FOUR-DIMENSIONAL WALL-CROSSING FROM THREE-DIMENSIONAL FIELD THEORY

WORK DONE WITH

DAVIDE GAIOTTO & ANDY NEITZKE

KITP, JULY 31, 2008

BASED ON

arXiv: 0807.4723
OUTLINE

1. INTRODUCTION
2. REVIEW OF BPS WALL-CROSSING
3. THE KS-FORMULA
4. COMPACTIFICATION OF $\mathfrak{N}=2, D=4$ THEORIES ON $T^3 \times S^1$
5. TWISTOR SPACE
6. SINGLE PARTICLE Q.C.'S TO T.S.
7. MULTI-PARTICLE: RIEMANN-HILBERT
8. PHYSICAL PROOF OF THE KS FORMULA
9. TAKE-HOME SUMMARY
10. CONCLUSION
1. INTRODUCTION

This talk is about the BPS spectrum of \(W=2, D=4 \) field theories.

The BPS spectrum of the theory on \(\mathbb{R}^4 \) is a "piecewise constant" function of the boundary conditions at \(\infty \).

Recently there has been some progress in understanding precisely how the spectrum depends on boundary conditions.

These are called Wall-Crossing Formulae (WCF). This talk will give a physical interpretation and proof of a famous WCF of Kontsevich + Soibelman.
Consider a theory on \mathbb{R}^4 with $N = 2$ superPoincare' symmetry Δ.

Let \mathcal{H} be the one-particle Hilbert space.

As a representation of Δ, \mathcal{H} depends on the boundary conditions of fields at ∞.

These boundary conditions are valued in the moduli space of vacua: \mathcal{M}_v.

For $u \in \mathcal{M}_v$, write \mathcal{H}_u.
For all \(u \in \mathfrak{m}_v \), there is an unbroken abelian gauge symmetry of rank \(r \), so \(\mathfrak{h} \) is graded by the symplectic lattice \(\Gamma \) of elec.+ mag. charges. (of rank \(2r \)).

\[\mathfrak{h}_u = \bigoplus_{\gamma \in \Gamma} \mathfrak{h}_{\gamma, u} \]

On each subspace \(\mathfrak{h}_{\gamma, u} \) the central charge operator \(\mathcal{Z} \in \Delta \) is a scalar.

Denote the value \(\mathcal{Z}_\gamma(u) \)
RECALL THE $W=2, D=4$ SUSY ALGEBRA

$$\Delta = \Delta_0 \oplus \Delta_1$$

$$\Delta_0 = (\text{Spin}(1,3) \times \mathbb{R}^4) \oplus u(2) \oplus \mathbb{R}$$

$$M_{\mu\nu}, P_\mu \quad \mathbb{Z}$$

$$\Delta_1 = \left(\text{Spinor} \otimes \mathbb{C}^2 \right)_{\mathbb{R}}$$

$$Q^{\alpha I}, \bar{Q}^{\dot{\alpha} I}$$

$$\{Q^{\alpha I}, \bar{Q}^{\dot{\beta} J}\} = 2P_\mu \sigma^{\mu}_{\alpha\dot{\beta}} S^{I J}$$

$$\{Q^{\alpha I}, Q^{\beta J}\} = 2\mathbb{Z} \epsilon_{\alpha\beta} \epsilon^{IJ}$$

UNITARY IRREPS SATISFY BPS BOUND:

$$M \geq |\mathbb{Z}|$$
DEF: $H^{bps}_{\gamma_1, \gamma_2} =$ SUBSPACE SATURATING THE BPS BOUND.

ON THIS SUBSPACE $E = \{ |Z_{\gamma}(u)| \}$

SOME BPS PARTICLES CAN BE VIEWED AS BOUNDSTATES OF OTHERS: DECAY WHEN BOUNDSTATE ENERGY $E(u) \to 0$.

