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Glide plane symmetry in iron-based superconductors
•Structure 

Staggered anion positions above 
and below iron plane 
[Tx,H] ≠ 0; [Ty,H] ≠ 0  
(in 1 Fe unit cell) 
But glide plane symmetry 
[PzTx,H] = 0; [PzTy,H] = 0  
with Pz: z → -z requires 
 
 
since

Physics 5, 61 (2012)

FIG. 1: (Top) Lattice structure of the iron-based supercon-
ductors. Note that the atomic positions are symmetric under
a rotation by 90 degrees in the ab plane, followed by a reflec-
tion c æ ≠c. This is the basic operation of the S4 symmetry.
(Bottom) The gauge transformation consists of multiplying by
a minus sign the electronic creation and annihilation opera-
tors on the orange iron sites. The transformation changes the
pairing symmetry from s wave to d wave, as shown. ((Top)
Adapted from F. Wang and D.-H. Lee [9]; (Bottom) Adapted
from J. Hu and N. Hao [2])

form the basis of an S4 “isospin” doublet. As Hu and
Hao demonstrate, the two states in this isospin doublet
mix weakly with each other, leading to a Hamiltonian
composed of two almost-decoupled bands, each of which
contains a single d orbital per iron site. Remarkably, de-
spite the simplicity of this description, the model gives
good quantitative agreement with the low-energy band
structure obtained in ab initio calculations. The model
contains very few free parameters, yet it can accommo-
date the big changes seen in the band structure across
di�erent material classes. For instance, the iron pnic-
tides contain holelike Fermi pockets that are not present
in some of the iron chalcogenides. This change in Fermi
surface topology is accounted for by tuning the value of a
single hopping parameter in the model. These successes
highlight the power of the two-orbital model.

The model’s underlying structure becomes fully trans-
parent after performing a unitary transformation, in
which the electron operators in one out of every two iron
sites are multiplied by a minus sign, as shown by the
orange sites in Fig. 1 (bottom). This gauge transfor-
mation amounts to a convenient change of basis, which
makes the Hamiltonian easier to understand without al-
tering its physical properties. It has two e�ects: First,
it shifts the Fermi surfaces so that they all lie in a com-

mon region of the Brillouin zone. The second e�ect is to
change the symmetry of the hopping, from d wave to s
wave, while simultaneously modifying the superconduct-
ing pairing symmetry, from s wave to d wave. Thus, in
the new gauge, the band structure becomes simple, and
the superconducting pairing and hopping symmetries ob-
tain a similar form as in the cuprate superconductors.
Thus, in this gauge, the question of the pairing symmetry
reduces to the well-studied problem of pairing symmetry
in the cuprates. The reason for its robustness then be-
comes clear: a sign change in the superconducting order
parameter is inevitable for a system with s-wave hopping
and repulsive interactions.

Most significantly, the analysis of Hu and Hao points
to a common mechanism for superconductivity in both
the iron pnictides and iron chalcogenides. Previous work
has emphasized the role of interactions between electron
and hole pockets in giving rise to superconductivity in
the iron pnictides [8]. On the other hand, some of the
iron chalcogenides do not have hole pockets, which has
been used to suggest that an entirely di�erent mechanism
must be responsible for superconductivity in these mate-
rials. However, the current analysis shows that after the
gauge transformation, the microscopic structure in both
sets of materials becomes remarkably similar, pointing
to a universal pairing mechanism. This helps explain the
observation that the maximal measured T

c

, of order 50 K,
is comparable for systems with and without hole pockets.

Further checks of the two-band model are needed to
help establish it as a standard model to study the iron-
based superconductors. As with other methods based on
a finite number of orbitals, it is likely that the model will
not fully comply with all the orbital symmetries at the
Fermi surface. However, the simplicity and quantitative
success of the current analysis in reproducing the low-
energy band structure in the iron-based superconductors
makes it a promising starting point for further analyses.
The work introduces weakly interacting S4 isospin dou-
blets as the basic building blocks from which to build
microscopic models. With the addition of correlation ef-
fects, this opens up many exciting possibilities for the
improved future understanding of the iron-based super-
conductors.
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Fe-A Fe-BPz |xy� = +1|xy�Pz |xz� = �1|xz�;

�

i ,j

(�1)ix+iy
�
txz,xy
i ,j c†

xz ,icxy ,j + tyz ,xy
i ,j c†

yz,icxy ,j + h.c .
�

Lee & Wen 2008, Lv & Philipps 2011, Lin et al. 2014
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•In momentum space (1-Fe BZ) 
Mixing between k and k+Q with Q=(π,π) 
 

Mixing only for inter-orbital terms between orbitals with even parity and 
orbitals with odd parity in Pz  

Translational symmetry breaking in 1 Fe lattice naturally leads to  
η-pairing between orbitals with even and odd parity 

Why in the iron-based superconductors?

