z,t)  Y(e–) + C Y(e+) 

reff (z)   



m(e+; z) – m(e–; z)    

effective charge density
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Traditional pert. QED approach:

Eint(z) = (2p)-1 ∫ dk exp(ikz) e2 k-2 [1 – P2]
-1

≅ – 2p e2 z – a e2 4p/3 z3 + ...

Peskin-Schroeder  Eq. 7.93

P2 = 4a [k-2 – 4c4 k–3 (4c4-k2)-1/2 arctan[k(4c4-k2)–1/2]]

qext(r) = e d(z) 

Coulomb vac. pol. correction

z

necessary: regularization (P-V or dim.) and charge renormalization
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Traditional pert. QED approach:

Eint(z) ≅ – 2p e2 z – a e2 4p/3 z3 + ...

– ∂2
z rpol(z)   =  8p c qext(z)

=>  Vext(z) =  – 2p e z ✓

=>  rpol(z)  =  – 4p e c z

+ ∂2
z Vpol(z)  =  4p rpol(z) =>  Vpol(z)  =  – 8p2 /3 e c z3

=  – a e 4p/3 z3       ✓

– ∂2
z Vext(z)  =  4p qext(z)

Possible connection to our approach:

Coulomb vac. pol. correction

regularization and charge renormalization NOT necessary



(Too) many open questions....

 qext(z) = d(z) => infinite plane:  lim t∞ r(z,t)∞

 1D ≠ 3D with spatial symmetry (relativity)

 implications for 2D and 3D:  orpol = 8p c qext(r) ??

 more contact with traditional methods

 experimental implications

 .....

Q.Z. Lv, J. Betke, W. Bauer, Q. Su and R. Grobe, Phys. Rev. Lett. (in preparation)

A. Steinacher, J. Betke, S. Ahrens, Q. Su and R. Grobe, Phys. Rev. A 89, 062016 (2014).

A. Steinacher, R. Wagner, Q. Su and R. Grobe, Phys. Rev. A 89,  032119 (2014).
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5 drawbacks of the S matrix

(1) T is built in

(2) ds/dw is rate based

(3) usually only perturbative

(4) no spatial information

(5) black box approach

What happens inside the interaction zone?



The challenge:

study QED interactions with space-time resolution

⊙ construct Hamiltonian H

⊙ evolve Y(t=0) to Y(t)

by solving i /t Y(t) = H Y(t)

⊙ convert Y(t) into observables

?



The problems:

☹ Hilbert space is gigantic

☹ Hamiltonian is “wrong” and requires serious repair 

☹ correct physical operators are unknown



Electron – positron – photon interactions
bp

 dp
 ap



H0 = S dp Ep bp
bp + Sdp Ep dp

dp + Sdp wp

ap
ap

Hint = Sdp dk …. 8 basic “processes”

Photon

annihilation: bba dda bda bda

Photon

creation: bba dda bda bda



Three Hamiltonians of quantum field theory

Hbare =   bb   +   aa  +    bb a  + ...

⊙ wrong energies

⊙ bad operators  H  b0 ≠ E b0

Hrenorm =  bb   +  aa  +  ∞ bb a + ...

⊙ correct energies ✓

⊙ bad operators

Hdressed =  BB  +  AA  +  BBBB   + ..??...
⊙ correct energies ✓
⊙ good operators ✓



Overview

Repair work I: find Hrenom

☺ compute the physical mass   (numerical 

renormalization)

Dynamics in terms of bare particles

① vacuum

② single particle

③ two-particles (e-g and e-e scattering)

Repair work II:  find Hdressed

☹ construct physical operators



The problem: eigenvalue of H  is #   and not  m   and  not 1kg     

(H0+Hint) P =  EP P

m = bare mass 

H0 =  dp ep bp
bp     +   dk wk  ak

ak

Hint =  dp dk g(p,k) bp+k
bp (ak+a-k

) + ...

where ep = [m2c4+c2p2]1/2

EP = [#2c4+c2P2]1/2

Measurement:   physical mass of an electron is 1kg  (= M) 

The goal: choose m such that # is the physical mass M

Bare mass m ≠ physical mass M



Assume bare mass m and compute physical mass M

Complication:

eigenvalue EP depends on maximum momentum L

if L -–   then M -– -  (but we want M=1kg)

Solution:

if L -– then m -–  (to keep M=1kg)

H =  dp epbp
bp  +  dk wkak

ak +  dp dk g(p,k) bp+k
bp (ak+a-k

) + 

...