[CECOTTI et. al.; SEIBERG & WITTEN]

$Z_{\gamma}(u)$ IS LINEAR IN $\gamma = \gamma_1 + \gamma_2$ so

$E(u) = |Z_{\gamma}(u)| - (|Z_{\gamma_1}(u)| + |Z_{\gamma_2}(u)|) \leq 0$

\implies DECAY ONLY HAPPENS ALONG WALLS OF MARGINAL STABILITY:

$MS(\gamma_1, \gamma_2) := \{ u | \frac{Z_{\gamma_1}(u)}{Z_{\gamma_2}(u)} \in \mathbb{R}_+ \}$
When γ_1, γ_2 are primitive, Denef \& Moore described how $\mathcal{H}_{\gamma, u}^{bps}$ changes across a wall: $u_+ \mid u_-$.

\[
\mathcal{H}_{\gamma, u_+}^{bps} - \mathcal{H}_{\gamma, u_-}^{bps} = (J_{12}) \otimes \mathcal{H}_{\delta_1, u}^{b} \otimes \mathcal{H}_{\delta_2, u}^{b}
\]

\[
J_{12} = \frac{1}{2}(1 < \gamma_1, \gamma_2 > | - 1)
\]

$\langle \gamma_1, \gamma_2 \rangle = \text{Symplectic Product}$

Based on Denef's sugra construction of boundstate solutions:

\[
\begin{array}{ccc}
& \leftrightarrow & \\
R(u) & & \end{array}
\]

There is a generalization for decays of the form

\[
\gamma = \gamma_1 + N\gamma_2, \quad N > 1
\]
But for decays of the form
\[\gamma = N_1 \gamma_1 + N_2 \gamma_2 \quad N_1, N_2 \geq 1 \]
The methods of DM are difficult to use.

Kontsevich & Soibelman proposed a remarkable formula for the change of the index:
\[\Omega(\gamma; u) = -\frac{1}{2} \text{Tr}_{\mathfrak{g}^{bos, \gamma}} (2J_3)^2 (-1)^{2J_3} \]
which includes all cases.

[In supergravities arising from CY compactification \(\Omega(\gamma; u) = \) "Generalized Donaldson-Thomas in ut."]
3. KS Formula

- Introduce the symplectic torus

\[T = \Gamma^* \otimes \mathbb{C}^* \]

\(\gamma \in \Gamma \implies \text{function } \chi_\gamma : T \to \mathbb{C}^* \)

- Choosing a basis \(\gamma_i \), define:

\[\omega = \frac{1}{2} \varepsilon_{ij} \frac{dx_i}{x_i} \wedge \frac{dx_j}{x_j}, \quad \varepsilon_{ij} = \langle \gamma_i, \gamma_j \rangle \]

- Choose a quadratic refinement

\[\frac{\sigma(\gamma_1 + \gamma_2)}{\sigma(\gamma_1) \sigma(\gamma_2)} = (-1)^{\langle \gamma_1, \gamma_2 \rangle}, \quad \sigma = \pm 1 \]

- Define "KS Transformations"

\[\mathcal{U}_\gamma : X_\gamma \mapsto X_\gamma \left(1 - \sigma(\gamma)X_\gamma \right)^{\langle \gamma_1, \gamma \rangle} \]
To each $y \in \Gamma$ associate the "BPS ray" in the complex plane:

$$\ell_y := \{ s \mid s \in \mathbb{Z}_+(u) \cdot \mathbb{R}_- \}$$

Choose a convex cone ν in the s-plane:

Associate the symplectic TMN:

$$A_{\nu} = \prod_{\ell_y \subset \nu} \Omega(y; u)$$
For later convenience note that if $\gamma_1 = N \gamma_2 \neq 0$ then $l_{\gamma_1} = l_{\gamma_2}$, so define

\[S_\gamma := \prod_{l_{\gamma'} = l_\gamma} \bigcup_{\gamma'} \Omega(\gamma; u) \]

and write:

\[A_\gamma \rightarrow \prod_{\gamma \text{ prime} \atop l_\gamma \subset \gamma} S_\gamma \]

The $\Omega(\gamma; u)$ depend on u...
THE KS FORMULA STATES THAT

\[A_\gamma = \prod_{\ell_\gamma < \gamma} \Upsilon_{\gamma} \Omega(\gamma; u) \]

IS CONSTANT IN U AS LONG AS NO BPS RAY ENTERS OR LEAVES THE SECTOR \(\gamma \).