�

k

�
txz,xy (k)c†

xz(k + Q)cxy (k) + tyz,xy (k)c†
yz(k + Q)cxy (k) + h.c .

�

�cxz,�(k)cxy ,�(�k + Q)� �= 0
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What is η-pairing?
!

Pairing state with finite center of mass 
momentum, usually  
Q = (π,π)   (C.N. Yang ’89,  
                                R. Scalettar et al., ‘91) 
Generally possible if ε(k) and ε(Q-k) 
nearly degenerate (half-filled Hubbard 
model, pairing in SDW phase, …) 
Q=0 pairing generally favored 
(Bickers ‘92) 

Logarithmic divergence (half-filling) 
!

k↑

-k↓

-k+Q↓

�ck�c�k+Q��

�0
pp(Q = 0) � ln2(�c/T )

�0
pp(Q = (�, �)) � ln(�c/T )

Related to  
Pair density wave 
Amperean pairing
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•Consider singlet state 
!

!

Odd parity arises from Q=π center of mass momentum 
2-fold degeneracy  
!

!

Odd parity singlet pairing state breaks U(1) gauge symmetry, lattice 
translational symmetry, parity and time reversal symmetry

Why odd parity singlet and time-reversal symmetry breaking?

�(kx , ky ) � sin kx + i sin ky

�⌘
x

=
X

r

(�1)r (c
r"cr+x# � c

r#cr+x")

=
X

k

(2i sin k
x

)c
k"c�k+Q#

(Scalettar et al., ‘91)
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•Consider singlet state 
!

!

Odd parity arises from Q=π center of mass momentum 
2-fold degeneracy  
!

!

Odd parity singlet pairing state breaks U(1) gauge symmetry, lattice 
translational symmetry, parity and time reversal symmetry

Why odd parity singlet and time-reversal symmetry breaking?

�(kx , ky ) � sin kx + i sin ky

�⌘
x

=
X

r

(�1)r (c
r"cr+x# � c

r#cr+x")

=
X

k

(2i sin k
x

)c
k"c�k+Q#

=

X

k

0

(2i cos k
x

)c
k+Q/2"c�k+Q/2#

Note: Center of mass frame Q/2

(Scalettar et al., ‘91)
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Questions raised in recent literature

!

Is there η-pairing in the Fe-based superconductors? 
Odd parity singlet pairing? 
Time reversal symmetry breaking? 
1-Fe zone (5-orbital) vs. 2-Fe zone (10-orbital) calculations?

�cxz,�(k)cxy ,�(�k + Q)� �= 0

J.-P. Hu & N. Hao, PRX ’12 
M. Khodas & A.V. Chubukov, PRL ‘12 
J.-P. Hu, PRX ’13 
M. Casula & S. Sorella, PRB ‘13 
N. Hao & J.-P. Hu, PRB ’14 
C.-H. Lin, C.-P. Chou, W.-G. Yin, W. Ku, arXiv:1403.3687 
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Pseudo-crystal momentum

•1-Fe lattice has glide plane symmetry (in 2D) 
[PzTx,H]= [PzTy,H]=0 
Use eigenvalues of PzTx and PzTy to label eigenstates 
Use  
 
 
 

                 for odd-parity orbitals and                            for even-parity orbitals 
Hamiltonian is diagonal in  

c̃e(k̃) =
�

i

e�i(k+Q)rce(r)

c̃o(k̃) =
�

i

e�ikrco(r)

for even-parity orbitals

for odd-parity orbitals

k = k̃ k + Q = k̃

k̃

P.A. Lee & X.-G. Wen, PRB ’08 
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5-Orbital model in pseudo crystal momentum space

H = H0 + U
�

i ,�

ni��ni�� + U �
�

i ,��<�

ni�ni�� + J
�

i ,��<�,���

c†
i��c†

i����ci���ci��� + J �
�

i ,�� �=�

c†
il�c

†
i��ci���ci���

5-orbital tight-binding model from 
fitting LDA bandstructure with 10-
band model and gauge 
transformation on B-sublattice

