Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Duncan Brown, Larry Kidder, Geoffrey Lovelace, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

University of California at Santa Barbara 8 February 2007

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Duncan Brown, Larry Kidder, Geoffrey Lovelace, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

University of California at Santa Barbara 8 February 2007

- Generalize Harmonic (GH) gauge conditions.

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Duncan Brown, Larry Kidder, Geoffrey Lovelace, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

University of California at Santa Barbara 8 February 2007

- Generalize Harmonic (GH) gauge conditions.
- Constraint damping in the GH system.

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Duncan Brown, Larry Kidder, Geoffrey Lovelace, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

University of California at Santa Barbara 8 February 2007

- Generalize Harmonic (GH) gauge conditions.
- Constraint damping in the GH system.
- Moving Black Holes.

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Lee Lindblom
Caltech

Collaborators: Duncan Brown, Larry Kidder, Geoffrey Lovelace, Robert Owen, Oliver Rinne, Harald Pfeiffer, Mark Scheel, Saul Teukolsky

University of California at Santa Barbara 8 February 2007

- Generalize Harmonic (GH) gauge conditions.
- Constraint damping in the GH system.
- Moving Black Holes.
- Binary Black Hole Evolutions.

Methods of Specifying Spacetime Coordinates

- We often decompose the 4-metric into its 3+1 parts:
$d s^{2}=\psi_{a b} d x^{a} d x^{b}=-N^{2} d t^{2}+g_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right)$. The lapse N and shift N^{i} specify how coordinates are laid out on a spacetime manifold. Consider the unit timelike normal \vec{n} : $\vec{n}=\partial_{\tau}=(\partial t / \partial \tau) \partial_{t}+\left(\partial x^{k} / \partial \tau\right) \partial_{k}=\left(\partial_{t}-N^{k} \partial_{k}\right) / N$.

Methods of Specifying Spacetime Coordinates

- We often decompose the 4-metric into its 3+1 parts:
$d s^{2}=\psi_{a b} d x^{a} d x^{b}=-N^{2} d t^{2}+g_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right)$.
The lapse N and shift N^{i} specify how coordinates are laid out on a spacetime manifold. Consider the unit timelike normal \vec{n} :
$\vec{n}=\partial_{\tau}=(\partial t / \partial \tau) \partial_{t}+\left(\partial x^{k} / \partial \tau\right) \partial_{k}=\left(\partial_{t}-N^{k} \partial_{k}\right) / N$.
- An alternate way to specify the coordinates is through the generalized harmonic gauge source function H^{a} :
- Let H^{a} denote the function obtained by the action of the scalar wave operator on the coordinates x^{a} :

$$
H^{a} \equiv \nabla^{c} \nabla_{c} x^{a}=-\Gamma^{a}
$$

where $\Gamma^{a}=\psi^{b c} \Gamma^{a}{ }_{b c}$ and $\psi_{a b}$ is the 4-metric.

Methods of Specifying Spacetime Coordinates

- We often decompose the 4-metric into its 3+1 parts:
$d s^{2}=\psi_{a b} d x^{a} d x^{b}=-N^{2} d t^{2}+g_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right)$.
The lapse N and shift N^{i} specify how coordinates are laid out on a spacetime manifold. Consider the unit timelike normal \vec{n} :
$\vec{n}=\partial_{\tau}=(\partial t / \partial \tau) \partial_{t}+\left(\partial x^{k} / \partial \tau\right) \partial_{k}=\left(\partial_{t}-N^{k} \partial_{k}\right) / N$.
- An alternate way to specify the coordinates is through the generalized harmonic gauge source function H^{a} :
- Let H^{a} denote the function obtained by the action of the scalar wave operator on the coordinates x^{a} :

$$
H^{a} \equiv \nabla^{c} \nabla_{c} x^{a}=-\Gamma^{a}
$$

where $\Gamma^{a}=\psi^{b c} \Gamma^{a}{ }_{b c}$ and $\psi_{a b}$ is the 4-metric.