IN PARTICULAR, ACROSS WALLS OF MARGINAL STABILITY

\[\Rightarrow \text{WALL CROSSING FORMULA} \]
4. Compactification of $\mathbb{N}=2, D=4$ Field Theories

A. Seiberg-Witten Solution

G - Compact S.S. Gauge Group, Rank r

$\implies D=4, N=2$ Field Theory

$\mathcal{N}_V = (\mathcal{Y}_G)^C = C^r \quad (u_2 = \text{Tr} \Phi^2, u_3 = \text{Tr} \Phi^3, \ldots)$

S&W gave formulae for

- $Z_g(u)$

- Low Energy Abelian Gauge Theory

in terms of

Special Kähler Geometry
Review Special Kähler Geom:

C.f. D. Freed, hep-th/9712042

View Γ as a local system over \mathcal{M}_v

$\mathcal{G}_v \rightarrow \mathcal{M}_v$

\downarrow

$\mathcal{U}_v \hookrightarrow \mathcal{M}_v$

$\mathcal{F} = \Gamma^* \otimes_{\mathbb{Z}} (\mathbb{R}/2\pi \mathbb{Z}) \cong U(1)^{2r}$

Fibers = Abelian Varieties

In regions of \mathcal{M}_v choose a duality frame:

$\Gamma = \Gamma_{el} \otimes \Gamma_{mag}$, $\Gamma_{mag} = \Gamma_{el}^*$

$= \text{Span}\{\alpha_i\} \oplus \text{Span}\{\beta_i\}$

$\langle \alpha_i, \alpha_j \rangle = \langle \beta_i, \beta_j \rangle = 0$, $\langle \alpha_i, \beta_j \rangle = \delta_{i,j}$
Choosing a duality frame, \mathcal{J}_u has period matrix T_{ij}

1. Low energy Lagrangian:

$$L = -\frac{1}{4\pi} \text{Im} \tau_{ij} \left(da^i \bar{d}a^j + F_i \bar{F}^j \right) + \frac{1}{4\pi} \text{Re} \tau_{ij} F_i \wedge F^j$$

$$a^i = Z_{\xi_i}(u), \quad i = 1, \ldots, r$$

Local coords on \mathcal{M}_v

2. Central charge function

$$Z_{\gamma}(u) = a \cdot \gamma_e + a_D \cdot \gamma_m$$

$$T_{ij} = \left. \frac{\partial a^i}{\partial a^j} \right| = \frac{\partial^2 F}{\partial a^i \partial a^j}$$
S W IDENTIFY Σ_u AS JACOBIANS OF AN EXPLICIT FAMILY OF RIEMANN SURFACES

Basic Example: $G = SU(2)$

$$\Sigma_u: \quad y + \frac{\lambda^u}{y} = x^2 - 2u$$

$$a = \frac{c}{2} \times \frac{dy}{y} \quad a_D = \frac{c}{3} \times \frac{dy}{y}$$
\(\mathcal{H}_{\text{BPS}}^{\text{weak}} = \bigoplus_{n \in \mathbb{Z}} \text{HM}(2n,1) \oplus \text{VM}(2,0) \oplus \text{CONJUGATE} \)

\(\mathcal{H}_{\text{BPS}}^{\text{strong}} = \text{HM}(2,-1) \oplus \text{HM}(0,1) \oplus \text{CONJUGATE} \)

KS Identity:

\(U_{2,-1} U_{0,1} = U_{0,1} U_{2,1} U_{4,1} \cdots U_{-2} \cdots U_{6,1} U_{4,1} U_{2,1} \)

IT IS TRUE !!!
B. COMPACTIFY ON A CIRCLE.

- **NOW CONSIDER THE THEORY ON** \(R^2 \times S_\mathbb{R}^1 \).
- **LOW ENERGY THEORY IS A** 3D **\(\sigma \)-MODEL :** \(R^3 \rightarrow \mathcal{M} \)

\[
\alpha^\mathcal{I}(\mathcal{X},x^4) \rightarrow \alpha^\mathcal{I}(\mathcal{X})
\]

\[
\Phi^\mathcal{I}_e = \int_{S^1} A^\mathcal{I}_4 \, dx^4 \quad \text{PERIODIC!}
\]

\[
\Phi^\mathcal{I}_m = \int_{S^1} (A_{D,4})^\mathcal{I} \, dx^4
\]

- **SUPERSYMMETRY** \(\Rightarrow \)

\(\mathcal{M} \) **MUST CARRY A HYPERKÄHLER METRIC**

LET US TRY TO DESCRIBE IT
Topologically U is a torus fibration over U_v:

