Introduction

Oliver J. Rosten

School of Physics & Astronomy University of Southampton

September 2005

Outline

- Introduction
- (2) Generalised ERGs
 - Scalar Field Theory
 - Gauge Theory
- Regularisation for SU(N) Gauge Theory
- 4 SU(N) Gauge Theory
 - Regularised Flow Equation
 - Diagrammatics
 - Perturbative Diagrammatics
 - Future Directions

- Introduction
- - Scalar Field Theory
 - Gauge Theory
- Regularisation for SU(N) Gauge Theory
- 4 SU(N) Gauge Theory
 - Regularised Flow Equation
 - Diagrammatics
 - Perturbative Diagrammatics
 - Future Directions

Outline

- Introduction
- ② Generalised ERGs
 - Scalar Field Theory
 - Gauge Theory
- 3 Regularisation for SU(N) Gauge Theory
- 4 SU(N) Gauge Theory
 - Regularised Flow Equation
 - Diagrammatics
 - Perturbative Diagrammatics
 - Future Directions

Outline

- Introduction
- ② Generalised ERGs
 - Scalar Field Theory
 - Gauge Theory
- 3 Regularisation for SU(N) Gauge Theory
- \bigcirc SU(N) Gauge Theory
 - Regularised Flow Equation
 - Diagrammatics
 - Perturbative Diagrammatics
 - Future Directions

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - universal, diagrammatic computation

- consistency confirmed
- ready for (non)-perturbative computation

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - universal, diagrammatic computation

- consistency confirmed
- ready for (non)-perturbative computation

Introduction

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Introduction

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Introduction

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Introduction

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

- - consistency confirmed
 - ready for (non)-perturbative computation

Introduction

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Introduction

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Introduction

Why the ERG?

- Renormalisation is built in
- Huge freedom in the construction
 - manifest gauge invariance
 - the gauge field need not renormalise
 - simple, strong constraints on vertices
 - Gribov copies entirely avoided
 - universal, diagrammatic computation
 - straightforward renormalisation to all loops

Status of the Manifestly Gauge Invariant ERG

 β_2 Computed (OJR, 2004)

- consistency confirmed
- ready for (non)-perturbative computation

Set-up

- scalar field, φ
- Euclidean dimension, D

Set-up

- scalar field, φ
- Euclidean dimension, D

Set-up

- scalar field, φ
- Euclidean dimension, D

Generalised ERGs

00000

Definitions

Integrating Out Physics

Set-up

- scalar field, φ
- Euclidean dimension, D

- Bare cutoff
 - Effective
- IR cutoff function
- UV cutoff function
 - $\bullet \quad C_{\mathrm{UV}}(z) \to 0$ as $z \to \infty$
 - $G_{\text{rev}}(0) = 1$

Set-up

- scalar field, φ
- Euclidean dimension, D

Generalised ERGs

00000

- Bare action

Set-up

- ullet scalar field, φ
- Euclidean dimension, D

- Bare
- Effective cutoff
- IR cutoff function
- UV cutoff function
 - $\bullet \ \mathsf{C}_{\mathrm{UV}}(z) \to 0$ as $z \to \infty$
 - $C_{\text{TIV}}(0) = 1$.

Set-up

- scalar field, φ
- Euclidean dimension, D

- Effective action

Set-up

- scalar field, φ
- Euclidean dimension, D

- Bare
- Effective
- IR cutoff function
- UV cutoff function
- $\begin{array}{c} \bullet \ \ \textit{C}_{\mathrm{UV}}(z) \rightarrow 0 \\ \text{as } z \rightarrow \infty \end{array}$
 - $G_{TV}(0) = 1$

Regularisation for SU(N) Gauge Theory

Set-up

- scalar field, φ
- Euclidean dimension, D

- Bare
- Effective
- IR cutoff function
- UV cutoff function
 - $\bullet \ \ C_{\rm UV}(z) \to 0$
 - $C_{\rm UV}(0) = 1$.

Set-up

- scalar field, φ
- Euclidean dimension, D

- UV cutoff function
 - $C_{\rm UV}(z) \rightarrow 0$ as $z \to \infty$
 - $C_{\rm UV}(0) = 1$.

Set-up

- scalar field, φ
- Euclidean dimension, D

- Bare
- Effective
- IR cutoff function
- UV cutoff function
 - $C_{\mathrm{UV}}(z) \to 0$ as $z \to \infty$
 - $C_{\rm UV}(0) = 1$.

Set-up

- scalar field, φ
- Euclidean dimension, D

Effective UV Cutoff

Regularised propagator

$$\frac{1}{p^2} = \frac{\mathsf{C}_{\mathsf{UV}}}{p^2} = \Delta_{\mathsf{UV}}$$

 Modes above Λ effectively cutoff

Set-up

- scalar field, φ
- Euclidean dimension, D

Effective UV Cutoff

Regularised propagator

$$\frac{1}{p^2} = \frac{\mathsf{C}_{\mathsf{UV}}}{p^2} = \Delta_{\mathsf{UV}}$$

 Modes above Λ effectively cutoff

A Generalised ERG

```
Kadanoff Blocking
```

A Generalised ERG

Kadanoff Blocking

• There is no canonical way to block on a lattice

Kadanoff Blocking

- There is no canonical way to block on a lattice
- ullet Continuum analogue \Rightarrow Infinite number of unrelated ERGs

A Generalised ERG

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

A Generalised ERG

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

• $\varphi(x)$: blocked field

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

Regularisation for SU(N) Gauge Theory

- $\varphi(x)$: blocked field
- $\varphi_0(x)$; microscopic field

Introduction

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs
 - - $\varphi(x)$: blocked field
 - $\varphi_0(x)$; microscopic field
 - E.g. $b_x[\varphi_0] = \int_y K(x-y)\varphi_0(y)$
 - K(z) steeply decaying for $z\Lambda > 1$.

Introduction

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

- $\varphi(x)$: blocked field
- $\varphi_0(x)$; microscopic field

• E.g.
$$b_x[\varphi_0] = \int_Y K(x-y)\varphi_0(y)$$

$$oldsymbol{e} = \int \!\! \mathcal{D}arphi_0 \delta \left[arphi - b[arphi_0]
ight] e^{-\mathcal{S}_{
m bare}[arphi_0]}$$

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

- $\varphi(x)$: blocked field
- $\varphi_0(x)$; microscopic field

• E.g.
$$b_x[\varphi_0] = \int_Y K(x-y)\varphi_0(y)$$

$$\bullet \quad \int \!\! \mathcal{D} \varphi \mathrm{e}^{-S[\varphi]} = \int \!\! \mathcal{D} \varphi \, \int \!\! \mathcal{D} \varphi_0 \delta \left[\varphi - b[\varphi_0] \right] \mathrm{e}^{-S_{\mathrm{bare}}[\varphi_0]}$$

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

- $\varphi(x)$: blocked field
- $\varphi_0(x)$; microscopic field

• E.g.
$$b_x[\varphi_0] = \int_Y K(x-y)\varphi_0(y)$$

$$\bullet \quad \int \!\! \mathcal{D} \varphi e^{-S[\varphi]} = \ \int \!\! \mathcal{D} \varphi_0 e^{-S_{\mathrm{bare}}[\varphi_0]} = \mathcal{Z}$$

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

Regularisation for SU(N) Gauge Theory

- $\varphi(x)$: blocked field
- $\varphi_0(x)$; microscopic field

• E.g.
$$b_x[\varphi_0] = \int_Y K(x-y)\varphi_0(y)$$

$$oldsymbol{e} = \int \!\! \mathcal{D}arphi_0 \delta \left[arphi - b[arphi_0]
ight] e^{-S_{
m bare}[arphi_0]}$$

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

Regularisation for SU(N) Gauge Theory

- $\varphi(x)$: blocked field
- $\varphi_0(x)$; microscopic field

• E.g.
$$b_x[\varphi_0] = \int_Y K(x-y)\varphi_0(y)$$

$$\bullet \ \Psi_{\mathsf{x}}[\varphi]e^{-\mathcal{S}[\varphi]} = \ - \ \int \!\! \mathcal{D}\varphi_0 \delta \left[\varphi - b[\varphi_0]\right] e^{-\mathcal{S}_{\mathrm{bare}}[\varphi_0]} \Lambda \frac{\partial b_{\mathsf{x}}}{\partial \Lambda}$$

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

Regularisation for SU(N) Gauge Theory

- $\varphi(x)$: blocked field
- $\varphi_0(x)$; microscopic field

• E.g.
$$b_x[\varphi_0] = \int_V K(x-y)\varphi_0(y)$$

$$\bullet \ \Psi_{\scriptscriptstyle X}[\varphi] e^{-{\cal S}[\varphi]} = \ - \ \int \!\! {\cal D} \varphi_0 \delta \left[\varphi - b[\varphi_0] \right] e^{-{\cal S}_{\rm bare}[\varphi_0]} \Lambda \frac{\partial b_{\scriptscriptstyle X}}{\partial \Lambda}$$

•
$$\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_{\mathbb{R}} \frac{\delta}{\delta \varphi(x)} \left(\Psi_{x} e^{-S[\varphi]} \right)$$

Kadanoff Blocking

- There is no canonical way to block on a lattice
- Continuum analogue ⇒ Infinite number of unrelated ERGs

Regularisation for SU(N) Gauge Theory

- $\varphi(x)$: blocked field
- $\varphi_0(x)$; microscopic field

• E.g.
$$b_x[\varphi_0] = \int_Y K(x-y)\varphi_0(y)$$

• K(z) steeply decaying for $z\Lambda > 1$.