Intra- and inter-orbital 
Coulomb interactions

Hund’s rule coupling

Pair-hopping term

H = H0 + U
�

i ,�

ni��ni�� + U �
�

i ,��<�

ni�ni�� + J
�

i ,��<�,���

c†
i��c†

i����ci���ci��� + J �
�

i ,�� �=�

c†
il�c

†
i��ci���ci���

H = H0 + U
�

i ,�

ni��ni�� + U �
�

i ,��<�

ni�ni�� + J
�

i ,��<�,���

c†
i��c†

i����ci���ci��� + J �
�

i ,�� �=�

c†
il�c

†
i��ci���ci���

H = H0 + U
�

i ,�

ni��ni�� + U �
�

i ,��<�

ni�ni�� + J
�

i ,��<�,���

c†
i��c†

i����ci���ci��� + J �
�

i ,�� �=�

c†
il�c

†
i��ci���ci���

•Microscopic Hamiltonian —   
Multi-orbital Hubbard-Hund model7

Γ ΓX M

–2

–1

0

1

2

3

0
k /x a

0
k y

a
α α1 2 β1

β 2

dxz

dyz

dxz–dyz

dx2–y2

dxy

d3 z2–r2

(a)

(b)

/

Figure 5. (a) The backfolded band structure for the five-band model with 0,
X and M denoting the symmetry points in the real BZ corresponding to the two
Fe unit cell. The main orbital contributions are shown by the following colors:
dxz (red), dyz (green), dxy (yellow), dx2�y2 (blue), d3z2�r2 (magenta) and a strongly
hybridized dxz�dyz band (brown). The gray lines show the correct DFT band
structure calculated by Cao et al. (b) The FS sheets of the five-band model for
the undoped compound (x = 0).

The Hamiltonian for the five band model takes the following form:

H0 =
X
k�

X
mn

(⇠mn(k) + ✏m�mn) d†
m� (k)dn� (k). (6)

Here d†
m,� (k) creates a particle with momentum k and spin � in the orbital m. The kinetic

energy terms ⇠mn(k) together with the parameters for a five-band tight-binding fit of the DFT
band structure by Cao et al are listed in the appendix. A diagonalization of this Hamiltonian
yields the eigenenergies and the matrix elements analogously to the two-band case discussed
above.

In figure 5(a), we have plotted the resulting band structure in the backfolded ‘small’ BZ
whereas the FS sheets for zero doping are shown in figure 5(b). The colors correspond to the
dominant orbital weight of each band in momentum space. The gray lines represent the DFT

New Journal of Physics 11 (2009) 025016 (http://www.njp.org/)
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Transformation from pseudo-crystal to  
physical crystal momentum space

7
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FIG. 2. Quantities in physical momentum space. We have labeled the physical momentum space as k = (kx, ky) and pseudo-
momentum space as k̃ = (k̃x, k̃y). The η-pairing part is shown in panel (f) and (g).
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see also: Lv & Philipps 2011, Lin et al. 2014 
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RPA pairing interaction
Berk, Schrieffer 1966
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RPA pairing

•Pairing strength from eigenvalue equation

2

since pairs like hc̃
xy,",

˜kc̃

xz,#,�˜ki in k̃-space transform to
hc

xy,",kc

xz,#,�k+Qi in k-space as indicated in Fig. 1c.
Here we study the parity properties of these terms, the
way in which they combine with normal (zero center of
mass) pairing states, and their implications for the gap
structure in the physical crystal momentum k-space.

To this end, we use the 2D 5-orbital tight-binding
model for LaOFeAs introduced in Graser et al. [3]. This
model was obtained by fitting an LDA bandstructure cal-
culation of this compound with a 2-Fe 10-orbital model
and performing a ⇡-phase shift of the even orbitals (xz

and yz) on the B-sublattice, which in momentum space
corresponds to a transformation to pseudo-crystal k̃ mo-
mentum. The Fermi surface of this model in the 1-Fe
pseudo-crystal momentum k̃ space is shown in Fig. 1a
with the dominant orbital weights indicated by the color-
ing. The corresponding Fermi surface in physical crystal
momentum space k is plotted in Fig. 1c. According to
Eq. (1), it is obtained by shifting the even orbital contri-
bution by Q. The size of the points indicates the sum of
the orbital weights.