$U_v: \{ \}$

$U_v: \{ \}$
THE SEMI-FLAT METRIC

LEADING $R \to \infty$ APPROXIMATION:
USE DIMENSIONAL REDUCTION + DUALIZATION OF 3D GAUGE FIELD:

$$L^{(3)} = \frac{-R}{2} \text{Im} \tau_{IJ} \, da^I \ast d\bar{a}^J$$

$$- \frac{1}{8\pi^2 R} \, (\text{Im} \tau)^{-1,l} \wedge_J \, dz^I \ast d\bar{z}^J$$

$$dz^I = dg_{m,I} - \tau_{IJ} d\sigma^J_e$$

THIS DEFINES THE SEMI-FLAT METRIC

$$g^S_{IJ} = R \, (\text{Im} \tau) \, |da|^2 + \frac{1}{4\pi^2 R} \, (\text{Im} \tau)^{-1} \, |dz|^2$$
C. The Key Idea

- The metric g^s receives quantum corrections from BPS particle world-lines wrapping S^1.

- Therefore the quantum corrections depend on the BPS spectrum.

- The true metric g should be a smooth metric on M away from the locus in M_0 where BPS particles become $M=0$.

- Smoothness of g across walls of M_S implies a WCFS.
WE WILL USE HITCHIN’S THEOREM: KNOWING (M,g) IS EQUIVALENT TO KNOWING TWISTOR SPACE $Z := M \times \mathbb{CP}^1$ AS A HOLOMORPHIC MANIFOLD.

Theorem: IF M IS HK OF DIMENSION 4, THEN:
1. \(\exists \) Holo. Fibration

\[p: \mathbb{P} \rightarrow \mathbb{CP}^1 \]

\[\mathcal{M}_5 = p^{-1}(\Sigma) = \mathcal{M} \text{ in complex structure } \Sigma \]

2. \(\exists \) Holomorphic Section

\[\tilde{\omega} \text{ or } \tilde{\omega}^2 \]

\[\tilde{\omega}_{\mathcal{M}_5} = \text{Holomorphic Symplectic Form on } \mathcal{M}_5 \]

3. \(\forall x \in \mathcal{M}, \exists \) Holomorphic Section

\[s_x: \mathbb{CP}^1 \rightarrow \mathbb{Z} \text{ with normal bundle } \mathcal{O}(1)^{\oplus 2r} \]

4. \(\exists \) Anti-Holomorphic \(\sigma: \mathbb{Z} \rightarrow \mathbb{Z} \)

Covering \(\Sigma \rightarrow -\frac{1}{\Sigma} \)
Given 1, 2, 3, 4 one can reconstruct the metric:

For \(z \in \mathbb{C}^\times \):

\[
\omega = -\frac{i}{25} \omega_+ + \omega_3 - \frac{i}{2} z \omega_-
\]

Kähler form

\[
\omega_+ = \omega_1 + i \omega_2
\]

Our strategy is to construct the holomorphic sections \(S_x \) explicitly for the 3D C-model target.
\[M \quad J_u \sim \mathbb{T}^2 / \Gamma \]

\[M_v \quad \mu \]

- For \(\delta = 0 \), \(J_u \) is holomorphic.
- For \(\delta \neq 0 \), \(J_u \) is neither holomorphic nor anti-holomorphic.

- Holomorphic function on \(M_\delta \) is determined by restriction to some (i.e. any) fiber \(J_{u_0} \).

- A basis of \(\mathcal{C}^\infty \) functions on the torus \(J_{u_0} \) is labeled by \(y \in T_{u_0} \).

- Call the holomorphic functions in a neighborhood of \(J_{u_0} \): \(\mathcal{X}_\delta \)
THE LEADING, NO QUANTUM CORRECTIONS, APPROXIMATION:

\[X_y^{sf} = \exp \left[\pi \mathbb{R} S^{-1} Z_y + i \Theta_y + \pi \mathbb{R} S \bar{Z}_y \right] \]

[A. NEITZKE \& B. PIOLINE]

\[\Theta_y : T^* \otimes \mathbb{R}/2\pi \mathbb{Z} \rightarrow \mathbb{R}/2\pi \mathbb{Z} \]

CHECK

\[\Omega = \frac{1}{8\pi^2 R} \epsilon_{i,j} \frac{dX_i}{X_i} \wedge \frac{dX_j}{X_j} \]

\[= \frac{1}{8\pi} \left[\frac{i}{5} \langle dZ, d\theta \rangle + \ldots \right] \]

\[\langle dZ, d\theta \rangle = -da^I \wedge dz_I \]

ETC.
6. SINGLE-PARTICLE CORRECTIONS

Now we include the first Q.C.

