A Generalised, Manifestly Gauge Invariant Exact
Renormalisation Group for SU(N) Yang-Mills

Oliver J. Rosten

School of Physics & Astronomy
University of Southampton

September 2005



Outline

@© Introduction



@© Introduction

© Generalised ERGs
@ Scalar Field Theory
o Gauge Theory



@© Introduction

© Generalised ERGs
@ Scalar Field Theory
o Gauge Theory

© Regularisation for SU(N) Gauge Theory



Outline

@© Introduction

© Generalised ERGs
@ Scalar Field Theory
o Gauge Theory

© Regularisation for SU(N) Gauge Theory

©Q SU(N) Gauge Theory
@ Regularised Flow Equation
@ Diagrammatics
@ Perturbative Diagrammatics
@ Future Directions



Introduction
Motivation

Why the ERG?




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance
@ the gauge field need not renormalise




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance

@ the gauge field need not renormalise
@ simple, strong constraints on vertices




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance

@ the gauge field need not renormalise
@ simple, strong constraints on vertices
@ Gribov copies entirely avoided




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance

@ the gauge field need not renormalise
@ simple, strong constraints on vertices
@ Gribov copies entirely avoided

& universal, diagrammatic computation




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance
@ the gauge field need not renormalise
@ simple, strong constraints on vertices
@ Gribov copies entirely avoided
& universal, diagrammatic computation
o straightforward renormalisation to all loops




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance
@ the gauge field need not renormalise
@ simple, strong constraints on vertices
@ Gribov copies entirely avoided
& universal, diagrammatic computation
o straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG »

N




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance

@ the gauge field need not renormalise
@ simple, strong constraints on vertices
@ Gribov copies entirely avoided

& universal, diagrammatic computation
o straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG »

B2 Computed (OJR, 2004)

N




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance

@ the gauge field need not renormalise
@ simple, strong constraints on vertices
@ Gribov copies entirely avoided

& universal, diagrammatic computation
o straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG »

B2 Computed (OJR, 2004)

@ consistency confirmed

N




Introduction

Motivation

Why the ERG?

@ Renormalisation is built in

@ Huge freedom in the construction
@ manifest gauge invariance

@ the gauge field need not renormalise
@ simple, strong constraints on vertices
@ Gribov copies entirely avoided

& universal, diagrammatic computation
o straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

B2 Computed (OJR, 2004)

@ consistency confirmed

@ ready for (non)-perturbative computation
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The Basic Idea

Integrating Out

@ Euclidean dimension, D p

® scalar field, ¢

No Sh

Effective UV Cutoff

@ Regularised propagator
AR

@ Modes above A C
effectively cutoff /\ IR
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A Generalised ERG

Kadanoff Blocking

@ There is no canonical way to block on a lattice

@ Continuum analogue = Infinite number of unrelated ERGs

° ¢(x) = bufwo]
@ (x): blocked field
@ o(x); microscopic field

o Eg. bfpo] = [, K(x = y)vo(y)
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A Scalar Flow Equation

@ A is an ERG Kernel
oY, =5-25
—/\8/\5 = ao[S,Zl]—al[Zl]
L3S ; 05 15 ;0%
2dp dp  20p dp

o f-Wg=[  f(x)Wqygly)
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The Seed Action

What is it?
@ A non-universal input which controls the flow

@ Same structure and symmetries as S

o S has just regularised kinetic term, 2p-A~1.¢

o flow equation is Polchinski's equation (up to discarded
vacuum energy)

\

Why take General 57

@ necessary for Yang-Mills

@ guided us towards universal, diagrammatic calculus




Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the



Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the
@ seed action



Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the

@ seed action
o cutoff functions



Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the
@ seed action
o cutoff functions
o flow equation



Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the
¢ seed action
o cutoff functions
o flow equation

@ Cancellation of non-universal quantities is so constrained, it
can be done diagrammatically




Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the
@ seed action
o cutoff functions
o flow equation

o Cancellation of non-universal quantities is so constrained, it
can be done diagrammatically

-

Isn't a General S just Scaffolding? ’

@ Having discovered diagrammatics why not use simplest S?

.



Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the
@ seed action
o cutoff functions
o flow equation

o Cancellation of non-universal quantities is so constrained, it
can be done diagrammatically

-

Isn't a General S just Scaffolding? ’

@ Having discovered diagrammatics why not use simplest S?
@ The question seems moot!

.



Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the
@ seed action
o cutoff functions
o flow equation

o Cancellation of non-universal quantities is so constrained, it
can be done diagrammatically

-

Isn't a General S just Scaffolding? ’

@ Having discovered diagrammatics why not use simplest S?
@ The question seems moot!