This model is then supplemented with the usual Hub-
bard (intra-orbital U and inter-orbital U

0) and Hund
(Hund’s rule coupling J and pair-hopping J

0) inter-
actions. Here we use interaction parameters U =?,
U

0 =?, J =?, J

0 =?. We then use a random-phase
approximation (RPA) to calculate the pairing interac-
tion �

`1`2`3`4(k̃, k̃0) which represents the particle-particle
scattering of electrons in orbitals `

1

, `

4

with momenta
(k̃,�k̃) to electrons in orbitals `

2

, `

3

and momenta
(k̃0

,�k̃0). The pairing strengths �

↵

for various pairing
channels ↵ are then given as the eigenvalues of

�
X

j

I

Cj

dk̃0
k

2⇡v

F

(k̃0
k)

�
ij

(k̃, k̃0)g
↵

(k̃0) = �

↵

(k̃)g
↵

(k̃) . (2)

Here, �
ij

(k̃, k̃0) represents the irreducible vertex for scat-
tering of a pair of electrons (k̃ ",�k̃ #) on Fermi pocket
i to (k̃0 ",�k̃0 #) on pocket j. It is obtained from
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We have also calculated the leading gap function and
eigenvalue in the original 10-orbital model, from which
the 5-orbital model was derived through a gauge transfor-
mation as discussed above. We obtain the same leading
eigenvalue � = 0.76 in the 10-orbital as in the 5-orbital
model and Fig. 1d shows that the gap function obtained
in the 10-orbital model is identical to what is obtained
in the 5-orbital model. From this it is clear that cal-
culations performed in the 1-Fe 5-orbital pseudo-crystal
momentum space indeed contain all the information of
the more complex 10-orbital calculation performed in the
2-Fe crystal momentum space.

As discussed above, this includes the information
about ⌘-pairing terms in the physical 1-Fe momentum k-
space. In order to analyze the structure of these terms,
we transform the gap function �̃
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(k̃) we obtained in
pseudo-crystal momentum space to 1-Fe physical crys-
tal momentum space k. To this end, we first transform
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⇥ã

`2
µ

(k̃0)ã`3
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model and Fig. 1d shows that the gap function obtained
in the 10-orbital model is identical to what is obtained
in the 5-orbital model. From this it is clear that cal-
culations performed in the 1-Fe 5-orbital pseudo-crystal
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the more complex 10-orbital calculation performed in the
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mentum. The Fermi surface of this model in the 1-Fe
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with the dominant orbital weights indicated by the color-
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Eq. (1), it is obtained by shifting the even orbital contri-
bution by Q. The size of the points indicates the sum of
the orbital weights.
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We have also calculated the leading gap function and
eigenvalue in the original 10-orbital model, from which
the 5-orbital model was derived through a gauge transfor-
mation as discussed above. We obtain the same leading
eigenvalue � = 0.76 in the 10-orbital as in the 5-orbital
model and Fig. 1d shows that the gap function obtained
in the 10-orbital model is identical to what is obtained
in the 5-orbital model. From this it is clear that cal-
culations performed in the 1-Fe 5-orbital pseudo-crystal
momentum space indeed contain all the information of
the more complex 10-orbital calculation performed in the
2-Fe crystal momentum space.

As discussed above, this includes the information
about ⌘-pairing terms in the physical 1-Fe momentum k-
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Re ãxy (k̃)× ã∗yz(k̃)
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Results from 10-orbital model
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xy,",kc

xz,#,�k+Qi in k-space as indicated in Fig. 1c.
Here we study the parity properties of these terms, the
way in which they combine with normal (zero center of
mass) pairing states, and their implications for the gap
structure in the physical crystal momentum k-space.

To this end, we use the 2D 5-orbital tight-binding
model for LaOFeAs introduced in Graser et al. [3]. This
model was obtained by fitting an LDA bandstructure cal-
culation of this compound with a 2-Fe 10-orbital model
and performing a ⇡-phase shift of the even orbitals (xz

and yz) on the B-sublattice, which in momentum space
corresponds to a transformation to pseudo-crystal k̃ mo-
mentum. The Fermi surface of this model in the 1-Fe
pseudo-crystal momentum k̃ space is shown in Fig. 1a
with the dominant orbital weights indicated by the color-
ing. The corresponding Fermi surface in physical crystal
momentum space k is plotted in Fig. 1c. According to
Eq. (1), it is obtained by shifting the even orbital contri-
bution by Q. The size of the points indicates the sum of
the orbital weights.
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, `

4

with momenta
(k̃,�k̃) to electrons in orbitals `

2

, `

3

and momenta
(k̃0

,�k̃0). The pairing strengths �

↵

for various pairing
channels ↵ are then given as the eigenvalues of
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ij

