Heavy Fermion Superconductivity

Eric Bauer Xin Lu Marc Janoschek Roman Movshovich Joe Thompson Pinaki Das Vladamir Sidorov Jianxin Zhu (LANL)

Soonbeom Seo Tuson Park (SKKU) Zach Fisk (UC Irvine) Philip Moll (ETH) Hiro Sakai (JAEA) Hiroshi Yasuoka (JAEA)

Filip Ronning Los Alamos National Lab

Outline:

- Heavy Fermion primer
- Superconductivity on the border of antiferromagnetism
- Non-universality of dopants
- Reduced Dimensionality
 - Localized \rightarrow delocalized crossover
- Competing Electronic States (exposed with magnetic fields)

Heavy Fermions

m* >> **m**_e

How do individual *f* electrons condense into the Kondo liquid to form the heavy fermion state?

Superconductivity in Heavy Fermions

Many varieties of heavy fermion SC's exist:

SC in proximity to Antiferromagnetism

- Phase diagram generic for Cerium heavy fermion SC's
- Parent compound is an AF metal
- T_c/T_F ~ 0.1
- SC is unconventional (power laws/sign changing OP)
- Tunable with doping or pressure.
- Spin Fluctuations...

Potential strength of spin fluctuations: CeCoIn₅

Change in magnetic energy is 100 x SC condensation energy (from heat capacity)

Cd vs Sn doping in CeColn₅ A Tale of Two Dopants

Doping CeColn₅ : Analog of CeRhln₅ (P)?

hole and electron doping is both electronic tuning and pair breaking.

L. Pham, *et al*. PRL '06 E.D. Bauer, *et al*. PRB '06

Globally, doping looks like a chemical pressure effect, but details differ...

NMR study

Cd = "AFM droplets"

Sn ≈ homogeneous

H. Sakai, et al. unpublished

Zn doped cuprates

YBa₂(Cu_{0.99}Zn_{0.01})₃O_{6.7} (left) and YBa₂Cu₃O_{6.63} (right ordinate). Inset: neutron scattering of YBa₂(Cu_{0.99}Zn_{0.02})₃O_{6.7} - Julien et al., Phys. Rev. Lett. 84, 3422 (2000)

> Zn induces staggered moment at surrounding Cu sites: a competing order is revealed by Zn impurity

Los Alamos
NATIONAL LABORATORY

Caution: Intrinsic disorder is already present from hole doping through oxgen vacancy

Avoided criticality in Cd-doped CeColn₅

* Cd is a weak pair breaker

Shifted criticality in Sn-doped CeRhIn₅

а

Sn acts as positive pressure plus pair breaking

S. Seo, T. Park et al unpublished

Robustness to impurity scattering: CeCoIn₅

Little doubt that this system is d_{x2-y2} . Robustness likely due to strong coupling and extreme multiband.

Are inhomogeneous dopants less pair-breaking than homogeneous ones?

Are filled shells less pair breaking (ie. Cd and Zn)?

Inhomogeneity can obscure signatures of criticality!

Dimensionality

(Localization → delocalization crossover)

Criticality in Spin and Charge degrees of freedom

Dimensionality?

Criticality in Spin and Charge degrees of freedom

Los Alamos

Which instability is more important for SC?

H. Sakai, et al. PRL (2014)

Why would CePt₂In₇ have less "G" than CeRhIn₅?

Spin Waves in CeRhIn₅

$$\mathcal{H} = \sum_{ij} \left[J_{ij} \left(n_i^x n_j^x + n_i^y n_j^y \right) + \Delta J_{ij} n_i^z n_j^z \right]$$

4

The existence of a spin gap,

 Δ_{sg} = 0.25 meV, is unexpected for the ordered Q = ($\frac{1}{2}$, $\frac{1}{2}$, 0.297) moments.

Perhaps CeRhIn₅ is a more frustrated system than CePt₂In₇

P. Das, M. Janoschek, et al. ArXiv: 1408.6585

Competing Phases

A field induced density wave in CeRhIn₅

f-delocalization with field in CeRhIn₅

2 Alternative Phase Diagrams for Pu-based SC

H. Yuan, et al. Science (2003)

 P_{c2}

Lattice density

Magnetic metal

 P_{c1}

A weak coupling perspective

Superconductivity occurs when pairing fluctuations ($\Gamma(q,\omega)$) match the charge susceptibility $X_Q(q,\omega)$. And we assume $\Gamma(q,\omega) \sim X_s(q,\omega)$

$$\Delta(\mathbf{k}) = -\sum_{\mathbf{k}'} \Gamma(\mathbf{k}, \mathbf{k}') \frac{\Delta(\mathbf{k}')}{\sqrt{|\epsilon_{\mathbf{k}'}|^2 + |\Delta(\mathbf{k}')|^2}}$$

- Electronic structure determines energy scales and nesting properties of $X_Q(q,\omega)$: The overall energy scale $T_F \sim T_K$
- The magnetic structure $X_s(q,\omega)$ is determined by the RKKY interaction (indirectly determined by electronic structure);

Does a weak coupling perspective have additional challenges for heavy fermions?

Summary

 Many similarities between superconductivity in heavy fermions, cuprates, and Fe-based superconductors.

New "Matthias' rules" for unconventional SC's:

- Proximity to AF good.
- Have large spin fluctuation energy scale.
- Charge fluctuations with AF fluctuations even better?
 - What is the source of multiple SC instabilities?
- Avoid pair breaking. How?
 - Pairing occurs at ~2 Δ ; inhomogeneity.
- Layered tetragonal structures are good.
- •???

Accelerate design process with machine learning.