- Specifying coordinates by the generalized harmonic (GH) method can be accomplished by choosing a gauge-source function $H_{a}(x, \psi)=\psi_{a b} H^{b}$, and requiring that $H_{a}(x, \psi)=-\Gamma_{a}=-\Gamma_{a b c} \psi^{b c}$.

Important Properties of the GH Method

- The Einstein equations are manifestly hyperbolic when coordinates are specified using a GH gauge function:

$$
\boldsymbol{R}_{a b}=-\frac{1}{2} \psi^{c d} \partial_{c} \partial_{d} \psi_{a b}+\nabla_{(a} \Gamma_{b)}+F_{a b}(\psi, \partial \psi)
$$

where $\psi_{a b}$ is the 4-metric, and $\Gamma_{a}=\psi^{b c} \Gamma_{a b c}$. The vacuum Einstein equation, $R_{a b}=0$, has the same principal part as the scalar wave equation when $H_{a}(x, \psi)=-\Gamma_{a}$ is imposed.

Important Properties of the GH Method

- The Einstein equations are manifestly hyperbolic when coordinates are specified using a GH gauge function:

$$
R_{a b}=-\frac{1}{2} \psi^{c d} \partial_{c} \partial_{d} \psi_{a b}+\nabla_{(a} \Gamma_{b)}+F_{a b}(\psi, \partial \psi)
$$

where $\psi_{a b}$ is the 4-metric, and $\Gamma_{a}=\psi^{b c} \Gamma_{a b c}$. The vacuum Einstein equation, $R_{a b}=0$, has the same principal part as the scalar wave equation when $H_{a}(x, \psi)=-\Gamma_{a}$ is imposed.

- Imposing coordinates using a GH gauge function profoundly changes the constraints. The GH constraint, $\mathcal{C}_{a}=0$, where

$$
\mathcal{C}_{a}=H_{a}+\Gamma_{a}
$$

depends only on first derivatives of the metric. The standard Hamiltonian and momentum constraints, $\mathcal{M}_{a}=0$, are determined by the derivatives of the gauge constraint \mathcal{C}_{a} :

$$
\mathcal{M}_{a} \equiv G_{a b} n^{b}=\left[\nabla_{(a} \mathcal{C}_{b)}-\frac{1}{2} \psi_{a b} \nabla^{c} \mathcal{C}_{c}\right] n^{b} .
$$

Constraint Damping Generalized Harmonic System

- Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$
0=R_{a b}-\nabla_{(a} \mathcal{C}_{b)}+\gamma_{0}\left[n_{(a} \mathcal{C}_{b)}-\frac{1}{2} \psi_{a b} n^{c} \mathcal{C}_{c}\right]
$$

where n^{a} is a unit timelike vector field. Since $\mathcal{C}_{a}=H_{a}+\Gamma_{a}$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

Constraint Damping Generalized Harmonic System

- Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$
0=R_{a b}-\nabla_{(a} \mathcal{C}_{b)}+\gamma_{0}\left[n_{(a} \mathcal{C}_{b)}-\frac{1}{2} \psi_{a b} n^{c} \mathcal{C}_{c}\right]
$$

where n^{a} is a unit timelike vector field. Since $\mathcal{C}_{a}=H_{a}+\Gamma_{a}$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

- Evolution of the constraints \mathcal{C}_{a} follow from the Bianchi identities:

$$
0=\nabla^{c} \nabla_{c} \mathcal{C}_{a}-2 \gamma_{0} \nabla^{c}\left[n_{(c} \mathcal{C}_{a)}\right]+\mathcal{C}^{c} \nabla_{(c} \mathcal{C}_{a)}-\frac{1}{2} \gamma_{0} n_{a} \mathcal{C}^{c} \mathcal{C}_{c}
$$

This is a damped wave equation for \mathcal{C}_{a}, that drives all small short-wavelength constraint violations toward zero as the system evolves (for $\gamma_{0}>0$).