@ Can prove, to all orders that 3 function coefficients have no
explicit dependence on S

.



Generalised ERGs
[ee]e]e] ]

A Universal Calculus

Universal quantities cannot depend on non-universal details

@ We specify the bare minimum about the
@ seed action
o cutoff functions
o flow equation
o Cancellation of non-universal quantities is so constrained, it
can be done diagrammatically

-

Isn't a General S just Scaffolding?

@ Having discovered diagrammatics why not use simplest S?

@ The question seems moot!
@ Can prove, to all orders that 3 function coefficients have no
explicit dependence on S
o Hints at a more direct framework, where $ operates entirely in
the background
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U(1) Gauge Theory
@ Simply replace ¢ with A,
16S . o .
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20A, 0AL  20A, 0AL
e 0/0A, is gauge invariant
o Flow equation is manifestly gauge invariant

@ —N\Op\S =

SU(N) Yang-Mills

@ §/0A, transforms homogeneously under adjoint representation

1,.,0%
h v=_{A) £
@ Choose 2{ }5Au

o {A} is a covariantisation of the kernel, A
o g is scaled out of the covariant derivative: ¥, = g25 — 25.

@ Regularisation fails at one loop
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SU(N|N) Regularisation

Covariantisation + Pauli-Villars = Regularisation

@ Embed physical SU(N) in spontaneously broken SU(N|N)
@ Heavy fields act as Pauli-Villars!
Al B
o . _ iz 0
@ Defining rep.: A, = <Bz Ai) + A1
o a supergauge field valued in SU(N|N)
@ Hermitian
@ supertraceless: strA, = trAj, — trA’
o V,=0,—iA,
the physical gauge field
an unphysical copy (with wrong sign action)
@ has coupling, g2, which renormalises separately from g.
PV fields, which acquire a mass ~ A
central term

¢ €
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The Broken Phase

Particle Content

@ Massive Higgs fields C! and C?
o Composite field Fr = (B, D)
o five index

¢ B and D gauge transform into each other
@ B eats D in unitarity gauge

@ Massless fields Al and A2

@ Ignore A% = convenient diagrammatic prescription

Decoupling in the limit A — oo

o Al and A2 communicate via massive fields
@ Theory renormalisable in D < 4
@ Lowest dimension effective interaction is irrelevant

@ A2 Decouples (Appelquist-Carazonne theorem)
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@ SU(NI|N) Invariance at high energies

@ No-A° Invariance

@ Treats Al and A% asymmetrically

—/\(9/\5 = 30[5, Zg] — al[Zg],

146S 165

® 2[5, %] = 25A {AAA} 25(3{ CC}

o alFd = 3y (A 256{ =
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Symmetric Phase Diagrammatics Flow Equation

The Classical Term

165 < 44 055 165 . cor 0%
—A _ -7 A'A'A - - ACC v-g S
NS = 554, 8054, Tasc B 5 — il

@ S and X, are composed of supertraces

) )
® 54 5 break open a supertrace

@ The covariantisation glues everything back together
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Symmetric Phase Diagrammatics Flow Equation

The Quantum Term
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CC
25A 5A,, 25(2{ }

@ For Consistency take
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@ The pairs of derivatives

ACC} =0

]




SU(N) Gauge Theory
(o] le]

Symmetric Phase Diagrammatics Flow Equation

The Quantum Term

— AONS = 0[S, F] = 5 (AMYEE — S A% S

@ For Consistency take
° L{AAA} =0
5

56{
@ The pairs of derivatives knock two fields out of 3,

ACC} =0
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@ Sum over kernels
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)
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N[ =

@ Vertices of the covariantised kernels
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Broken Phase Diagrammatic Flow Equation

: 11f}
{f} . @

@ The fields {f}
o Any of AL, A2, C1, C2 F F
o Distributed in all independent ways

@ Prescription for evaluating group theory
@ Internal fields label the kernels
@ ERG sufficiently general to allow AAA =+ ARA?
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o Sy: classical effective action
@ S;~o: ith-loop corrections
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o S= Zg2’5,-
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o Define a = g3 /g> 00
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i=1
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@ Gauge Invariance: p, Soi},(p) =0
Q @ Lorentz Invariance and Dimensions:
Sors(P) = A(P)Duw(p)
o [A(P)]° Ou(p) =
_ p2A2(p)Duu(p)
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@ Gauge Invariance: p, Soi},(p) =0
Q @ Lorentz Invariance and Dimensions:
Sors(P) = A(P)Duw(p)
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@ Gauge Invariance: p, Soi},(p) =0
Q @ Lorentz Invariance and Dimensions:
Sorr(P) = A(P) T, (P)
. ° [A(P)]°Ouw(p) =
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A (p) is an Effective Propagator

o A'l(p) is the inverse of Syl (p) up to a remainder

PuPv

@ ——— is a Gauge Remainder

o Forced by Manifest Gauge Invariance
o A'(p) NOT a propagator
o A(p) is an Effective Propagator