- For simplicity consider $r = 1$.
- Consider a point $u_* \in \mathcal{M}_v$

Where a single HN becomes has $m \rightarrow 0$

\Rightarrow dominant contribution near u_*. Choose duality frame so it has charge $(q, 0)$, $q > 0$

KK reduction \Rightarrow target

Space metric is a Gibbons-Hawking ansatz: [Seiberg Witten; Obguri Vafa; Seiberg Shendker]

$$g = V^{-1}(x^0) \left(\frac{d\phi_m}{2\pi} + A \right)^2 + V(x^0) \, dx^2$$

$$F = * dV \quad \forall x \in \mathbb{R}^3$$
Here:

\[\alpha = x^1 + i x^2 \]

\(\varphi_c = 2\pi R \times^3 \) \hspace{1cm} \text{PERIODIC}

\[V(x) = \frac{g^2 R}{4\pi} \sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{g^2 R^2 |a|^2 + \left(\frac{\varphi_c}{2\pi} + n \right)^2}} \]

\[= \ V^{sf} + V^{inst} \]

\[V^{sf} = -\frac{g^2 R}{4\pi} \left(\log \frac{\alpha}{\Lambda} + \log \frac{\bar{\alpha}}{\bar{\Lambda}} \right) \]

\[V^{inst} = \frac{g^2 R}{2\pi} \sum_{n \neq 0} e^{i n g \varphi_c} K_0 \left(2\pi R |\ln q a| \right) \]

\(\sim e^{-2\pi R |\ln q a|} \) \hspace{1cm} \text{INSTANTON CONTRIBUTION}
Now, what are the holo functions on twistor space?

Algebra of holo functions \(\{ X_\theta \} \) on twistor space is generated by:

\[
X_e := X_{(1,0)} = \exp \left\{ i\varphi_e + \cdots \right\}
\]

\[
X_m := X_{(0,1)} = \exp \left\{ i\varphi_m + \cdots \right\}
\]

\[
X_{(k_1, k_2)} = (X_e)^{k_1} (X_m)^{k_2}
\]

\(
(k_1, k_2) \in \mathbb{Z}^2 = \Gamma^m
\)
DETERMINE χ_e AND χ_m
FROM A DIFFERENTIAL EQUATION

HK STRUCTURE: $\alpha = 1, 2, 3$:

$$\omega^\alpha = dx^\alpha \wedge \left(\frac{d\varphi_m}{2\pi} + A \right) + \frac{1}{2} V^{\alpha\beta\gamma} dx^\beta dx^\gamma$$

\Rightarrow COMPUTE $\overline{\omega} = \frac{-i}{2\pi} \omega_+ + \omega_3 - \frac{i}{2\pi} \omega_-$

$$\overline{\omega} = -\frac{1}{4\pi^2 R} \frac{d\chi_e}{\chi_e} \wedge \frac{d\chi_m}{\chi_m}$$
WE FIND:

\[\chi_e = \chi_e^{sf} = \exp \left[\frac{\pi R}{5} a + i \varphi_e + \pi R \delta \alpha \right] \]

BUT

\[\chi_m = \chi_m^{s.f.} \cdot \chi_m^{\text{inst.}} \]

\[\chi_m^{sf} = \exp \left[\frac{\pi R}{5} \cdot a_D + i \varphi_m + \pi R \delta \bar{a}_D \right] \]

\[a_D = \frac{q^2}{2\pi i} \left(a \log \frac{a}{e^\Lambda} \right) \]

\[\chi_m^{\text{inst.}} = \text{INSTANTON CONTRIBUTION} \]
\[\chi^\text{inst}_{m}(s) = \exp \left\{ \frac{ie}{4\pi} \int_{l_+} d\xi' \frac{\xi' + \xi}{\xi' - \xi} \log \left(1 - \chi_{e}(\xi')^2 \right) \right\} \]

\[- \frac{ie}{4\pi} \int_{l_-} d\xi' \frac{\xi' + \xi}{\xi' - \xi} \log \left(1 - \chi_{e}(\xi')^{-2} \right) \}

\[\sum l_+ = l_{(1,0)} = a \cdot R_- \]

\[\chi_{e}(s) \text{ EXP. SMALL} \]