Numerical Tests of the New GH System

- 3D numerical evolutions of static black-hole spacetimes illustrate the constraint damping properties of our GH evolution system.
- These evolutions are stable and convergent when $\gamma_{0}=\gamma_{2}=1$.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
- Re-gridding/interpolation is expensive.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
- Re-gridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
- Re-gridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.
- Causality trouble at leading edge of horizon.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
- Re-gridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.
- Causality trouble at leading edge of horizon.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
- Re-gridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.
- Causality trouble at leading edge of horizon.

Moving Black Holes in a Spectral Code

- Spectral: Excision boundary is a smooth analytic surface.
- Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
- Re-gridding/interpolation is expensive.
- Difficult to get smooth extrapolation at trailing edge of horizon.
- Causality trouble at leading edge of horizon.
- Solution:

Choose coordinates that smoothly track the location of the black hole.

Evolving Black Holes in Rotating Frames

- Coordinates that rotate with respect to the inertial frames at infinity are needed to track the horizons of orbiting black holes.
- Evolutions of Schwarzschild in rotating coordinates are unstable.

- Evolutions shown use a computational domain that extends to $r=1000 \mathrm{M}$.
- Angular velocity needed to track the horizons of an equal mass binary at merger is about $\Omega \approx 0.2 / M$.
- Problem caused by asymptotic behavior of metric in rotating coordinates: $\psi_{t t} \sim \rho^{2} \Omega^{2}$, $\psi_{t i} \sim \rho \Omega, \psi_{i j} \sim 1$.

Dual-Coordinate-Frame Evolution Method

- Single-coordinate frame method uses the one set of coordinates, $x^{\bar{a}}=\left\{\bar{t}, x^{\bar{\imath}}\right\}$, to define field components, $u^{\bar{\alpha}}=\left\{\psi_{\bar{a} \bar{b}}, \Pi_{\bar{a} \bar{b}}, \Phi_{\bar{a} \overline{\bar{b}}}\right\}$, and the same coordinates to determine these components by solving Einstein's equation for $u^{\bar{\alpha}}=U^{\bar{\alpha}}\left(x^{\bar{a}}\right)$:

$$
\partial_{\bar{t}} u^{\bar{\alpha}}+A^{\bar{k}}{ }_{\bar{\beta}} \partial_{\bar{k}} u^{\bar{\beta}}=F^{\bar{\alpha}} .
$$

Dual-Coordinate-Frame Evolution Method

- Single-coordinate frame method uses the one set of coordinates, $x^{\bar{a}}=\left\{\bar{t}, x^{\bar{\imath}}\right\}$, to define field components, $u^{\bar{\alpha}}=\left\{\psi_{\bar{a} \bar{b}}, \Pi_{\bar{a} \bar{b}}, \Phi_{\bar{a} \bar{a} \bar{b}}\right\}$, and the same coordinates to determine these components by solving Einstein's equation for $u^{\bar{\alpha}}=U^{\bar{\alpha}}\left(x^{\bar{a}}\right)$:

$$
\partial_{\bar{t}} u^{\bar{\alpha}}+A^{\bar{k}}{ }_{\bar{\beta}} \partial_{\bar{k}} u^{\bar{\beta}}=F^{\bar{\alpha}} .
$$

- Dual-coordinate frame method uses basis vectors of one coordinate system to define components of fields, and a second set of coordinates, $x^{a}=\left\{t, x^{i}\right\}=x^{a}\left(x^{\bar{a}}\right)$, to represent these components as functions, $u^{\bar{\alpha}}=u^{\bar{\alpha}}\left(x^{a}\right)$.