(k̃, k̃0)g
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(k̃0) = �
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(k̃)g
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(k̃) . (2)

Here, �
ij

(k̃, k̃0) represents the irreducible vertex for scat-
tering of a pair of electrons (k̃ ",�k̃ #) on Fermi pocket
i to (k̃0 ",�k̃0 #) on pocket j. It is obtained from
�

`1`2`3`4(k̃, k̃0) as

�
ij

(k̃, k̃0) =
X

`1,`2,`3,`4
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where the matrix-elements ã

`

⌫

(k̃) = h ˜̀k|⌫̃ki transform
from the orbital basis to the band representation in
pseudo-crystal momentum space. The momenta k̃ and
k̃0 in Eq. (3)) are restricted to the Fermi surface and
v

F

(k̃0
k) is the Fermi velocity. The eigenfunction g

↵

(k̃)
for the largest eigenvalue determines the leading pairing
instability and provides an approximate form for the su-
perconducting gap �̃(k̃) ⇠ g

↵

(k̃). The structure of the
leading gap function g

↵

(k̃) on the Fermi surface is shown
Fig. 1b.
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FIG. 1. (Color online) (a) Fermi surfaces and (b) the lead-
ing gap function for the five-orbital model in the zone of the
pseudo-crystal momentum k̃. The Fermi surface is colored
to show the dominant orbital weight (d

xz

red, d
yz

green, d
xy

blue). (c) The unfolded Fermi surface in the physical crystal
momentum space k. The size of the dots is proportional to
the sum of the orbital weights of the spectral function and
the color shows the dominant orbital weight. The red line
denotes the boundary of the 2-Fe per unit cell Brillouin zone.
An ”⌘” (k ", �k+Q #) pair is shown. (d) Comparison of the
angle dependence of the leading gap function calculated from
the 5-orbital model (orange line) and the 10-orbital model
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two crossed electron pockets in the 10-orbital model at the
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and �0
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at the Y-point. The
gaps along the �0

1,2

pockets are not plotted since �0
1
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2

and
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2
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1

by symmetry.

We have also calculated the leading gap function and
eigenvalue in the original 10-orbital model, from which
the 5-orbital model was derived through a gauge transfor-
mation as discussed above. We obtain the same leading
eigenvalue � = 0.76 in the 10-orbital as in the 5-orbital
model and Fig. 1d shows that the gap function obtained
in the 10-orbital model is identical to what is obtained
in the 5-orbital model. From this it is clear that cal-
culations performed in the 1-Fe 5-orbital pseudo-crystal
momentum space indeed contain all the information of
the more complex 10-orbital calculation performed in the
2-Fe crystal momentum space.

As discussed above, this includes the information
about ⌘-pairing terms in the physical 1-Fe momentum k-
space. In order to analyze the structure of these terms,
we transform the gap function �̃

⌫

(k̃) we obtained in
pseudo-crystal momentum space to 1-Fe physical crys-
tal momentum space k. To this end, we first transform
�̃

⌫

(k̃) from band to orbital space and then to k-space.
This gives normal pairing terms with zero center of mass
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xz(k̃)

α1 α2 γ β1 β2
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Transformation to orbital space
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FIG. 2. (Color online) Gap functions �
`1,`2(k) in the or-

bital basis plotted on the FS’s in the physical momentum BZ.
When `

1

and `
2

have the same z-reflection symmetry one has
normal (k,�k) pairing and the gap function �N

n,m

(k) is real
and has even parity. When `

1

and `
2

have di↵erent z-reflection
symmetry, one has (k,�k + Q) ⌘ pairing and �⌘

`1,`2
(k) is

purely imaginary and has odd parity.

momentum,
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and ⌘-pairing terms with center of mass momentum Q,
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`2
⌫,�k�̃

⌫

(k), `

1

odd, `

2

even

ã
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0, otherwise .

Here and in the following we replaced k̃ by k for odd and
k+Q for even orbitals ` as noted in Eq. (1). For a given
Fermi momentum k, ⌫ labels the band that crosses the
Fermi energy at k.