¢ Plays diagrammatic role analogous to usual propagator
¢ No gauge fixing
@ Relationship to Soi},(p) down to choice of S
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The Effective Propagator Relation

@ The effective propagator relation works in all sectors

o1

Two-point, classical vertex

Effective Propagator (always an internal line)
Arbitrary Structure

Kronecker § part

Gauge Remainder (null in C sector)

@ ERG sufficiently general for A (p) # A??(p)
® Souv(P) # Sojes (P)

¢ € ¢ ¢ ¢
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Universal Computation

Renormalisation Condition for g:
1 2
OS[A:Al’C:g]:?Str/dDX (F;]iy) 4o

® Soin(P) =20, (p) + O(p*)

Universality

@ All Universal quantities depend only on
o The O(p?) part of Sy.1(p)
o The O(p—2) part of All(p)
s The A! gauge remainders

@ All non-universal contributions cancel, diagrammatically!
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Iterating the Diagrammatic Procedure

The Diagrammatic Procedure

@ Isolate and process any diagrams which can be manipulated
using the flow equation

@ Employ the effective propagator relation

@ Process the gauge remainders diagrammatically

@ lterate

Cancellations to all orders

@ All explicit instances of S

@ All explicit details of the covariantisation
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A Universal g Function?

What does (3, depend on?

@ Wilsonian effective action vertices

o effective propagators

@ gauge remainders

4

Cancellation of Remaining non-Universality

@ Trivial, at one loop

@ lterative, diagrammatic procedure at two loops
@ lterative, diagrammatic procedure at n loops??

@ Strong suggestion that all 3, can be arranged to depend only
on the universal details of this ERG

\
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Perturbative

@ Complete analysis of universality of G,

@ Expectation values of gauge invariant operators
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Non-Perturbative

@ Truncations

@ Strong coupling expansion
s Assume g(A) - oo as A — 0

1. 1.
[* ] 5:—251+—452+
g g
¢ Dimensional transmutation: p/Aqcp

1
o Signature of confinement: S}(p) = —287,(p) + O(p*)

@ A more direct framework

@ Quarks



Evaluating the A-Derivative Terms

/Bl‘juu(p):/k[pl(kvp)];z




Evaluating the A-Derivative Terms

10 (p) = /k [D1(k, P

@ D; is a set of one loop diagrams




Evaluating the A-Derivative Terms

/Bl‘juu(p):/l([pl(kvp)];2

@ Dj is a set of one loop diagrams
@ external momentum, p




Evaluating the A-Derivative Terms

/Bl‘juu(p):/k[pl(kvp)];z

@ Dj is a set of one loop diagrams

@ external momentum, p
o loop momentum, k




Evaluating the A-Derivative Terms

/Bl‘juu(p):/k[pl(kvp)];z

@ Dj is a set of one loop diagrams

@ external momentum, p
o loop momentum, k

o Interchange —Adp|o and [,




Evaluating the A-Derivative Terms

Strategy < Return

/Bl‘juu(p):/k[pl(kvp)];z

@ Dj is a set of one loop diagrams

@ external momentum, p
o loop momentum, k

o Interchange —Adp |, and [,

10 (p [/Dl (k p} 2




Evaluating the A-Derivative Terms

/Bl‘juu(p):/k[pl(kvp)];z

@ Dj is a set of one loop diagrams

@ external momentum, p
o loop momentum, k

o Interchange —Adp |, and [,

510, (p [/Dl"”]z

@ (1 = NOp|o(Dimensionless Quantity)




Evaluating the A-Derivative Terms

Strategy < Return

/Bl‘juu(p):/k[pl(kvp)];z

@ Dj is a set of one loop diagrams

@ external momentum, p
o loop momentum, k

o Interchange —Adp |, and [,

510, (p [/Dl"”]z

@ (1 = AOn|o(Dimensionless Quantity)
@ Diagrams can pick up IR divergence




Evaluating the A-Derivative Terms

Strategy < Return

/Bl‘juu(p):/k[pl(kvp)];z

@ Dj is a set of one loop diagrams

@ external momentum, p
o loop momentum, k

o Interchange —Adp |, and [,

510, (p [/Dl"”]z

@ (1 = AOn|o(Dimensionless Quantity)
o Diagrams can pick up IR divergence
o Integrals only have support in IR
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