Dual-Coordinate-Frame Evolution Method

- Single-coordinate frame method uses the one set of coordinates, $x^{\bar{a}}=\left\{\bar{t}, x^{\bar{\imath}}\right\}$, to define field components, $u^{\bar{\alpha}}=\left\{\psi_{\bar{a} \bar{b}}, \Pi_{\bar{a} \bar{b}}, \Phi_{\bar{a} \bar{a} \bar{b}}\right\}$, and the same coordinates to determine these components by solving Einstein's equation for $u^{\bar{\alpha}}=u^{\bar{\alpha}}\left(x^{\bar{a}}\right)$:

$$
\partial_{\bar{t}} u^{\bar{\alpha}}+A^{\bar{k}} \bar{\alpha}_{\bar{\beta}} \partial_{\bar{k}} u^{\bar{\beta}}=F^{\bar{\alpha}} .
$$

- Dual-coordinate frame method uses basis vectors of one coordinate system to define components of fields, and a second set of coordinates, $x^{a}=\left\{t, x^{i}\right\}=x^{a}\left(x^{\bar{a}}\right)$, to represent these components as functions, $u^{\bar{\alpha}}=u^{\bar{\alpha}}\left(x^{a}\right)$.
- These functions are determined by solving the transformed Einstein equation:

$$
\partial_{t} u^{\bar{\alpha}}+\left[\frac{\partial x^{i}}{\partial \bar{t}} \delta^{\bar{\alpha}}{ }_{\bar{\beta}}+\frac{\partial x^{i}}{\partial x^{\bar{k}}} A^{\bar{k}}{ }_{\bar{\alpha}}^{\bar{\beta}}\right] \partial_{i} u^{\bar{\beta}}=F^{\bar{\alpha}} .
$$

Testing Dual-Coordinate-Frame Evolutions

- Single-frame evolutions of Schwarzschild in rotating coordinates are unstable, while dual-frame evolutions are stable:

Dual Frame Evolution

Single Frame Evolution

- Dual-frame evolution shown here uses a comoving frame with $\Omega=0.2 / \mathrm{M}$ on a domain with outer radius $r=1000 \mathrm{M}$.

Horizon Tracking Coordinates

- Coordinates must be used that track the motions of the holes.
- For equal mass non-spinning binaries, the centers of the holes move only in the $z=0$ orbital plane.
- The coordinate transformation from inertial coordinates, $(\bar{x}, \bar{y}, \bar{z})$, to co-moving coordinates (x, y, z),

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=e^{a(\bar{t})}\left(\begin{array}{ccc}
\cos \varphi(\bar{t}) & -\sin \varphi(\bar{t}) & 0 \\
\sin \varphi(\bar{t}) & \cos \varphi(\bar{t}) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right)
$$

with $t=\bar{t}$, is general enough to keep the holes fixed in co-moving coordinates for suitably chosen functions $a(\bar{t})$ and $\varphi(\bar{t})$.

- Since the motions of the holes are not known a priori, the functions $a(\bar{t})$ and $\varphi(\bar{t})$ must be chosen dynamically and adaptively as the system evolves.

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_{c}(t)$ and $y_{c}(t)$, or equivalently $Q^{x}(t)=\left[x_{c}(t)-x_{c}(0)\right] / x_{c}(0)$ and $Q^{y}(t)=y_{c}(t) / x_{c}(t)$.
- Choose the map parameters $a(t)$ and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_{c}(t)$ and $y_{c}(t)$, or equivalently $Q^{x}(t)=\left[x_{C}(t)-x_{c}(0)\right] / x_{c}(0)$ and $Q^{y}(t)=y_{c}(t) / x_{c}(t)$.
- Choose the map parameters $a(t)$ and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.
- Changing the map parameters by the small amounts, δa and $\delta \varphi$, results in associated small changes in δQ^{x} and δQ^{y} :

$$
\delta Q^{x}=-\delta a, \quad \delta Q^{y}=-\delta \varphi
$$

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_{C}(t)$ and $y_{c}(t)$, or equivalently $Q^{x}(t)=\left[x_{C}(t)-x_{c}(0)\right] / x_{c}(0)$ and $Q^{y}(t)=y_{c}(t) / x_{C}(t)$.
- Choose the map parameters $a(t)$ and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.
- Changing the map parameters by the small amounts, δa and $\delta \varphi$, results in associated small changes in δQ^{x} and δQ^{y} :