Fig. 2 shows the gap functions �
`1,`2(k) for four di↵er-

ent combinations of orbitals `

1

and `

2

. From panels (a)
and (b) one sees that when `

1

and `

2

have the same z-
reflection symmetry, one has normal (k,�k) pairing and
the gap function �N

`1,`2
(k) is real and has even parity,

i.e. �N

`1,`2
(�k) = �N

`1,`2
(k). In contrast, when `

1

and `

2

have di↵erent z-reflection symmetry, one has (k,�k+Q)
⌘ pairing. In this case �⌘

`1,`2
(k) is purely imaginary and

has odd parity, i.e. �⌘

`1,`2
(�k) = ��⌘

`1,`2
(k). Here we

stress that the odd-parity and imaginary nature of these
terms arises entirely from the product of matrix-elements
ã

`1
⌫,kã

`2
⌫,�k and therefore is merely a reflection of the glide

plane symmetry of the Fe-pnictide/chalcogenide plane. It
does not reflect any exotic behavior of the pairing interac-
tion. Both normal and ⌘-pairing terms, however, coexist
in orbital space and contribute to the pairing condensate.

This raises the question of how these two terms com-
bine given their opposite parity. To study this, we trans-
form the gap back to band representation in physical
crystal momentum k-space, and obtain for the normal
pairing

�N

⌫

(k) = �N

odd

(k) + �N

even

(k) (6)

with
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(k) =
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Similarly, for the ⌘-pairing terms one obtains
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`

⇤
2

⌫,�k�⌘

`1`2
(k)

�⌘

even�odd

(k) =
X

`1 even,`2 odd

ã
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(9)

Here we have used the fact that the matrix-elements a

`

⌫,k
which provide the transformation from the orbital to the
band representation in physical crystal momentum k-
space are given by the matrix-elements in pseudo-crystal
momentum space, ã

`

⌫,k for ` denoting an odd orbital, and

ã

`

⌫,k�Q for ` denoting an even orbital.
Then, using Eqs. (4) and (5) one can show that the

gap function �̃
⌫

(k) calculated in the 5-orbital model in
the pseudo-crystal momentum representation splits into
normal and eta-pairing terms in the physical crystal mo-
mentum space, i.e.

�̃
⌫

(k) = �N

odd

(k) + �N
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(k + Q)

+ �⌘
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(k) + �⌘

even�odd

(k + Q) (10)

Fig. 3 shows a graphical representation of this rela-
tion by plotting a 3D representation of �̃

⌫

(k) in the top
panel, its normal contribution �N

odd

(k)+�N

even

(k+Q) in
the middle panel and its ⌘ contribution �⌘

odd�even

(k) +
�⌘

even�odd

(k + Q) in the bottom panel. One sees that
after the transformation to band representation, the ⌘-
pairing term has even pairity (and is real), just like
the normal pairing contribution. This results from the
odd-parity of the imaginary product of matrix-elements

ã

`

⇤
1

⌫,kã

`

⇤
2

⌫,�k combining with the odd-parity and imaginary
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(k) for odd-even combinations of `
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and `

2

. Thus,
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FIG. 2. (Color online) Gap functions �
`1,`2(k) in the or-

bital basis plotted on the FS’s in the physical momentum BZ.
When `

1

and `
2

have the same z-reflection symmetry one has
normal (k,�k) pairing and the gap function �N

n,m

(k) is real
and has even parity. When `

1

and `
2

have di↵erent z-reflection
symmetry, one has (k,�k + Q) ⌘ pairing and �⌘

`1,`2
(k) is

purely imaginary and has odd parity.
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ã

`1
⌫,k�Qã
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Here and in the following we replaced k̃ by k for odd and
k+Q for even orbitals ` as noted in Eq. (1). For a given
Fermi momentum k, ⌫ labels the band that crosses the
Fermi energy at k.

Fig. 2 shows the gap functions �
`1,`2(k) for four di↵er-

ent combinations of orbitals `

1

and `

2

. From panels (a)
and (b) one sees that when `

1

and `

2

have the same z-
reflection symmetry, one has normal (k,�k) pairing and
the gap function �N

`1,`2
(k) is real and has even parity,

i.e. �N

`1,`2
(�k) = �N

`1,`2
(k). In contrast, when `

1

and `

2

have di↵erent z-reflection symmetry, one has (k,�k+Q)
⌘ pairing. In this case �⌘

`1,`2
(k) is purely imaginary and

has odd parity, i.e. �⌘

`1,`2
(�k) = ��⌘

`1,`2
(k). Here we

stress that the odd-parity and imaginary nature of these
terms arises entirely from the product of matrix-elements
ã

`1
⌫,kã

`2
⌫,�k and therefore is merely a reflection of the glide

plane symmetry of the Fe-pnictide/chalcogenide plane. It
does not reflect any exotic behavior of the pairing interac-
tion. Both normal and ⌘-pairing terms, however, coexist
in orbital space and contribute to the pairing condensate.