•
$$\Psi_{x}[\varphi]e^{-S[\varphi]} = -\int \mathcal{D}\varphi_{0}\delta\left[\varphi - b[\varphi_{0}]\right]e^{-S_{\mathrm{bare}}[\varphi_{0}]}\Lambda \frac{\partial b_{x}}{\partial \Lambda}$$

•
$$\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_{X} \frac{\delta}{\delta \varphi(X)} \left(\Psi_{X} e^{-S[\varphi]} \right)$$

• Choice of $\Psi \Rightarrow \mathsf{ERG}$

Generalised ERGs

00000

$$\Psi_{x} = \frac{1}{2} \int_{y} \dot{\Delta}_{xy} \frac{\delta \Sigma_{1}}{\delta \varphi(y)}$$

- A is an ERG Kernel
- $\Sigma_1 = S 2\hat{S}$

$$- \wedge \partial_{\Lambda} S = a_0[S, \Sigma_1] - a_1[\Sigma_1]$$
$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \triangle \cdot \frac{\delta \Sigma_1}{\delta \varphi}$$

•
$$f \cdot W \cdot g = \int_{x,y} f(x) W_{xy} g(y)$$

Generalised ERGs

00000

$$\Psi_{x} = \frac{1}{2} \int_{y} \dot{\Delta}_{xy} \frac{\delta \Sigma_{1}}{\delta \varphi(y)}$$

- A is an ERG Kernel
- $\Sigma_1 = S 2\hat{S}$

$$-\Lambda \partial_{\Lambda} S = a_0[S, \Sigma_1] - a_1[\Sigma_1]$$
$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \triangle \cdot \frac{\delta \Sigma_1}{\delta \varphi}$$

•
$$f \cdot W \cdot g = \int_{X,Y} f(X) W_{XY} g(Y)$$

Generalised ERGs

00000

$$\Psi_{x} = \frac{1}{2} \int_{y} \dot{\Delta}_{xy} \frac{\delta \Sigma_{1}}{\delta \varphi(y)}$$

- Δ is an ERG Kernel
- $\Sigma_1 = S 2\hat{S}$

$$- \wedge \partial_{\Lambda} S = a_0[S, \Sigma_1] - a_1[\Sigma_1]$$
$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi}$$

•
$$f \cdot W \cdot g = \int_{X \cdot Y} f(X) W_{XY} g(Y)$$

Generalised FRGs

00000

$$\Psi_{x} = \frac{1}{2} \int_{y} \dot{\Delta}_{xy} \frac{\delta \Sigma_{1}}{\delta \varphi(y)}$$

- Δ is an ERG Kernel
- $\Sigma_1 = S 2\hat{S}$ is the Seed Action

$$- \wedge \partial_{\Lambda} S = a_0[S, \Sigma_1] - a_1[\Sigma_1]$$
$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \mathring{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi}$$

•
$$f \cdot W \cdot g = \int_{X \cdot Y} f(X) W_{XY} g(Y)$$

00000

$$\Psi_{x} = \frac{1}{2} \int_{y} \dot{\Delta}_{xy} \frac{\delta \Sigma_{1}}{\delta \varphi(y)}$$

- Δ is an ERG Kernel
- $\Sigma_1 = S 2\hat{S}$

$$-\Lambda \partial_{\Lambda} S = a_0[S, \Sigma_1] - a_1[\Sigma_1]$$

$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi} + \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi}$$

•
$$f \cdot W \cdot g = \int_{x,y} f(x) W_{xy} g(y)$$

Generalised ERGs

00000

$$\Psi_{x} = \frac{1}{2} \int_{y} \dot{\Delta}_{xy} \frac{\delta \Sigma_{1}}{\delta \varphi(y)}$$

- Δ is an ERG Kernel
- $\Sigma_1 = S 2\hat{S}$

$$-\Lambda \partial_{\Lambda} S = a_0[S, \Sigma_1] - a_1[\Sigma_1]
= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi}$$

•
$$f \cdot W \cdot g = \int_{X \cdot Y} f(X) W_{XY} g(Y)$$

Generalised ERGs

00000

Example

$$\Psi_{x} = \frac{1}{2} \int_{y} \dot{\Delta}_{xy} \frac{\delta \Sigma_{1}}{\delta \varphi(y)}$$

- Δ is an ERG Kernel
- $\Sigma_1 = S 2\hat{S}$

$$\begin{array}{rcl} - \Lambda \partial_{\Lambda} S & = & a_0[S, \Sigma_1] - a_1[\Sigma_1] \\ & = & \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi} \end{array}$$

• $f \cdot W \cdot g = \int_{X,Y} f(x) W_{xy} g(y)$

Generalised ERGs

00000

$$\Psi_{x} = \frac{1}{2} \int_{y} \dot{\Delta}_{xy} \frac{\delta \Sigma_{1}}{\delta \varphi(y)}$$

- Δ is an ERG Kernel
- $\Sigma_1 = S 2\hat{S}$

$$\begin{array}{rcl} -\Lambda \partial_{\Lambda} S & = & a_0[S, \Sigma_1] - a_1[\Sigma_1] \\ & = & \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_1}{\delta \varphi} \end{array}$$

$$\bullet \ f \cdot W \cdot g = \int_{x,y} f(x) W_{xy} g(y)$$

Introduction

What is it?

- A non-universal input which controls the flow
- Same structure and symmetries as S

- \hat{S} has just regularised kinetic term, $\frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$
- flow equation is Polchinski's equation (up to discarded

- necessary for Yang-Mills
- guided us towards universal, diagrammatic calculus

What is it?

- A non-universal input which controls the flow
- Same structure and symmetries as S

- \hat{S} has just regularised kinetic term, $\frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$
- flow equation is Polchinski's equation (up to discarded

- necessary for Yang-Mills
- guided us towards universal, diagrammatic calculus

What is it?

- A non-universal input which controls the flow
- Same structure and symmetries as S

- \hat{S} has just regularised kinetic term, $\frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$
- flow equation is Polchinski's equation (up to discarded

- necessary for Yang-Mills
- guided us towards universal, diagrammatic calculus

What is it?

- A non-universal input which controls the flow
- Same structure and symmetries as S

Example

- \hat{S} has just regularised kinetic term, $\frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$

necessary for Yang-Mills

Generalised FRGs

Introduction

What is it?

- A non-universal input which controls the flow
- Same structure and symmetries as S

Example

- \hat{S} has just regularised kinetic term, $\frac{1}{2}\varphi\cdot\Delta^{-1}\cdot\varphi$
- flow equation is Polchinski's equation (up to discarded vacuum energy)

Why take General \hat{S} ?

- necessary for Yang-Mills
- guided us towards universal, diagrammatic calculus

SU(N) Gauge Theory

What is it?

- A non-universal input which controls the flow
- Same structure and symmetries as S

Example

- \hat{S} has just regularised kinetic term, $\frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$
- flow equation is Polchinski's equation (up to discarded) vacuum energy)

Why take General \hat{S} ?

necessary for Yang-Mills

Generalised FRGs

What is it?

- A non-universal input which controls the flow
- Same structure and symmetries as S

Example

- \hat{S} has just regularised kinetic term, $\frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$
- flow equation is Polchinski's equation (up to discarded) vacuum energy)

Why take General \hat{S} ?

necessary for Yang-Mills

Generalised FRGs

What is it?

- A non-universal input which controls the flow
- Same structure and symmetries as S

Example

- \hat{S} has just regularised kinetic term, $\frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$
- flow equation is Polchinski's equation (up to discarded) vacuum energy)

Why take General \hat{S} ?

necessary for Yang-Mills

Generalised FRGs

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions

Generalised FRGs

- flow equation
- Cancellation of non-universal quantities is so constrained, it can be done diagrammatically

lsn't a General S just $\mathsf{Scaffolding}$ is

- Having discovered diagrammatics why not use simplest \hat{S} ?
- The question seems moot
 - Can prove, to all orders that β function coefficients have no explicit dependence on \hat{S}
 - ullet Hints at a more direct framework, where \hat{S} operates entirely in the background

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions

Generalised FRGs

- flow equation
- Cancellation of non-universal quantities is so constrained, it can be done diagrammatically

lsn't a General S just $\mathsf{Scaffolding}$ is

- Having discovered diagrammatics why not use simplest \hat{S} ?
- The question seems moot
 - Can prove, to all orders that β function coefficients have no explicit dependence on \hat{S}
 - ullet Hints at a more direct framework, where \hat{S} operates entirely in the background

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions

Generalised FRGs

- Cancellation of non-universal quantities is so constrained, it

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions

Generalised FRGs

- flow equation
- Cancellation of non-universal quantities is so constrained, it

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions
 - flow equation
- Cancellation of non-universal quantities is so constrained, it can be done diagrammatically

$\mathsf{Isn't}$ a $\mathsf{General}$ $\hat{\mathcal{S}}$ just $\mathsf{Scaffolding}$?

- Having discovered diagrammatics why not use simplest S?
- The question seems moot
 - Can prove, to all orders that β function coefficients have no explicit dependence on \hat{S}
 - Hints at a more direct framework, where S operates entirely in the background

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions
 - flow equation
- Cancellation of non-universal quantities is so constrained, it can be done diagrammatically

- Having discovered diagrammatics why not use simplest \hat{S} ?
- The question seems moot!

 - Hints at a more direct framework, where \hat{S} operates entirely in

Introduction

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions
 - flow equation
- Cancellation of non-universal quantities is so constrained, it can be done diagrammatically

- Having discovered diagrammatics why not use simplest \hat{S} ?
- The question seems moot!

 - Hints at a more direct framework, where \hat{S} operates entirely in

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions
 - flow equation
- Cancellation of non-universal quantities is so constrained, it can be done diagrammatically

- Having discovered diagrammatics why not use simplest \hat{S} ?
- The question seems moot!
 - Can prove, to all orders that β function coefficients have no explicit dependence on \hat{S}
 - Hints at a more direct framework, where \hat{S} operates entirely in

Universal quantities cannot depend on non-universal details

- We specify the bare minimum about the
 - seed action
 - cutoff functions
 - flow equation
- Cancellation of non-universal quantities is so constrained, it can be done diagrammatically

- Having discovered diagrammatics why not use simplest \hat{S} ?
- The question seems moot!
 - Can prove, to all orders that β function coefficients have no explicit dependence on \hat{S}
 - Hints at a more direct framework, where \hat{S} operates entirely in the background

Gauge Theory

U(1) Gauge Theory

• Simply replace φ with A_{μ}

Generalised ERGs

$$\bullet \ - \Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$$

- $\delta/\delta A_{\mu}$ is gauge invariant
- Flow equation is manifestly gauge invariant

• $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation

Regularisation for SU(N) Gauge Theory

- Choose $\Psi = \frac{1}{2} \{ \dot{\Delta} \} \frac{\delta \Sigma_g}{\delta A_u}$
 - $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
 - g is scaled out of the covariant derivative: $\Sigma_{\sigma} = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

Gauge Theory

U(1) Gauge Theory

• Simply replace φ with A_{μ}

$$\bullet \ -\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$$

- $\delta/\delta A_{\mu}$ is gauge invariant
- Flow equation is manifestly gauge invariant

- $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation
- Choose $\Psi = \frac{1}{2} \{ \dot{\Delta} \} \frac{\delta \Sigma_g}{\delta A_u}$
 - $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
 - g is scaled out of the covariant derivative: $\Sigma_{\sigma} = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