(1) use  ep = √(m2c4+c2p2)    with   trial value:  m =1 kg

(2) diagonalize H to determine eigenvalue EP  = √(M2c4+c2p2) 

leading to mass M = 0.7 kg

repeat (1) and (2) with different trial bare mass m

until we obtain desired mass M=1 kg 



Hbare = H0 +  l  dx  y(x) g0 y(x) f(x)

coupling l cutoff L   

cutoff L=1885 coupling l=0.7

Lowest energy eigenvalue

QED with photon mass≠0 & spin=0  =>  scalar Yukawa 



Renormalization of one-particle energies

DE(L) := Enum(me, mg, L) – (Mphys
2 c4 + c2 p2) 

☺ find (me, mg) for p=0 state to get Mphysc
2

☺ (me, mg) works for all other p to get (Mphys
2 c4 + c2 p2)   



Renormalization of two-particle masses

DE(L) = Enum(me, mg, L) – 2Mphys c2

☺ (me, mg) can repair entire spectrum

☺ 2-fermion bound state energy can now be analyzed  

after

renormalization

before

renormalization



Repair work I:  find Hrenom

☺ non-perturbative exact numerical renormalization

Dynamics in terms of bare particles

① vacuum

② single particle

③ two-particles (e-g and e-e scattering)

Repair work II:  find Hdressed

☹ construct physical operators



41

The vacuum contains “virtual” particles

(H0+V) VAC = EVAC VAC

with LOWEST energy

state with particles VAC can have less energy      than  0

H0 0 = 0  0

no particles, no interaction



I    Properties of virtual particles in |VAC

position:

on top of each other

velocity:

mainly at rest

life time:

non-exponential

â†(t=0)â†(t=0)â(t)â(t)â†(0)â†(0)â(z)â(z)â†(p)â(p)

model in terms of an ensemble of classical particles?



II   Properties of virtual particles in single particle state

☺ impact of mass renormalization on dynamics

☺ bare photons = electric field around charge

☺ electric field depends on velocity



Interactions between particles:  “forces”

“fields” exchange of “mediating particles”

two charges attract through ...

+– +–

“understood”



e+e-

“exact”

no 

coupling

III    Impact of virtual particles on forces 



Change      Coulomb law     by    manipulating virtual photons

R.W. , M. Ware et al., Phys. Rev. Lett. 106, 023601 (2011) 

repulsion

attraction

equal charges

always repel

equal charges

can attract



Overview

Repair work I:  find Hrenom

☺ compute the physical mass   (numerical 

renormalization)

Dynamics in terms of bare particles

① vacuum

② single particle

③ two-particles (e-g and e-e scattering)

Repair work II:  find Hdressed

☹ construct physical operators



Beautiful special case:

Greenberg-Schweber model

Hbare = Ebare Sp bp
bp  +  Sk wkak

ak - l2 Sp Sk (2wk)
-1 bp+k

bp (ak + a-k
)

Bp = UbpU

with U a exp[l Sp Sk (2wk
3)-1/2 bp+k

bp (ak
- a-k) ]

Ak = UakU   

Hdress = Ephys Sp Bp
Bp + Sk wkAk

Ak - l2 SpSqSk(2wk
2)-1 Bp+k

Bq
BpBq+k



physical energy Ephys = Ebare - l2Sk(2wk
2)-1

BP
0 is eigenstate of H,  as H  BP

0 = EP  BP
0

no force intermediating virtual photons (no e--g interaction)    

new e--e- interaction:  e- (q+k) + e-(p) -->  e- (q) + e-(p+k)

Hbare 

=

Ebare Sp bp
bp  +  Sk wkak

ak - l2 Sp Sk (2wk)
-1 bp+k

bp (ak + a-k
)

Hdress 

= 

Ephys Sp Bp
Bp + Sk wkAk

Ak - l2 SpSqSk(2wk
2)-1 Bp+k

Bq
BpBq+k



The construction of the dressed particle Hamiltonian

Hdressed =  dp ep Bp
Bp + dp ep Dp

Dp +  dp wpAp
Ap  + V

V =   a(p,q,p’,q’) Bp
 Bq

 Bp’ Bq’ (e--e-

interaction)

+  (p,q,p’,q’) Bp
 Dq

 Bp’ Dq’ (e--e+ interaction)

  g(p,q,p’,q’, q’’) Bp
 Bq

 Bp’ Bq’Aq’’ (e--g interaction

)

 ... 
(1) use Hrenorm to compute scattering matrix S

(2) find  a, , g etc.  to match S



Example: dressed particle Hamiltonian for scalar Yukawa system

Hbare = H0 +  l  dx  y(x) g0 y(x) f(x)

a(p,q,p’,q’) ~ d(p+q-p’-q’) / [(q-q’) 2 + M2c2]

Ve--e- =   a(p,q,p’,q’) Bp
 Bq

Bp’ Bq’

dx exp[i(q-q’)x] a(p,q,p’,q’)  ~   exp( - M |x|)

direct interpretation possible
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Summary

R. Wagner

Kara KevinNicMatt Emily

• Goal:  visualization of QED processes 

• Main tool:  computational quantum field theory

• First progress:  Hbare --> Hrenorm

• Early stage progress:  Hrenorm --> Hdressed

• many conceptual and computational challenges ...

E. Stefanovich