This raises the question of how these two terms com-
bine given their opposite parity. To study this, we trans-
form the gap back to band representation in physical
crystal momentum k-space, and obtain for the normal
pairing
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ã

`

⇤
1

⌫,k�Qã
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Similarly, for the ⌘-pairing terms one obtains
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Here we have used the fact that the matrix-elements a

`

⌫,k
which provide the transformation from the orbital to the
band representation in physical crystal momentum k-
space are given by the matrix-elements in pseudo-crystal
momentum space, ã

`

⌫,k for ` denoting an odd orbital, and
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`

⌫,k�Q for ` denoting an even orbital.
Then, using Eqs. (4) and (5) one can show that the

gap function �̃
⌫

(k) calculated in the 5-orbital model in
the pseudo-crystal momentum representation splits into
normal and eta-pairing terms in the physical crystal mo-
mentum space, i.e.
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Fig. 3 shows a graphical representation of this rela-
tion by plotting a 3D representation of �̃

⌫

(k) in the top
panel, its normal contribution �N

odd

(k)+�N

even

(k+Q) in
the middle panel and its ⌘ contribution �⌘

odd�even

(k) +
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even�odd

(k + Q) in the bottom panel. One sees that
after the transformation to band representation, the ⌘-
pairing term has even pairity (and is real), just like
the normal pairing contribution. This results from the
odd-parity of the imaginary product of matrix-elements
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Gap functions in orbital basis/physical momentum
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FIG. 2. (Color online) Gap functions �
`1,`2(k) in the or-

bital basis plotted on the FS’s in the physical momentum BZ.
When `

1

and `
2

have the same z-reflection symmetry one has
normal (k,�k) pairing and the gap function �N

n,m

(k) is real
and has even parity. When `

1

and `
2

have di↵erent z-reflection
symmetry, one has (k,�k + Q) ⌘ pairing and �⌘

`1,`2
(k) is

purely imaginary and has odd parity.
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Here and in the following we replaced k̃ by k for odd and
k+Q for even orbitals ` as noted in Eq. (1). For a given
Fermi momentum k, ⌫ labels the band that crosses the
Fermi energy at k.

Fig. 2 shows the gap functions �
`1,`2(k) for four di↵er-

ent combinations of orbitals `

1

and `

2

. From panels (a)
and (b) one sees that when `

1

and `

2

have the same z-
reflection symmetry, one has normal (k,�k) pairing and
the gap function �N

`1,`2
(k) is real and has even parity,

i.e. �N

`1,`2
(�k) = �N

`1,`2
(k). In contrast, when `

1

and `

2

have di↵erent z-reflection symmetry, one has (k,�k+Q)
⌘ pairing. In this case �⌘

`1,`2
(k) is purely imaginary and

has odd parity, i.e. �⌘

`1,`2
(�k) = ��⌘

`1,`2
(k). Here we

stress that the odd-parity and imaginary nature of these
terms arises entirely from the product of matrix-elements
ã

`1
⌫,kã

`2
⌫,�k and therefore is merely a reflection of the glide

plane symmetry of the Fe-pnictide/chalcogenide plane. It
does not reflect any exotic behavior of the pairing interac-
tion. Both normal and ⌘-pairing terms, however, coexist
in orbital space and contribute to the pairing condensate.

This raises the question of how these two terms com-
bine given their opposite parity. To study this, we trans-
form the gap back to band representation in physical
crystal momentum k-space, and obtain for the normal
pairing
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with
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Similarly, for the ⌘-pairing terms one obtains
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Here we have used the fact that the matrix-elements a

`

⌫,k
which provide the transformation from the orbital to the
band representation in physical crystal momentum k-
space are given by the matrix-elements in pseudo-crystal
momentum space, ã

`

⌫,k for ` denoting an odd orbital, and

ã

`

⌫,k�Q for ` denoting an even orbital.
Then, using Eqs. (4) and (5) one can show that the

gap function �̃
⌫

(k) calculated in the 5-orbital model in
the pseudo-crystal momentum representation splits into
normal and eta-pairing terms in the physical crystal mo-
mentum space, i.e.
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Fig. 3 shows a graphical representation of this rela-
tion by plotting a 3D representation of �̃

⌫

(k) in the top
panel, its normal contribution �N

odd

(k)+�N

even

(k+Q) in
the middle panel and its ⌘ contribution �⌘

odd�even

(k) +
�⌘

even�odd

(k + Q) in the bottom panel. One sees that
after the transformation to band representation, the ⌘-
pairing term has even pairity (and is real), just like
the normal pairing contribution. This results from the
odd-parity of the imaginary product of matrix-elements
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2

⌫,�k combining with the odd-parity and imaginary
�⌘

`1,`2
(k) for odd-even combinations of `

1

and `

2

. Thus,
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No time reversal symmetry breaking!