Introduction

U(1) Gauge Theory

- Simply replace φ with A_{μ}
- $\bullet \ -\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$
 - $\delta/\delta A_{\mu}$ is gauge invariant
 - Flow equation is manifestly gauge invariant

- $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation
- Choose $\Psi = \frac{1}{2} \{ \dot{\Delta} \} \frac{\delta \Sigma_g}{\delta A_u}$
 - $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
 - g is scaled out of the covariant derivative: $\Sigma_{\sigma} = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

U(1) Gauge Theory

• Simply replace φ with A_{μ}

Generalised ERGs

$$\bullet \ - \Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$$

- $\delta/\delta A_{\mu}$ is gauge invariant
- Flow equation is manifestly gauge invariant

- $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation
- Choose $\Psi = \frac{1}{2} \{ \dot{\Delta} \} \frac{\delta \Sigma_g}{\delta A_u}$
 - $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
 - g is scaled out of the covariant derivative: $\Sigma_{\sigma} = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

U(1) Gauge Theory

• Simply replace φ with A_{μ}

Generalised ERGs

$$\bullet \ - \Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$$

- $\delta/\delta A_{\mu}$ is gauge invariant
- Flow equation is manifestly gauge invariant

SU(N) Yang-Mills

• $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation

$$\bullet \ \ \mathsf{Choose} \ \Psi = \frac{1}{2} \{\dot{\Delta}\} \frac{\delta \Sigma_g}{\delta A_\mu}$$

- $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
- g is scaled out of the covariant derivative: $\Sigma_g = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

U(1) Gauge Theory

• Simply replace φ with A_{μ}

$$\bullet \ -\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$$

- $\delta/\delta A_{\mu}$ is gauge invariant
- Flow equation is manifestly gauge invariant

SU(N) Yang-Mills

 \bullet $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation

• Choose
$$\Psi = \frac{1}{2}\{\dot{\Delta}\}\frac{\delta\Sigma_g}{\delta\mathcal{A}_\mu}$$

- $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
- g is scaled out of the covariant derivative: $\Sigma_g = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

U(1) Gauge Theory

• Simply replace φ with A_{μ}

$$\bullet \ -\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$$

- $\delta/\delta A_{\mu}$ is gauge invariant
- Flow equation is manifestly gauge invariant

SU(N) Yang-Mills

- $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation
- Choose $\Psi = \frac{1}{2} \{ \dot{\Delta} \} \frac{\delta \Sigma_g}{\delta A_u}$
 - $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
 - g is scaled out of the covariant derivative: $\Sigma_g = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

U(1) Gauge Theory

• Simply replace φ with A_{μ}

Generalised ERGs

$$\bullet \ -\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$$

- $\delta/\delta A_{\mu}$ is gauge invariant
- Flow equation is manifestly gauge invariant

SU(N) Yang-Mills

- \bullet $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation
- Choose $\Psi = \frac{1}{2} \{\dot{\Delta}\} \frac{\delta \Sigma_{\mathbf{g}}}{\delta A_{\mu}}$
 - $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
 - g is scaled out of the covariant derivative: $\Sigma_g = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

U(1) Gauge Theory

• Simply replace φ with A_{μ}

$$\bullet \ -\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma_{1}}{\delta A_{\mu}}$$

- $\delta/\delta A_{\mu}$ is gauge invariant
- Flow equation is manifestly gauge invariant

SU(N) Yang-Mills

- $\delta/\delta A_{\mu}$ transforms homogeneously under adjoint representation
- Choose $\Psi = \frac{1}{2} \{\dot{\Delta}\} \frac{\delta \Sigma_g}{\delta A_u}$
 - $\{\dot{\Delta}\}$ is a covariantisation of the kernel, $\dot{\Delta}$
 - g is scaled out of the covariant derivative: $\Sigma_g = g^2 S 2\hat{S}$.
- Regularisation fails at one loop

Introduction

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$A_{\mu} = \begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbb{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$
- central term

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$A_{\mu} = \begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbb{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$
- central term

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathcal{A}_{\mu} = \begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbb{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$

- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathcal{A}_{\mu}=\begin{pmatrix} A_{\mu}^{1} & B_{\mu} \ ar{B}_{\mu} & A_{\mu}^{2} \end{pmatrix}+\mathcal{A}_{\mu}^{0}\mathbb{1}$$

- ullet a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$

- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$
- central term

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathbf{A}_{\mu} = \begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu}^{1} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbf{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- \bullet PV fields, which acquire a mass $\sim \Lambda$
- central term

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathbf{A}_{\mu} = \begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu}^{1} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbf{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$

•
$$\nabla_{\mu} = \partial_{\mu} - i\mathcal{A}_{\mu}$$

- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$
- central term

Generalised ERGs

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathbf{A}_{\mu} = \begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbf{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $\operatorname{str} A_{\mu} = \operatorname{tr} A_{\mu}^{1} \operatorname{tr} A_{\mu}^{2}$

- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathbf{A}_{\mu} = \begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu}^{1} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbf{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
 - $\nabla_{\mu} = \partial_{\mu} i \mathcal{A}_{\mu}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$

Generalised ERGs

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathcal{A}_{\mu} = \begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbb{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
 - $\nabla_{\mu} = \partial_{\mu} i\mathcal{A}_{\mu}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathcal{A}_{\mu} = \begin{pmatrix} \mathcal{A}_{\mu}^1 & \mathcal{B}_{\mu} \\ \bar{\mathcal{B}}_{\mu} & \mathcal{A}_{\mu}^2 \end{pmatrix} + \mathcal{A}_{\mu}^0 \mathbb{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
 - $\nabla_{\mu} = \partial_{\mu} i\mathcal{A}_{\mu}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathcal{A}_{\mu} = \begin{pmatrix} \mathcal{A}_{\mu}^{1} & \mathcal{B}_{\mu} \\ \bar{\mathcal{B}}_{\mu} & \mathcal{A}_{\mu}^{2} \end{pmatrix} + \mathcal{A}_{\mu}^{0} \mathbb{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
 - $\nabla_{\mu} = \partial_{\mu} i\mathcal{A}_{\mu}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$
- central term

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathcal{A}_{\mu} = \begin{pmatrix} A_{\mu}^{1} & \frac{\mathbf{B}_{\mu}}{\mathbf{B}_{\mu}} & A_{\mu}^{2} \end{pmatrix} + A_{\mu}^{0} \mathbb{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
 - $\nabla_{\mu} = \partial_{\mu} i\mathcal{A}_{\mu}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$
- central term

$\mathsf{Covariantisation} + \mathsf{Pauli-Villars} = \mathsf{Regularisation}$

- Embed physical SU(N) in spontaneously broken SU(N|N)
- Heavy fields act as Pauli-Villars!

• Defining rep.:
$$\mathcal{A}_{\mu}=\begin{pmatrix} A_{\mu}^{1} & B_{\mu} \\ \bar{B}_{\mu}^{1} & A_{\mu}^{2} \end{pmatrix}+\mathcal{A}_{\mu}^{0} \mathbb{1}$$

- a supergauge field valued in SU(N|N)
 - Hermitian
 - supertraceless: $str A_{\mu} = tr A_{\mu}^{1} tr A_{\mu}^{2}$
 - $\nabla_{\mu} = \partial_{\mu} i\mathcal{A}_{\mu}$
- the physical gauge field
- an unphysical copy (with wrong sign action)
 - has coupling, g_2 , which renormalises separately from g.
- PV fields, which acquire a mass $\sim \Lambda$
- central term

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Regularisation for SU(N) Gauge Theory

- Superscalar $C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$
- Mass of B tracks Λ if
 - C dimensionless
 - Effective Potential of \hat{S} has min. at $\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- S has min. at σ

Introduction

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

- Superscalar $C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$
- Mass of B tracks Λ if
 - C dimensionless
 - Effective Potential of \hat{S} has min. at $\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- S has min. at σ

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

- Superscalar $C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$
- Mass of B tracks Λ if
 - C dimensionless
 - Effective Potential of \hat{S} has min. at $\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} \mathbb{1} & \mathbb{0} \\ \mathbb{0} & -\mathbb{1} \end{pmatrix}$
- S has min. at σ

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Symmetry Breaking: $SU(N|N) \rightarrow SU(N) \times SU(N) \times U(1)$

- Superscalar $C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$
- Mass of B tracks Λ if
 - C dimensionless
 - Effective Potential of \hat{S} has min. at $<\mathcal{C}>=\sigma:=\begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}$
- S has min. at σ

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Symmetry Breaking: $SU(N|N) \rightarrow SU(N) \times SU(N) \times U(1)$

• Superscalar
$$C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$$

- Mass of B tracks Λ if
 - \circ $\mathcal C$ dimensionless
 - Effective Potential of \hat{S} has min. at

$$\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}$$

• S has min. at σ

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Symmetry Breaking: $SU(N|N) \rightarrow SU(N) \times SU(N) \times U(1)$

• Superscalar
$$\mathcal{C} = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$$

- - C dimensionless

$$\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} \mathbb{1} & \mathbb{0} \\ \mathbb{0} & -\mathbb{1} \end{pmatrix}$$

Introduction

Symmetries

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Symmetry Breaking: $SU(N|N) \rightarrow SU(N) \times SU(N) \times U(1)$

• Superscalar
$$C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$$

- Mass of B tracks Λ if
 - C dimensionless
 - Effective Potential of \hat{S} has min. at

$$\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} \mathbb{1} & \mathbb{0} \\ \mathbb{0} & -\mathbb{1} \end{pmatrix}$$

• S has min. at σ

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Symmetry Breaking: $SU(N|N) \rightarrow SU(N) \times SU(N) \times U(1)$

• Superscalar
$$C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$$

- Mass of B tracks Λ if
 - C dimensionless

$$\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} \mathbb{1} & \mathbb{0} \\ \mathbb{0} & -\mathbb{1} \end{pmatrix}$$

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Symmetry Breaking: $SU(N|N) \rightarrow SU(N) \times SU(N) \times U(1)$

• Superscalar
$$\mathcal{C} = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$$

- Mass of B tracks Λ if
 - C dimensionless
 - Effective Potential of \hat{S} has min. at

$$\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} \mathbb{1} & \mathbb{0} \\ \mathbb{0} & -\mathbb{1} \end{pmatrix}$$

 \circ S has min. at σ

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Symmetry Breaking: $SU(N|N) \rightarrow SU(N) \times SU(N) \times U(1)$