\[l_- = l_{(-1,0)} = (-a) \cdot R_- \]

\[\chi_{e}(s) \text{ EXP. LARGE} \]
1. As a function of ξ, X_m is discontinuous across the BPS ray:

$$\ell_\gamma := \{ \xi \mid \frac{Z_\gamma}{\xi} \in \mathbb{R}^- \}$$

For $\gamma = (\pm 1, 0)$, generators of Γ_{ee}

2. Across this ray:

$$(X_e, X_m)^{cw} = U_\gamma (X_e, X_m)^{ccw}$$

$$= (X_e, X_m (1 - X_e^{\pm 1})^{\pm 9})^{cw}$$

3. $\forall \gamma$, $X_\gamma \sim X_\gamma^{s.f.} \ (1 + O(1))$
Observation: X_y are the solution of a Riemann-Hilbert problem.

R-H Problem:

Find a piecewise holomorphic function with prescribed singularities and asymptotics.
7. MULTI-PARTICLE CONTRIBUTIONS

TO TAKE INTO ACCOUNT ALL BPS PARTICLES WE CANNOT USE A LOW ENERGY EFFECTIVE LAG., BECAUSE THE PARTICLES WILL BE MUTUALLY NONLOCAL.

PROPOSAL: THE HOLOMORPHIC FUNCTIONS ARE CONSTRUCTED FROM A RIEMANN-HILBERT PROBLEM IN THE S-PLANE
To give the problem a simple formulation view the collection of functions

\[X_\gamma = e^{i \Theta_\gamma + \ldots} \]

as a family of maps

\[X(\gamma) : \mathcal{F} \rightarrow T = \mathbb{R}^\gamma \otimes \mathbb{C}^* \]

piecewise holomorphic in \(\mathcal{F} \).

• Recall \(T_u \) has functions

\[X_\gamma : T_u \rightarrow \mathbb{C}^* \]

• Recall \(T_u \) is symplectic

\[\omega^T = \frac{1}{2} \epsilon_{i j} \frac{dX_i}{X_i} \wedge \frac{dX_j}{X_j} \]
RIEMANN–HILBERT PROBLEM:

1.) $X(5)$ IS DISCONTINUOUS ACROSS BPS RAYS γ_x:

$$X^{cw} = S_\gamma(X^{ccw})$$

[RECALL: $S_\gamma = \prod_{\gamma' = \gamma} U_{\gamma'}^{S_\gamma(\gamma',\nu)}$]

2.) $X(5)$ HAS ASYMPTOTICS FOR $5 \to 0, \infty$ GIVEN BY $X^{sf}(\xi)$, UP TO $O(1)$ CORRECTIONS

$$Y := (X^{sf})^{-1} X : \mathfrak{g} \to \mathfrak{g}$$

i.e.

$$Y_0 = \lim_{5 \to 0} Y(5) \quad Y_\infty = \lim_{5 \to \infty} Y(5)$$

EXIST
SOLUTION:

\[\chi_y(s) = \chi_{y'}^{sf}(s) . \]

\[\exp \left\{ - \frac{i}{4 \pi} \sum_{y' \in \Gamma} \Omega(y', u) \langle y, y' \rangle \right\} \]

\[\cdot \int \frac{d5'}{5', 5'+5} \frac{5'+5}{5'-5} \log \left[i - \sigma(y') \chi_y(s', 5') \right] \]

ITERATING THIS EQUATION
(AS A SUM OVER TREES...)

GIVES THE FULL INSTANTON EXPANSION!

⇒ EXPLICIT CONSTRUCTION OF TWISTOR COORDS!
• WE RECONSTRUCT THE METRIC FROM
\[\omega = \frac{1}{4\pi^2 R} \chi (\omega^\top) \]

• AS \(u \) CROSSES A WALL OF MS BPS RAYS PILE UP

\[\Sigma \]

But the jump of \(\chi \) in the RH problem is continuous as a function of \(u \): THAT IS THE KS FORMULA
Thus: The KS formula guarantees the continuity of the HK metric across walls of Ms.!

The resulting metric passes a number of consistency tests.

But... why is our proposal the right one?