$$
\delta Q^{x}=-\delta a, \quad \delta Q^{y}=-\delta \varphi
$$

- Measure the quantities $Q^{y}(t), d Q^{y}(t) / d t, d^{2} Q^{y}(t) / d t^{2}$, and set

$$
\frac{d^{3} \varphi}{d t^{3}}=\lambda^{3} Q^{y}+3 \lambda^{2} \frac{d Q^{y}}{d t}+3 \lambda \frac{d^{2} Q^{y}}{d t^{2}}=-\frac{d^{3} Q^{y}}{d t^{3}}
$$

The solutions to this "closed-loop" equation for Q^{y} have the form $Q^{y}(t)=\left(A t^{2}+B t+C\right) e^{-\lambda t}$, so Q^{y} always decreases as $t \rightarrow \infty$.

Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times $t=t_{\text {p }}$.
- In the time interval $t_{i}<t<t_{i+1}$ we set:

$$
\begin{aligned}
\varphi(t)= & \varphi_{i}+\left(t-t_{i}\right) \frac{d \varphi_{i}}{d t}+\frac{\left(t-t_{i}\right)^{2}}{2} \frac{d^{2} \varphi_{i}}{d t^{2}} \\
& +\frac{\left(t-t_{i}\right)^{3}}{2}\left(\lambda \frac{d^{2} Q_{i}^{y}}{d t^{2}}+\lambda^{2} \frac{d Q_{i}^{y}}{d t}+\lambda^{3} \frac{Q_{i}^{y}}{3}\right)
\end{aligned}
$$

where Q^{x}, Q^{y}, and their derivatives are measured at $t=t_{i}$, so these maps satisfy the closed loop
equation at $t=t_{i}$.

Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times $t=t_{\text {p }}$.
- In the time interval $t_{i}<t<t_{i+1}$ we set:

$$
\begin{aligned}
\varphi(t)= & \varphi_{i}+\left(t-t_{i}\right) \frac{d \varphi_{i}}{d t}+\frac{\left(t-t_{i}\right)^{2}}{2} \frac{d^{2} \varphi_{i}}{d t^{2}} \\
& +\frac{\left(t-t_{i}\right)^{3}}{2}\left(\lambda \frac{d^{2} Q_{i}^{y}}{d t^{2}}+\lambda^{2} \frac{d Q_{i}^{y}}{d t}+\lambda^{3} \frac{Q_{i}^{y}}{3}\right)
\end{aligned}
$$

where Q^{x}, Q^{y}, and their derivatives are measured at $t=t_{i}$, so these maps satisfy the closed loop equation at $t=t_{i}$.

- This works! We are now able to evolve binary black holes using horizon tracking coordinates until just before merger.

Evolving Binary Black Hole Spacetimes

- We can now evolve binary black hole spacetimes with excellent accuracy and computational efficiency through many orbits.

Lapse- Ψ_{4} Movie

Evolving Binary Black Hole Spacetimes II

- Gravitational waveform and frequency evolution for the equal mass non-spinning BBH evolution.

Evolving Binary Black Hole Spacetimes III

- Initial steps in convergence testing the 15 orbit evolution:

Reducing Orbital Eccentricity

- Astrophysical BBH systems are expected to have almost circular orbits by the time of merger.
- Commonly used "quasi-circular" initial data approximate the small radiation reaction driven radial velocities by setting them to zero.
- Our group (Pfeiffer and Lovelace) have constructed better BBH initial data with radial velocities chosen to reduce the orbital eccentricity.

Comparing Waveforms for Low Eccentricity Orbits

- Orbital eccentricity has little effect on gravitational waveforms.
- Overlap integrals between the low eccentricity orbit waveforms and the "quasi-circular" waveforms are greater than 0.99.
- Graphs compare low eccentricity waveforms (black) with "auasi-circular" waveforms (red).