- Superscalar $C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$
- Mass of B tracks Λ if
 - C dimensionless
 - Effective Potential of \hat{S} has min. at $\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- S has min. at σ automatically at classical level

local invariance

$$\delta \mathcal{A}_{\mu} = [\nabla_{\mu}, \Omega(x)] + \lambda_{\mu}(x) \mathbb{1}$$

- local SU(N|N) invariance
- 'no- \mathcal{A}^0 symmetry'

Symmetry Breaking: $SU(N|N) \rightarrow SU(N) \times SU(N) \times U(1)$

- Superscalar $C = \begin{pmatrix} C^1 & D \\ \bar{D} & C^2 \end{pmatrix}$
- Mass of B tracks Λ if
 - C dimensionless
 - Effective Potential of \hat{S} has min. at $\langle \mathcal{C} \rangle = \sigma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- S has min. at σ imposed at quantum level

The Broken Phase

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- ullet Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

Decoupling in the limit $\Lambda \to \infty$

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in $D \le 4$
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

Decoupling in the limit $\Lambda o \infty$

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in $D \le 4$
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

The Broken Phase

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_u, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $A^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in D < 4
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

Decoupling in the limit $\Lambda o \infty$

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in $D \le 4$
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

The Broken Phase

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_u, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $A^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in D < 4
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in $D \le 4$
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A¹ and A²
- ullet Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in $D \le 4$
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in $D \le 4$
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in $D \le 4$
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in D < 4
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in D < 4
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $\mathcal{A}^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in $D \le 4$
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Particle Content

- Massive Higgs fields C^1 and C^2
- Composite field $F_R = (B_\mu, D)$
 - five index
 - B and D gauge transform into each other
 - B eats D in unitarity gauge
- Massless fields A^1 and A^2
- Ignore $A^0 \Rightarrow$ convenient diagrammatic prescription

- A^1 and A^2 communicate via massive fields
- Theory renormalisable in D < 4
- Lowest dimension effective interaction is irrelevant
- A² Decouples (Appelquist-Carazonne theorem)

Requirements

- SU(N|N) Invariance at high energies
- Treats A^1 and A^2 asymmetrically

$$-\Lambda \partial_{\Lambda} S = a_0[S,\Sigma_g] - a_1[\Sigma_g],$$

•
$$a_0[S, \Sigma_g] = \frac{1}{2} \frac{\delta S}{\delta A_u} \{ \dot{\Delta}^{AA} \} \frac{\delta \Sigma_g}{\delta A_u} + \frac{1}{2} \frac{\delta S}{\delta C} \{ \dot{\Delta}^{CC} \} \frac{\delta \Sigma_g}{\delta C}$$

•
$$a_1[\Sigma_g] = \frac{1}{2} \frac{\delta}{\delta A_n} \{\dot{\Delta}^{AA}\} \frac{\delta \Sigma_g}{\delta A_n} + \frac{1}{2} \frac{\delta}{\delta C} \{\dot{\Delta}^{CC}\} \frac{\delta \Sigma_g}{\delta C}$$

Requirements

- SU(N|N) Invariance at high energies
- Treats A^1 and A^2 asymmetrically

$$-\Lambda \partial_{\Lambda} S = a_0[S,\Sigma_g] - a_1[\Sigma_g],$$

•
$$a_0[S, \Sigma_g] = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \{ \dot{\Delta}^{AA} \} \frac{\delta \Sigma_g}{\delta A_{\mu}} + \frac{1}{2} \frac{\delta S}{\delta C} \{ \dot{\Delta}^{CC} \} \frac{\delta \Sigma_g}{\delta C}$$

•
$$a_1[\Sigma_g] = \frac{1}{2} \frac{\delta}{\delta A_{II}} \{\dot{\Delta}^{AA}\} \frac{\delta \Sigma_g}{\delta A_{II}} + \frac{1}{2} \frac{\delta}{\delta C} \{\dot{\Delta}^{CC}\} \frac{\delta \Sigma_g}{\delta C}$$

Requirements

- SU(N|N) Invariance at high energies
- No- A^0 Invariance
- Treats A^1 and A^2 asymmetrically

$$-\Lambda \partial_{\Lambda} S = a_0[S,\Sigma_g] - a_1[\Sigma_g],$$

•
$$a_0[S, \Sigma_g] = \frac{1}{2} \frac{\delta S}{\delta A_u} \{ \dot{\Delta}^{AA} \} \frac{\delta \Sigma_g}{\delta A_u} + \frac{1}{2} \frac{\delta S}{\delta C} \{ \dot{\Delta}^{CC} \} \frac{\delta \Sigma_g}{\delta C}$$

•
$$a_1[\Sigma_g] = \frac{1}{2} \frac{\delta}{\delta A_{ij}} \{\dot{\Delta}^{AA}\} \frac{\delta \Sigma_g}{\delta A_{ij}} + \frac{1}{2} \frac{\delta}{\delta C} \{\dot{\Delta}^{CC}\} \frac{\delta \Sigma_g}{\delta C}$$

Regularisation for SU(N) Gauge Theory

Requirements

- SU(N|N) Invariance at high energies
- No-A⁰ Invariance
- Treats A^1 and A^2 asymmetrically

$$-\Lambda \partial_{\Lambda} S = a_0[S, \Sigma_g] - a_1[\Sigma_g],$$

•
$$a_0[S, \Sigma_g] = \frac{1}{2} \frac{\delta S}{\delta A_u} \{ \dot{\Delta}^{AA} \} \frac{\delta \Sigma_g}{\delta A_u} + \frac{1}{2} \frac{\delta S}{\delta C} \{ \dot{\Delta}^{CC} \} \frac{\delta \Sigma_g}{\delta C}$$

•
$$a_1[\Sigma_g] = \frac{1}{2} \frac{\delta}{\delta A_{ij}} \{\dot{\Delta}^{AA}\} \frac{\delta \Sigma_g}{\delta A_{ij}} + \frac{1}{2} \frac{\delta}{\delta C} \{\dot{\Delta}^{CC}\} \frac{\delta \Sigma_g}{\delta C}$$

Requirements

- SU(N|N) Invariance at high energies
- No- \mathcal{A}^0 Invariance
- Treats A^1 and A^2 asymmetrically

Construction

$$-\Lambda \partial_{\Lambda} S = a_0[S,\Sigma_g] - a_1[\Sigma_g],$$

$$\bullet \ \ a_0[S,\Sigma_g] = \frac{1}{2} \frac{\delta S}{\delta \mathcal{A}_\mu} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_g}{\delta \mathcal{A}_\mu} + \frac{1}{2} \frac{\delta S}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{CC}}\} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

$$\bullet \ a_1[\Sigma_g] = \frac{1}{2} \frac{\delta}{\delta \mathcal{A}_{ii}} \{ \dot{\Delta}^{\mathcal{A} \mathcal{A}} \} \frac{\delta \Sigma_g}{\delta \mathcal{A}_{ii}} + \frac{1}{2} \frac{\delta}{\delta \mathcal{C}} \{ \dot{\Delta}^{\mathcal{C} \mathcal{C}} \} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

Requirements

- SU(N|N) Invariance at high energies
- No- \mathcal{A}^0 Invariance
- Treats A^1 and A^2 asymmetrically

Construction

$$-\Lambda \partial_{\Lambda} S = \textbf{a}_0[S, \Sigma_g] - \textbf{a}_1[\Sigma_g],$$

$$\bullet \ \ a_0[S,\Sigma_g] = \frac{1}{2} \frac{\delta S}{\delta \mathcal{A}_\mu} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_g}{\delta \mathcal{A}_\mu} + \frac{1}{2} \frac{\delta S}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{CC}}\} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

$$\bullet \ a_1[\Sigma_g] = \frac{1}{2} \frac{\delta}{\delta \mathcal{A}_{ii}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_g}{\delta \mathcal{A}_{ii}} + \frac{1}{2} \frac{\delta}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{CC}}\} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

Requirements

Introduction

- SU(N|N) Invariance at high energies
- No-A⁰ Invariance
- Treats A^1 and A^2 asymmetrically

Construction

$$-\Lambda \partial_{\Lambda} S = a_0[S, \Sigma_g] - a_1[\Sigma_g],$$

$$\bullet \ \ a_0[S,\Sigma_g] = \frac{1}{2} \frac{\delta S}{\delta \mathcal{A}_u} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_g}{\delta \mathcal{A}_u} + \frac{1}{2} \frac{\delta S}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{CC}}\} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

•
$$a_1[\Sigma_g] = \frac{1}{2} \frac{\delta}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_g}{\delta \mathcal{A}_{\mu}} + \frac{1}{2} \frac{\delta}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{C}\mathcal{C}}\} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

Regularisation for SU(N) Gauge Theory

- symmetry factor
- vertex coefficient function
- supertrace over fields

$$S = \frac{1}{2} S^{AA} \operatorname{str} A A + \frac{1}{3} S^{AAA} \operatorname{str} A A A + \frac{1}{4} S^{AAAA} \operatorname{str} A A A A A + \frac{1}{4} S^{AAAA} \operatorname{str} A A A A + \frac{1}{2} S^{CC} \operatorname{str} C C + \frac{1}{2} S^{C,C} \operatorname{str} C \operatorname{str} C + \frac{1}{3} S^{ACC} \operatorname{str} A C C$$

Regularisation for SU(N) Gauge Theory

- symmetry factor
- vertex coefficient function
- supertrace over fields

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

- symmetry factor
- vertex coefficient function
- supertrace over fields

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

Regularisation for SU(N) Gauge Theory

$$S = \frac{1}{2} \frac{S^{AA}}{s} \operatorname{tr} A A + \frac{1}{3} S^{AAA} \operatorname{str} A A A + \frac{1}{4} S^{AAAA} \operatorname{str} A A A A A + \frac{1}{4} S^{AAAA} \operatorname{str} A A A A + \frac{1}{2} S^{CC} \operatorname{str} C C + \frac{1}{2} S^{C,C} \operatorname{str} C \operatorname{str} C + \frac{1}{3} S^{ACC} \operatorname{str} A C C$$

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

•
$$str A = 0$$

Regularisation for SU(N) Gauge Theory

• $S^{AC} = 0$ (charge

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

- \bullet str.A=0
- $S^{AC} = 0$ (charge

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA + \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C + \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

•
$$\operatorname{str} \mathcal{A} = 0$$

•
$$S^{AC} = 0$$
 (charge conjugation)

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA + \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C + \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