Why is the metric the right one for the physical problem?
RH IS EQUIVALENT TO A DIFF.EQ.:\[A_5 = x^{-1} 5 \delta f \]

IS CONTINUOUS IN \(S \)-PLANE:

ACROSS \(\gamma \)

\[x^{-1} \delta f x \rightarrow (sx)^{-1} \delta f (sx) \]
\[= x^{-1} \delta f x \]

\(\Rightarrow A_5 \) IS HOLomorphic FOR \(S \in \mathbb{C}^* \)
\[\Rightarrow \quad \mathcal{S}_2 \mathcal{S}_3 X = \mathcal{A}_5 X \geq 2 \]

Structure Group: \textit{Sympl}{IT}

Asymptotics \Rightarrow

\[\mathcal{A}_5 = \mathcal{S}^{-1} \mathcal{A}_5^{(-1)} + \mathcal{A}_5^{(0)} + \mathcal{S} \mathcal{A}_5^{(+1)} \]

Since \(\mathcal{S}_2 \) is indpt. of \(r, u, v, \ldots \)

Same argument \Rightarrow \(X \) satisfies a set of differential equations:
\[
\frac{\partial}{\partial u} x = A_u \cdot x
\]
\[
\frac{\partial}{\partial v} x = A_v \cdot x
\]
\[
\Lambda \frac{\partial}{\partial \Lambda} x = A_\Lambda \cdot x
\]
\[
\overline{\Lambda} \frac{\partial}{\partial \overline{\Lambda}} x = A_\overline{\Lambda} \cdot x
\]
\[
R \frac{\partial}{\partial R} x = A_R \cdot x
\]
\[
J \frac{\partial}{\partial J} x = A_J \cdot x
\]

\[
A_i^+ = S^{-1} A_i^{(-1)} + A_i^{(0)} + J A_i^{(+1)}
\]

KEY POINT: THESE EQUATIONS ALL FOLLOW FROM THE PHYSICS OF THE 4D GAUGE THEORY!!
\[
\begin{align*}
\frac{\partial}{\partial u} \chi &= A_u \cdot \chi \\
\frac{\partial}{\partial \bar{u}} \chi &= A_{\bar{u}} \cdot \chi \quad \text{HOLOMORPHY ON } M_5 \\
\wedge \frac{\partial}{\partial \wedge} \chi &= A_\wedge \cdot \chi \\
\overline{\wedge} \frac{\partial}{\partial \overline{\wedge}} \chi &= A_{\overline{\wedge}} \cdot \chi \\
\end{align*}
\]

Also holomorphy... view \(\wedge \) as background vev of a VM.

\[
\begin{align*}
R \frac{\partial}{\partial R} \chi &= A_R \cdot \chi \\
S \frac{\partial}{\partial S} \chi &= A_S \cdot \chi \quad \text{ANOMALOUS SCALE AND } R\text{-SYMMETRY}
\end{align*}
\]
STOKES PHENOMENON

The S-Diff Eq. has an irregular singular point at $S = 0, \infty$; solutions exhibit Stokes phenom.

In this interpretation S_y are Stokes factors associated with Ly.

Remaining equations:
Isomonodromic deformation

\Rightarrow Stokes factors are indp't of R, u, λ, \ldots

\Rightarrow Check at large R in 1-instanton approximation.
1. We construct the HK metric for circle-compactification of W = 2, D = 4 field theories.

2. Quantum corrections to the dimensional reduction metric come from BPS states.

3. Continuity of the quantum-corrected metric is equivalent to the KS WCF.

4. Use twistor transform and write holomorphic functions as an explicit sum over BPS instantons.
10. Conclusion

— Other things we have done —

- Massive HMs: generalizes KS.

- There are strong connections with the \(\mathbb{L} \mathbb{L}^* \) equations of Cecotti \& Vafa.

- The functions \(X_\gamma \) are \'t Hooft-Wilson-Maldacena loop operator VEV's; moreover there is a nice interpretation in terms of a 3D TFT [To appear]
• The moduli space \((\mathcal{M}, g)\) is a moduli space of a Hitchin system [S. Cherkis & A. Kapustin]. For \(SU(2)\) we have constructed it as a space of Stokes matrices glued by KS transformations. [To appear.]
- TO DO -

- Understand better the need for the quadratic refinement.

- Singularities at superconformal points remain to be understood.

- Relations to integrable systems.

- Relation to the work of Joyce, Bridgeland, Toledano Laredo.

- Generalization to sugra.

- Should give explicit formulation of Q.C.'s to hypermultiplet moduli spaces.