- \bullet str.A=0
- $S^{AC} = 0$ (charge

Diagrammatics for the Action

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

•
$$\operatorname{str} A = 0$$

• $S^{AC} = 0$ (charge conjugation)

$$S = \frac{1}{2}S^{AA}\operatorname{str}AA + \frac{1}{3}S^{AAA}\operatorname{str}AAA + \frac{1}{4}S^{AAAA}\operatorname{str}AAAA$$
$$+ \frac{1}{8}S^{AA,AA}\operatorname{str}AA\operatorname{str}AA + \frac{1}{2}S^{CC}\operatorname{str}CC + \frac{1}{2}S^{C,C}\operatorname{str}C\operatorname{str}C$$
$$+ \frac{1}{3}S^{ACC}\operatorname{str}ACC$$

- \bullet str $\mathcal{A}=0$
- $S^{AC} = 0$ (charge

The Classical Term

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_{g}}{\delta \mathcal{A}_{\mu}} + \frac{1}{2} \frac{\delta S}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{C}\mathcal{C}}\} \frac{\delta \Sigma_{g}}{\delta \mathcal{C}} - a_{1}[\Sigma_{g}]$$

The Classical Term

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \mathcal{A}_{\mu}} \{ \dot{\Delta}^{\mathcal{A} \mathcal{A}} \} \frac{\delta \Sigma_{g}}{\delta \mathcal{A}_{\mu}} + \frac{1}{2} \frac{\delta S}{\delta \mathcal{C}} \{ \dot{\Delta}^{\mathcal{C} \mathcal{C}} \} \frac{\delta \Sigma_{g}}{\delta \mathcal{C}} - a_{1} [\Sigma_{g}]$$

ullet S and Σ_g are composed of supertraces

The Classical Term

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_{g}}{\delta \mathcal{A}_{\mu}} + \frac{1}{2} \frac{\delta S}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{C}\mathcal{C}}\} \frac{\delta \Sigma_{g}}{\delta \mathcal{C}} - a_{1}[\Sigma_{g}]$$

- S and Σ_g are composed of supertraces
- $\frac{\delta}{\delta A_{ii}}$, $\frac{\delta}{\delta C}$ break open a supertrace

The Classical Term

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_{g}}{\delta \mathcal{A}_{\mu}} + \frac{1}{2} \frac{\delta S}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{C}\mathcal{C}}\} \frac{\delta \Sigma_{g}}{\delta \mathcal{C}} - a_{1}[\Sigma_{g}]$$

Regularisation for SU(N) Gauge Theory

- S and Σ_g are composed of supertraces
- $\frac{\delta}{\delta A_{ii}}$, $\frac{\delta}{\delta C}$ break open a supertrace
- The covariantisation glues everything back together

The Classical Term

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_{g}}{\delta \mathcal{A}_{\mu}}$$

The Classical Term

$$- \ \textcolor{red}{\wedge \partial_{\Lambda} \mathcal{S}} = \frac{1}{2} \frac{\delta \mathcal{S}}{\delta \mathcal{A}_{\mu}} \{ \dot{\Delta}^{\mathcal{A} \mathcal{A}} \} \frac{\delta \Sigma_{g}}{\delta \mathcal{A}_{\mu}}$$

$$- \Lambda \partial_{\Lambda} \left| \frac{1}{2} \left| \frac{1}{2} \right| \int \operatorname{str} A A \right| =$$

$$-\,\Lambda\partial_{\Lambda}S=\frac{1}{2}\frac{\delta S}{\delta\mathcal{A}_{\mu}}\{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\}\frac{\delta\Sigma_{g}}{\delta\mathcal{A}_{\mu}}$$

$$- \Lambda \partial_{\Lambda} \left| \frac{1}{2} \left| \frac{1}{2} \right| \operatorname{str} \mathcal{A} \mathcal{A} \right| = \frac{1}{2}$$

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta \frac{S}{\delta \mathcal{A}_{\mu}}}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_{g}}{\delta \mathcal{A}_{\mu}}$$

$$- \Lambda \partial_{\Lambda} \left[\frac{1}{2} \left(\frac{1}{5} \right) \operatorname{str} \mathcal{A} \mathcal{A} \right] = \frac{1}{2}$$

$$\begin{bmatrix} \frac{1}{2} & S \\ S & S \end{bmatrix} \operatorname{str} \mathcal{A} \mathcal{A}$$

$$-\,\Lambda\partial_{\Lambda}S = \frac{1}{2}\frac{\delta S}{\delta \mathcal{A}_{\mu}}\{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\}\frac{\delta \textcolor{red}{\sum_{\boldsymbol{g}}}}{\delta \mathcal{A}_{\mu}}$$

$$- \Lambda \partial_{\Lambda} \left| \frac{1}{2} \left| \frac{1}{2} \right| \operatorname{str} \mathcal{A} \mathcal{A} \right| = \frac{1}{2}$$

$$\begin{bmatrix} \frac{1}{2} & S & \text{str} \mathcal{A} \mathcal{A} \\ \frac{1}{2} & \sum_{g} & \text{str} \mathcal{A} \mathcal{A} \end{bmatrix}$$

$$-\,\Lambda\partial_{\Lambda}S=\frac{1}{2}\frac{\delta S}{\delta\mathcal{A}_{\mu}}\{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\}\frac{\delta\Sigma_{g}}{\delta\mathcal{A}_{\mu}}$$

$$-\,\Lambda\partial_{\Lambda}S=\frac{1}{2}\frac{\delta S}{\delta\mathcal{A}_{\mu}}\{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\}\frac{\delta\Sigma_{g}}{\delta\mathcal{A}_{\mu}}$$

$$-\Lambda \partial_{\Lambda} \left[\begin{array}{c} \mathbf{S} \\ \mathbf{S} \end{array}\right] = \begin{array}{c} \mathbf{S} \\ \mathbf{\Sigma}_{g} \end{array} + \cdots$$

The Quantum Term

$$-\Lambda \partial_{\Lambda} S = a_0[S, \Sigma_g] - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_g}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{C}\mathcal{C}}\} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

The Quantum Term

$$-\Lambda \partial_{\Lambda} S = a_0[S, \Sigma_g] - \frac{1}{2} \frac{\delta}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_g}{\delta \mathcal{A}_{\mu}} - \frac{1}{2} \frac{\delta}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{CC}}\} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

Regularisation for SU(N) Gauge Theory

- For Consistency take

The Quantum Term

Introduction

$$-\Lambda \partial_{\Lambda} S = a_0[S, \Sigma_g] - \frac{1}{2} \frac{\delta}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} \frac{\delta \Sigma_g}{\delta \mathcal{A}_{\mu}} - \frac{1}{2} \frac{\delta}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{CC}}\} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

- For Consistency take
- The pairs of derivatives

The Quantum Term

$$- \Lambda \partial_{\Lambda} S = a_0[S, \Sigma_g] - \frac{1}{2} \frac{\delta}{\delta \mathcal{A}_{\mu}} \{ \dot{\Delta}^{\mathcal{A} \mathcal{A}} \} \frac{\delta \Sigma_g}{\delta \mathcal{A}_{\mu}} - \frac{1}{2} \frac{\delta}{\delta \mathcal{C}} \{ \dot{\Delta}^{\mathcal{C} \mathcal{C}} \} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

Regularisation for SU(N) Gauge Theory

For Consistency take

$$\begin{array}{l} \bullet \ \, \frac{\delta}{\delta \mathcal{A}_{\mu}} \{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\} = 0 \\ \bullet \ \, \frac{\delta}{\delta \mathcal{C}} \{\dot{\Delta}^{\mathcal{CC}}\} = 0 \end{array}$$

$$\bullet \ \frac{\delta}{\delta \mathcal{C}} \{ \dot{\Delta}^{\mathcal{C}\mathcal{C}} \} = 0$$

• The pairs of derivatives knock two fields out of \sum_{σ}

The Quantum Term

$$-\,\Lambda\partial_{\Lambda}S = a_0[S,\Sigma_g] - \frac{1}{2}\frac{\delta}{\delta\mathcal{A}_{\mu}}\{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\}\frac{\delta\Sigma_g}{\delta\mathcal{A}_{\mu}} - \frac{1}{2}\frac{\delta}{\delta\mathcal{C}}\{\dot{\Delta}^{\mathcal{C}\mathcal{C}}\}\frac{\delta\Sigma_g}{\delta\mathcal{C}}$$

$$-\Lambda \partial_{\Lambda}$$
 $= \cdots - \frac{1}{2}$ $+ 2$ Σ_g $+ 2$ Σ_g

The Quantum Term

Generalised ERGs

$$- \, \Lambda \partial_{\Lambda} S = a_0[S, \Sigma_g] - \frac{1}{2} \frac{\delta}{\delta \mathcal{A}_{\mu}} \{ \dot{\Delta}^{\mathcal{A} \mathcal{A}} \} \frac{\delta \Sigma_g}{\delta \mathcal{A}_{\mu}} - \frac{1}{2} \frac{\delta}{\delta \mathcal{C}} \{ \dot{\Delta}^{\mathcal{C} \mathcal{C}} \} \frac{\delta \Sigma_g}{\delta \mathcal{C}}$$

$$-\Lambda \partial_{\Lambda}$$
 $= \cdots - \frac{1}{2}$ $+ 2$ $= \sum_{g}$ $= \sum_{g}$

Sum over kernels

The Quantum Term

$$-\,\Lambda\partial_{\Lambda}S = a_0[S,\Sigma_g] - \frac{1}{2}\frac{\delta}{\delta\mathcal{A}_{\mu}}\{\dot{\Delta}^{\mathcal{A}\mathcal{A}}\}\frac{\delta\Sigma_g}{\delta\mathcal{A}_{\mu}} - \frac{1}{2}\frac{\delta}{\delta\mathcal{C}}\{\dot{\Delta}^{\mathcal{C}\mathcal{C}}\}\frac{\delta\Sigma_g}{\delta\mathcal{C}}$$

$$-\Lambda \partial_{\Lambda}$$
 $= \cdots - \frac{1}{2}$ $+ 2$ Σ_g $+ 2$ Σ_g

Vertices of the covariantised kernels

$$-\Lambda \partial_{\Lambda} \left[\begin{array}{c} S \end{array}\right]^{\{f\}} = \frac{1}{2} \left[\begin{array}{c} \Sigma_{g} \\ \bullet \\ S \end{array}\right] - \left[\begin{array}{c} \Sigma_{g} \\ \Sigma_{g} \end{array}\right]^{\{f\}}$$

$$-\Lambda \partial_{\Lambda} \left[\begin{array}{c} S \end{array}\right]^{\{f\}} = \frac{1}{2} \left[\begin{array}{c} \Sigma_{g} \\ \bullet \\ S \end{array}\right] - \left[\begin{array}{c} \Sigma_{g} \\ \Sigma_{g} \end{array}\right]^{\{f\}}$$

- The fields $\{f\}$
 - Any of A^1 , A^2 , C^1 , C^2 , F, \bar{F}

$$-\Lambda \partial_{\Lambda} \left[\begin{array}{c} S \end{array}\right]^{\{f\}} = \frac{1}{2} \left[\begin{array}{c} \Sigma_{g} \\ \bullet \\ S \end{array}\right] - \left[\begin{array}{c} \Sigma_{g} \\ \Sigma_{g} \end{array}\right]^{\{f\}}$$

- The fields $\{f\}$
 - Any of A^1 , A^2 , C^1 , C^2 , F, \bar{F}
 - Distributed in all independent ways

$$-\Lambda \partial_{\Lambda} \left[\begin{array}{c} S \end{array}\right]^{\{f\}} = \frac{1}{2} \left[\begin{array}{c} \Sigma_{g} \\ \bullet \\ S \end{array}\right] - \left[\begin{array}{c} \Sigma_{g} \\ \Sigma_{g} \end{array}\right]^{\{f\}}$$

- The fields { f }
 - Any of A^1 , A^2 , C^1 , C^2 , F, \bar{F}
 - Distributed in all independent ways
- Prescription for evaluating group theory

$$-\Lambda \partial_{\Lambda} \left[\begin{array}{c} S \end{array}\right]^{\{f\}} = \frac{1}{2} \left[\begin{array}{c} \Sigma_{g} \\ \bullet \\ S \end{array}\right] - \left[\begin{array}{c} \Sigma_{g} \\ \Sigma_{g} \end{array}\right]^{\{f\}}$$

- The fields {f}
 - Any of A^1 , A^2 , C^1 , C^2 , F, \bar{F}
 - Distributed in all independent ways
- Prescription for evaluating group theory
- Internal fields label the kernels

$$-\Lambda \partial_{\Lambda} \left[\begin{array}{c} S \end{array}\right]^{\{f\}} = \frac{1}{2} \left[\begin{array}{c} \Sigma_{g} \\ \bullet \\ S \end{array}\right] - \left[\begin{array}{c} \Sigma_{g} \\ \Sigma_{g} \end{array}\right]^{\{f\}}$$

- The fields { f }
 - Any of A^1 , A^2 , C^1 , C^2 , F, \bar{F}
 - Distributed in all independent ways
- Prescription for evaluating group theory
- Internal fields label the kernels
- ullet ERG sufficiently general to allow $\dot{\Delta}^{A^1A^1}
 eq \dot{\Delta}^{A^2A^2}$

Expansions

Expansions

•
$$S = \sum_{i=0}^{\infty} (g^2)^{i-1} S_i = \frac{1}{g^2} S_0 + S_1 + \cdots$$

Expansions

•
$$S = \sum_{i=0}^{\infty} (g^2)^{i-1} S_i = \frac{1}{g^2} S_0 + S_1 + \cdots$$

• S_0 : classical effective action

Expansions

•
$$S = \sum_{i=0}^{\infty} (g^2)^{i-1} S_i = \frac{1}{g^2} S_0 + \frac{S_1}{1} + \cdots$$

- S_0 : classical effective action
- $S_{i>0}$: *i*th-loop corrections

Expansions

•
$$S = \sum_{i=0}^{\infty} (g^2)^{i-1} S_i = \frac{1}{g^2} S_0 + S_1 + \cdots$$

- S_0 : classical effective action
- $S_{i>0}$: *i*th-loop corrections

$$\hat{S} = \sum_{i=0}^{\infty} g^{2i} \hat{S}_i$$

Weak Coupling Limit

Expansions

•
$$S = \sum_{i=0}^{\infty} (g^2)^{i-1} S_i = \frac{1}{g^2} S_0 + S_1 + \cdots$$

- S_0 : classical effective action
- $S_{i>0}$: *i*th-loop corrections

$$\hat{S} = \sum_{i=0}^{\infty} g^{2i} \hat{S}_i$$

• Define $\alpha = g_2^2/g^2$

Generalised ERGs

Expansions

•
$$S = \sum_{i=0}^{\infty} (g^2)^{i-1} S_i = \frac{1}{g^2} S_0 + S_1 + \cdots$$

- S_0 : classical effective action
- $S_{i>0}$: *i*th-loop corrections

$$\hat{S} = \sum_{i=0}^{\infty} g^{2i} \hat{S}_i$$

• Define
$$\alpha = g_2^2/g^2$$

$$\beta \equiv \Lambda \partial_{\Lambda} g = \sum_{i=1}^{\infty} g^{2i+1} \beta_i(\alpha)$$

$$\gamma \equiv \Lambda \partial_{\Lambda} \alpha = \sum_{i=1}^{\infty} g^{2i} \gamma_i(\alpha).$$

The Classical Flow Equation

$$\begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

$$\begin{array}{c} \\ \\ \\ \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \\ \end{array}$$

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

Example (Classical A¹A¹ Vertex)

$$\begin{cases} 0 \\ 0 \end{cases} = \begin{cases} 0 \\ \sum_{i=1}^{\infty} (1-i)^{i} \\ \sum_{i=1}^{\infty} (1-i)^{i} \\ 0 \end{cases}$$

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

$$\bullet \bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

$$\bullet \Sigma_{0} = S_{0} - 2\hat{S}_{0}$$

Example (Classical A¹A¹ Vertex)

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

$$\bullet \Sigma_0 = S_0 - 2\hat{S}_0$$

Example (Classical A¹A¹ Vertex)

• • =
$$-\Lambda \partial_{\Lambda}|_{\alpha}$$

Example (Classical A^1A^1 Vertex)

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

Choose

$$\hat{0} = 0$$

Example (Classical A^1A^1 Vertex)

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

Choose

$$\hat{0} = 0$$

Example (Classical A^1A^1 Vertex)

Gauge Invariance:

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

Example (Classical A¹A¹ Vertex)

• Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$

- $\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$
- 1 stands for A^1

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions:

- $\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$
- 1 stands for A^1

Example (Classical A¹A¹ Vertex)

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions: $S_{0\mu\nu}^{11}(p) = A(p)(p^2\delta_{\mu\nu} - p_{\mu}p_{\nu})$

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

Example (Classical A^1A^1 Vertex)

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions: $S_{0\mu\nu}^{11}(p) = A(p)\Box_{\mu\nu}(p)$

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

Example (Classical A^1A^1 Vertex)

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions: $S_{0\mu\nu}^{11}(p) = A(p)\Box_{\mu\nu}(p)$
- $[A(p)]^{\bullet} \square_{\mu\nu}(p) =$ $-A(p)\Box_{\mu\alpha}(p)\dot{\Delta}^{11}(p)A(p)\Box_{\alpha\nu}(p)$

$$\bullet \bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

Example (Classical A^1A^1 Vertex)

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions: $S_{0\mu\nu}^{11}(p) = A(p)\Box_{\mu\nu}(p)$
- $\bullet [A(p)]^{\bullet} \square_{\mu\nu}(p) =$ $-A(p)\square_{\mu\alpha}(p)\dot{\Delta}^{11}(p)A(p)\square_{\alpha\nu}(p)$

$$\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$$

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions: $S_{0\mu\nu}^{11}(p) = A(p)\Box_{\mu\nu}(p)$
- $\bullet [A(p)]^{\bullet} \square_{\mu\nu}(p) =$ $-p^2A^2(p)\square_{\mu\nu}(p)$

- $\bullet \bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$
- 1 stands for A^1

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions: $S_{0\mu\nu}^{11}(p) = A(p)\Box_{\mu\nu}(p)$
- $\bullet [A(p)]^{\bullet} \square_{\mu\nu}(p) =$ $-p^2A^2(p)\square_{\mu\nu}(p)$

$$\bullet \ \left[\frac{1}{A(p)}\right]^{\bullet} = p^2 \dot{\Delta}^{11}(p)$$

- $\bullet \bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$
- 1 stands for A^1

- $\bullet \bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$
- 1 stands for A^1

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions: $S_{0\mu\nu}^{11}(p) = A(p)\Box_{\mu\nu}(p)$
- $\bullet [A(p)]^{\bullet} \square_{\mu\nu}(p) =$ $-p^2A^2(p)\square_{\mu\nu}(p)$
- $\bullet \left[\frac{1}{A(p)}\right]^{\bullet} = p^2 \dot{\Delta}^{11}(p)$
- $A(p)\Delta^{11}(p) = \frac{1}{p^2}$

- $\bullet = -\Lambda \partial_{\Lambda}|_{\alpha}$
- 1 stands for A^1

- Gauge Invariance: $p_{\mu} S_{0\mu\nu}^{11}(p) = 0$
- Lorentz Invariance and Dimensions: $S_{0\mu\nu}^{11}(p) = A(p)\Box_{\mu\nu}(p)$
- $\bullet [A(p)]^{\bullet} \square_{\mu\nu}(p) =$ $-p^2A^2(p)\square_{\mu\nu}(p)$
- $\bullet \left[\frac{1}{A(p)}\right]^{\bullet} = p^2 \dot{\Delta}^{11}(p)$
- $A(p)\Delta^{11}(p) = \frac{1}{p^2}$
- $S_{0\mu\nu}^{11}(p)\Delta^{11}(p) = \delta_{\mu\nu} \frac{p_{\mu}p_{\nu}}{p^2}$

$$S_{0\mu
u}^{\ 11}(
ho)\Delta^{11}(
ho)=\delta_{\mu
u}-rac{p_{\mu}p_{
u}}{
ho^2}$$

$$S_{0\mu
u}^{\ 11}(p)\Delta^{11}(p)=\delta_{\mu
u}-rac{p_{\mu}p_{
u}}{p^2}$$

• $\Delta^{11}(p)$ is the inverse of $S_{0\mu\nu}^{11}(p)$ up to a remainder

$$S_{0\mu\nu}^{11}(p)\Delta^{11}(p)=\delta_{\mu\nu}-rac{p_{\mu}p_{
u}}{p^2}$$

• $\Delta^{11}(p)$ is the inverse of $S_{0\mu\nu}^{11}(p)$ up to a remainder

Regularisation for SU(N) Gauge Theory

• $\frac{p_{\mu}p_{\nu}}{p^2}$ is a Gauge Remainder

$$S_{0\mu
u}^{\ 11}(
ho)\Delta^{11}(
ho)=\delta_{\mu
u}-rac{
ho_{\mu}p_{
u}}{
ho^2}$$

• $\Delta^{11}(p)$ is the inverse of $S_{0\mu\nu}^{11}(p)$ up to a remainder

- $\frac{p_{\mu}p_{\nu}}{p^2}$ is a Gauge Remainder
 - Forced by Manifest Gauge Invariance

$$S_{0\mu
u}^{\ 11}(p)\Delta^{11}(p)=\delta_{\mu
u}-rac{p_{\mu}p_{
u}}{p^2}$$

• $\Delta^{11}(p)$ is the inverse of $S_{0\mu\nu}^{11}(p)$ up to a remainder

- $\frac{p_{\mu}p_{\nu}}{p^2}$ is a Gauge Remainder
 - Forced by Manifest Gauge Invariance
 - $\Delta^{11}(p)$ NOT a propagator

$$S_{0\mu\nu}^{11}(p)\Delta^{11}(p)=\delta_{\mu\nu}-rac{p_{\mu}p_{
u}}{p^2}$$

• $\Delta^{11}(p)$ is the inverse of $S_{0\mu\nu}^{11}(p)$ up to a remainder

- $\frac{p_{\mu}p_{\nu}}{p^2}$ is a Gauge Remainder
 - Forced by Manifest Gauge Invariance
 - $\Delta^{11}(p)$ NOT a propagator
- $\Delta^{11}(p)$ is an Effective Propagator

$$S_{0\mu
u}^{\ 11}(
ho)\Delta^{11}(
ho)=\delta_{\mu
u}-rac{
ho_{\mu}p_{
u}}{
ho^2}$$

- $\Delta^{11}(p)$ is the inverse of $S_{0\mu\nu}^{11}(p)$ up to a remainder
- $\frac{p_{\mu}p_{\nu}}{p^2}$ is a Gauge Remainder
 - Forced by Manifest Gauge Invariance
 - $\Delta^{11}(p)$ NOT a propagator
- $\Delta^{11}(p)$ is an Effective Propagator
 - Plays diagrammatic role analogous to usual propagator

Introduction

$\Delta^{11}(p)$ is an Effective Propagator

$$S_{0\mu
u}^{11}(p)\Delta^{11}(p)=\delta_{\mu
u}-rac{p_{\mu}p_{
u}}{p^2}$$

- ullet $\Delta^{11}(p)$ is the inverse of $S_{0\mu\nu}^{\ \ 11}(p)$ up to a remainder
- $\frac{p_{\mu}p_{\nu}}{p^2}$ is a Gauge Remainder
 - Forced by Manifest Gauge Invariance
 - $\Delta^{11}(p)$ NOT a propagator
- ullet $\Delta^{11}(p)$ is an Effective Propagator
 - Plays diagrammatic role analogous to usual propagator
 - No gauge fixing

$$S_{0\mu
u}^{\ 11}(
ho)\Delta^{11}(
ho)=\delta_{\mu
u}-rac{
ho_{\mu}p_{
u}}{
ho^2}$$

- $\Delta^{11}(p)$ is the inverse of $S_{0\mu\nu}^{11}(p)$ up to a remainder
- $\frac{p_{\mu}p_{\nu}}{p^2}$ is a Gauge Remainder
 - Forced by Manifest Gauge Invariance
 - $\Delta^{11}(p)$ NOT a propagator
- $\Delta^{11}(p)$ is an Effective Propagator
 - Plays diagrammatic role analogous to usual propagator

- No gauge fixing
- Relationship to $S_{0\mu\nu}^{11}(p)$ down to choice of \hat{S}

Diagrammatics

Diagrammatics

• The effective propagator relation works in all sectors

Two-point, classical vertex

Diagrammatics

- Two-point, classical vertex
- Effective Propagator (always an internal line)

Diagrammatics

- Two-point, classical vertex
- Effective Propagator (always an internal line)
- Arbitrary Structure

Diagrammatics

- Two-point, classical vertex
- Effective Propagator (always an internal line)
- Arbitrary Structure
- Kronecker δ part

Diagrammatics

• The effective propagator relation works in all sectors

- Two-point, classical vertex
- Effective Propagator (always an internal line)
- Arbitrary Structure
- Kronecker δ part
- Gauge Remainder (null in C sector)

Diagrammatics

• The effective propagator relation works in all sectors

- Two-point, classical vertex
- Effective Propagator (always an internal line)
- Arbitrary Structure
- Kronecker δ part
- Gauge Remainder (null in C sector)
- ERG sufficiently general for $\Delta^{11}(p) \neq \Delta^{22}(p)$
 - $S_{0\mu\nu}^{11}(p) \neq S_{0\mu\nu}^{22}(p)$

Renormalisation Condition for g:

•
$$S[A = A^1, C = \sigma] = \frac{1}{2g^2} \operatorname{str} \int d^D x \left(F_{\mu\nu}^1\right)^2 + \cdots$$

Renormalisation Condition for g:

•
$$S[A = A^1, C = \sigma] = \frac{1}{2g^2} \operatorname{str} \int d^D x \, (F_{\mu\nu}^1)^2 + \cdots$$

•
$$S_{0\mu\nu}^{11}(p) = 2\Box_{\mu\nu}(p) + \mathcal{O}(p^4)$$

Renormalisation Condition for g:

•
$$S[A = A^1, C = \sigma] = \frac{1}{2g^2} \operatorname{str} \int d^D x \left(F_{\mu\nu}^1\right)^2 + \cdots$$

Regularisation for SU(N) Gauge Theory

•
$$S_{0\mu\nu}^{11}(p) = 2\Box_{\mu\nu}(p) + \mathcal{O}(p^4)$$

Universality

All Universal quantities depend only on

Renormalisation Condition for g:

•
$$S[A = A^1, C = \sigma] = \frac{1}{2g^2} \operatorname{str} \int d^D x \left(F_{\mu\nu}^1\right)^2 + \cdots$$

Regularisation for SU(N) Gauge Theory

•
$$S_{0\mu\nu}^{11}(p) = 2\Box_{\mu\nu}(p) + \mathcal{O}(p^4)$$

- All Universal quantities depend only on
 - The $\mathcal{O}(p^2)$ part of $S_{0\mu\nu}^{11}(p)$

Renormalisation Condition for g:

•
$$S[A = A^1, C = \sigma] = \frac{1}{2g^2} \operatorname{str} \int d^D x \left(F_{\mu\nu}^1\right)^2 + \cdots$$

Regularisation for SU(N) Gauge Theory

•
$$S_{0\mu\nu}^{11}(p) = 2\Box_{\mu\nu}(p) + \mathcal{O}(p^4)$$

- All Universal quantities depend only on
 - The $\mathcal{O}(p^2)$ part of $S_{0\mu\nu}^{11}(p)$
 - The $\mathcal{O}(p^{-2})$ part of $\Delta^{11}(p)$

Renormalisation Condition for g:

•
$$S[A = A^1, C = \sigma] = \frac{1}{2g^2} \operatorname{str} \int d^D x \left(F_{\mu\nu}^1\right)^2 + \cdots$$

Regularisation for SU(N) Gauge Theory

•
$$S_{0\mu\nu}^{11}(p) = 2\Box_{\mu\nu}(p) + \mathcal{O}(p^4)$$

- All Universal quantities depend only on
 - The $\mathcal{O}(p^2)$ part of $S_{0\mu\nu}^{11}(p)$
 - The $\mathcal{O}(p^{-2})$ part of $\Delta^{11}(p)$
 - The A¹ gauge remainders

Introduction

Renormalisation Condition for g:

•
$$S[A = A^1, C = \sigma] = \frac{1}{2g^2} \operatorname{str} \int d^D x \, (F_{\mu\nu}^1)^2 + \cdots$$

•
$$S_{0\mu\nu}^{11}(p) = 2\Box_{\mu\nu}(p) + \mathcal{O}(p^4)$$

- All Universal quantities depend only on
 - The $\mathcal{O}(p^2)$ part of $S_{0\mu\nu}^{11}(p)$
 - The $\mathcal{O}(p^{-2})$ part of $\Delta^{11}(p)$
 - The A¹ gauge remainders
- All non-universal contributions cancel, diagrammatically!

$$-8\beta_{n+1}\Box_{\mu\nu}(p)+\cdots=\left[\begin{array}{c} \sum_{n} \end{array}\right]^{12}$$

$$-8\beta_{n+1}\Box_{\mu\nu}(p)+\cdots=\left[-2\widehat{\hat{n}}\right]+\widehat{n}$$

$$-8\beta_{n+1}\Box_{\mu\nu}(p)+\cdots=\left[-2\widehat{\hat{n}}+\widehat{n}\right]^{11}$$

$$-8\beta_{n+1}\Box_{\mu\nu}(p)+\cdots=\left[-2\widehat{n}+\widehat{n}\right]^{1}$$

Must be decorated

$$-8\beta_{n+1}\Box_{\mu\nu}(p)+\cdots=\left[-2\widehat{n}+\widehat{n}\right]^{1}$$

- Must be decorated
- Cannot be decorated $\Rightarrow -\Lambda \partial_{\Lambda}|_{\alpha} \Delta$

$$-8\beta_{n+1}\Box_{\mu\nu}(p)+\cdots=\left[-2\widehat{\hat{n}}\right]^{11}+\widehat{n}\right]^{11}$$

Regularisation for SU(N) Gauge Theory

$$\left[\begin{array}{c} \bigcirc \\ \bigcirc \\ \end{array}\right]^{11} =$$

$$-8\beta_{n+1}\square_{\mu\nu}(\rho) + \cdots = \left[-2 \left(\frac{\hat{n}}{\hat{n}} + \left(\frac{\hat{n}}{\hat{n}} \right) + \left(\frac{\hat{n}}{\hat{n}} \right) \right]^{11}$$

$$\left[\left(\frac{\hat{n}}{\hat{n}} \right) \right]^{11} = \left[\left(\frac{\hat{n}}{\hat{n}} \right) \right]^{11} - \left(\frac{\hat{n}}{\hat{n}} \right)^{11}$$

Regularisation for SU(N) Gauge Theory

Generalised ERGs

$$-8\beta_{n+1}\Box_{\mu\nu}(p) + \cdots = \begin{bmatrix} -2 & & & \\ -2 & & & \\ \hat{n} & & & \end{bmatrix}^{11}$$

$$\begin{bmatrix} & & & \\ & & &$$

$$-8\beta_{n+1}\Box_{\mu\nu}(\rho) + \cdots = \left[-2 \left(\frac{\hat{n}}{\hat{n}} \right) + \left(\frac{\hat{n}}{\hat{n}} \right) \right]^{1}$$

$$\left[\left(\frac{\hat{n}}{\hat{n}} \right) \right]^{11} = \left[\left(\frac{\hat{n}}{\hat{n}} \right) \right]^{1} + 2 \left(\frac{\hat{n}}{\hat{n}} \right) - 2 \left(\frac{\hat{n}}{\hat{n}} \right) \right]^{11}$$

$$+ \cdots$$

Generalised ERGs

$$-8\beta_{n+1}\square_{\mu\nu}(p) + \dots = \begin{bmatrix} -2 & & & \\ -2 & & & \\ & & & \end{bmatrix}^{11} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}^{11} = \begin{bmatrix} & & & \\ \end{bmatrix}^{11}$$

The Diagrammatic Procedure

 Isolate and process any diagrams which can be manipulated using the flow equation

- Isolate and process any diagrams which can be manipulated using the flow equation
- Employ the effective propagator relation

- Isolate and process any diagrams which can be manipulated using the flow equation
- Employ the effective propagator relation
- Process the gauge remainders diagrammatically

- Isolate and process any diagrams which can be manipulated using the flow equation
- Employ the effective propagator relation
- Process the gauge remainders diagrammatically
- Iterate

The Diagrammatic Procedure

- Isolate and process any diagrams which can be manipulated using the flow equation
- Employ the effective propagator relation
- Process the gauge remainders diagrammatically
- Iterate

Cancellations to all orders

The Diagrammatic Procedure

- Isolate and process any diagrams which can be manipulated using the flow equation
- Employ the effective propagator relation
- Process the gauge remainders diagrammatically
- Iterate

Cancellations to all orders

• All explicit instances of \hat{S}

The Diagrammatic Procedure

- Isolate and process any diagrams which can be manipulated using the flow equation
- Employ the effective propagator relation
- Process the gauge remainders diagrammatically
- Iterate

Cancellations to all orders

- All explicit instances of \hat{S}
- All explicit details of the covariantisation

What does eta_n depend on?

What does β_n depend on?

Wilsonian effective action vertices

What does β_n depend on?

- Wilsonian effective action vertices
- effective propagators

What does β_n depend on?

- Wilsonian effective action vertices
- effective propagators
- gauge remainders

What does β_n depend on?

- Wilsonian effective action vertices
- effective propagators
- gauge remainders

What does β_n depend on?

- Wilsonian effective action vertices
- effective propagators
- gauge remainders

Cancellation of Remaining non-Universality

Trivial, at one loop

What does β_n depend on?

- Wilsonian effective action vertices
- effective propagators
- gauge remainders

- Trivial, at one loop
- Iterative, diagrammatic procedure at two loops

ľ

What does β_n depend on?

- Wilsonian effective action vertices
- effective propagators
- gauge remainders

- Trivial, at one loop
- Iterative, diagrammatic procedure at two loops
- Iterative, diagrammatic procedure at *n* loops??

What does β_n depend on?

- Wilsonian effective action vertices
- effective propagators
- gauge remainders

- Trivial, at one loop
- Iterative, diagrammatic procedure at two loops
- Iterative, diagrammatic procedure at *n* loops??
- Strong suggestion that all β_n can be arranged to depend only on the universal details of this ERG

Perturbative

Perturbative

 \bullet Complete analysis of universality of β_n

Perturbative

- ullet Complete analysis of universality of eta_n
- Expectation values of gauge invariant operators

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

Non-Perturbative

Truncations

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

- Truncations
- Strong coupling expansion

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

- Truncations
- Strong coupling expansion
 - Assume $g(\Lambda) \to \infty$ as $\Lambda \to 0$

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

- Truncations
- Strong coupling expansion
 - Assume $g(\Lambda) \to \infty$ as $\Lambda \to 0$
 - $S = \frac{1}{g^2} \tilde{S}_1 + \frac{1}{g^4} \tilde{S}_2 + \cdots$

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

- Truncations
- Strong coupling expansion
 - Assume $g(\Lambda) \to \infty$ as $\Lambda \to 0$
 - $S = \frac{1}{g^2} \tilde{S}_1 + \frac{1}{g^4} \tilde{S}_2 + \cdots$
 - Dimensional transmutation: $p/\Lambda_{\rm QCD}$

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

- Truncations
- Strong coupling expansion
 - Assume $g(\Lambda) \to \infty$ as $\Lambda \to 0$
 - $S = \frac{1}{g^2} \tilde{S}_1 + \frac{1}{g^4} \tilde{S}_2 + \cdots$
 - \bullet Dimensional transmutation: $\mathrm{p}/\Lambda_{\mathrm{QCD}}$
 - Signature of confinement: $S_{\mu\nu}^{11}(p) = \frac{1}{g^2} 2\Box_{\mu\nu}(p) + \mathcal{O}(p^4)$

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

- Truncations
- Strong coupling expansion
 - Assume $g(\Lambda) \to \infty$ as $\Lambda \to 0$
 - $S = \frac{1}{g^2} \tilde{S}_1 + \frac{1}{g^4} \tilde{S}_2 + \cdots$
 - \bullet Dimensional transmutation: $\mathrm{p}/\Lambda_{\mathrm{QCD}}$
 - Signature of confinement: $S_{\mu\nu}^{11}(p) = \frac{1}{p^2} 2 \square_{\mu\nu}(p) + \mathcal{O}(p^4)$

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

- Truncations
- Strong coupling expansion
 - Assume $g(\Lambda) \to \infty$ as $\Lambda \to 0$
 - $S = \frac{1}{g^2} \tilde{S}_1 + \frac{1}{g^4} \tilde{S}_2 + \cdots$
 - Dimensional transmutation: p/Λ_{QCD}
 - Signature of confinement: $S_{\mu\nu}^{11}(p) = \frac{1}{\sigma^2} 2 \square_{\mu\nu}(p) + \mathcal{O}(p^4)$
- A more direct framework

Perturbative

- Complete analysis of universality of β_n
- Expectation values of gauge invariant operators

- Truncations
- Strong coupling expansion
 - Assume $g(\Lambda) \to \infty$ as $\Lambda \to 0$
 - $S = \frac{1}{g^2} \tilde{S}_1 + \frac{1}{g^4} \tilde{S}_2 + \cdots$
 - Dimensional transmutation: p/Λ_{QCD}
 - Signature of confinement: $S_{\mu\nu}^{11}(p) = \frac{1}{\sigma^2} 2 \square_{\mu\nu}(p) + \mathcal{O}(p^4)$
- A more direct framework
- Quarks

Evaluating the Λ-Derivative Terms

Strategy

◆ Return

$$eta_1\Box_{\mu
u}(p)=\int_k\left[\mathcal{D}_1(k,p)
ight]_{p^2}^{ullet}$$

Strategy

◆ Return

$$\beta_1 \square_{\mu\nu}(p) = \int_k \left[\mathcal{D}_1(k,p) \right]_{p^2}^{\bullet}$$

ullet \mathcal{D}_1 is a set of one loop diagrams

Strategy

$$eta_1\Box_{\mu
u}(\mathbf{p})=\int_k\left[\mathcal{D}_1(k,\mathbf{p})\right]_{\mathbf{p}^2}^{ullet}$$

- ullet \mathcal{D}_1 is a set of one loop diagrams
 - external momentum, p

Strategy

$$eta_1\Box_{\mu
u}(
ho)=\int_{m{k}}\left[\mathcal{D}_1(m{k},
ho)
ight]_{
ho^2}^{ullet}$$

- ullet \mathcal{D}_1 is a set of one loop diagrams
 - external momentum, p
 - loop momentum, k

Strategy

$$eta_1\Box_{\mu
u}(
ho)=\int_k\left[\mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

- ullet \mathcal{D}_1 is a set of one loop diagrams
 - external momentum, p
 - loop momentum, k
- Interchange $-\Lambda \partial_{\Lambda}|_{\alpha}$ and \int_{k}

Strategy

Return

$$eta_1\Box_{\mu
u}(
ho)=\int_k\left[\mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

- ullet \mathcal{D}_1 is a set of one loop diagrams
 - external momentum, p
 - loop momentum, k
- Interchange $-\Lambda\partial_{\Lambda}|_{lpha}$ and \int_{k}

$$eta_1\Box_{\mu
u}(
ho)=\left[\int_k \mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

Strategy

Return

$$eta_1\Box_{\mu
u}(
ho)=\int_k\left[\mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

- ullet \mathcal{D}_1 is a set of one loop diagrams
 - external momentum, p
 - loop momentum, k
- Interchange $-\Lambda \partial_{\Lambda}|_{\alpha}$ and \int_{k}

$$eta_1\Box_{\mu
u}(
ho)=\left[\int_k\mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

• $\beta_1 = \Lambda \partial_{\Lambda}|_{\alpha}$ (Dimensionless Quantity)

Strategy

$$eta_1\Box_{\mu
u}(
ho)=\int_k\left[\mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

- ullet \mathcal{D}_1 is a set of one loop diagrams
 - external momentum, p
 - loop momentum, k
- Interchange $-\Lambda\partial_{\Lambda}|_{\alpha}$ and \int_{k}

$$eta_1\Box_{\mu
u}(
ho)=\left[\int_k\mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

- $\beta_1 = \Lambda \partial_{\Lambda}|_{\alpha}$ (Dimensionless Quantity)
- Diagrams can pick up IR divergence

Strategy

◀ Return

$$eta_1\Box_{\mu
u}(
ho)=\int_k\left[\mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

- ullet \mathcal{D}_1 is a set of one loop diagrams
 - external momentum, p
 - loop momentum, k
- Interchange $-\Lambda\partial_{\Lambda}|_{lpha}$ and \int_{k}

$$eta_1\Box_{\mu
u}(
ho)=\left[\int_k\mathcal{D}_1(k,
ho)
ight]_{
ho^2}^{ullet}$$

- $\beta_1 = \Lambda \partial_{\Lambda}|_{\alpha}$ (Dimensionless Quantity)
- Diagrams can pick up IR divergence
- Integrals only have support in IR

Return

Return
 Re

$$q \bigvee_{q} \bigvee_{r} = \bigvee_{q} \bigvee_{r} \bigvee_{r}$$