•Consider singlet pair 

•Time reversal symmetry requires that 

normal pairs 

η pairs

�c†
�1�(k)c†

�2�(�k) � c†
�1�(k)c†

�2�(�k)� � ��1�2(k)

��1�2(k) = ��
�1�2

(�k)

��1�2(k) = ��1�2(�k)

��1�2(k) = ���1�2(�k)



•odd-even 
  
odd parity 

•even-even 
  
even parity 

Pair amplitudes in 2 Fe zone on A- and B-sublattices
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Normal and η-gaps in band space
•Transform back to band space 

normal pairing 

!

!

!

η-pairing
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FIG. 2. (Color online) Gap functions �
`1,`2(k) in the or-

bital basis plotted on the FS’s in the physical momentum BZ.
When `

1

and `
2

have the same z-reflection symmetry one has
normal (k,�k) pairing and the gap function �N

n,m

(k) is real
and has even parity. When `

1

and `
2

have di↵erent z-reflection
symmetry, one has (k,�k + Q) ⌘ pairing and �⌘

`1,`2
(k) is

purely imaginary and has odd parity.
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Here and in the following we replaced k̃ by k for odd and
k+Q for even orbitals ` as noted in Eq. (1). For a given
Fermi momentum k, ⌫ labels the band that crosses the
Fermi energy at k.

Fig. 2 shows the gap functions �
`1,`2(k) for four di↵er-

ent combinations of orbitals `

1

and `

2

. From panels (a)
and (b) one sees that when `

1

and `

2

have the same z-
reflection symmetry, one has normal (k,�k) pairing and
the gap function �N

`1,`2
(k) is real and has even parity,

i.e. �N

`1,`2
(�k) = �N

`1,`2
(k). In contrast, when `

1

and `

2

have di↵erent z-reflection symmetry, one has (k,�k+Q)
⌘ pairing. In this case �⌘

`1,`2
(k) is purely imaginary and

has odd parity, i.e. �⌘

`1,`2
(�k) = ��⌘

`1,`2
(k). Here we

stress that the odd-parity and imaginary nature of these
terms arises entirely from the product of matrix-elements
ã

`1
⌫,kã

`2
⌫,�k and therefore is merely a reflection of the glide

plane symmetry of the Fe-pnictide/chalcogenide plane. It
does not reflect any exotic behavior of the pairing interac-
tion. Both normal and ⌘-pairing terms, however, coexist
in orbital space and contribute to the pairing condensate.

This raises the question of how these two terms com-
bine given their opposite parity. To study this, we trans-
form the gap back to band representation in physical
crystal momentum k-space, and obtain for the normal
pairing
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Similarly, for the ⌘-pairing terms one obtains
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Here we have used the fact that the matrix-elements a

`

⌫,k
which provide the transformation from the orbital to the
band representation in physical crystal momentum k-
space are given by the matrix-elements in pseudo-crystal
momentum space, ã

`

⌫,k for ` denoting an odd orbital, and

ã

`

⌫,k�Q for ` denoting an even orbital.
Then, using Eqs. (4) and (5) one can show that the

gap function �̃
⌫

(k) calculated in the 5-orbital model in
the pseudo-crystal momentum representation splits into
normal and eta-pairing terms in the physical crystal mo-
mentum space, i.e.
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Fig. 3 shows a graphical representation of this rela-
tion by plotting a 3D representation of �̃
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(k) in the top
panel, its normal contribution �N

odd

(k)+�N

even

(k+Q) in
the middle panel and its ⌘ contribution �⌘

odd�even

(k) +
�⌘

even�odd

(k + Q) in the bottom panel. One sees that
after the transformation to band representation, the ⌘-
pairing term has even pairity (and is real), just like
the normal pairing contribution. This results from the
odd-parity of the imaginary product of matrix-elements
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and `
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FIG. 2. (Color online) Gap functions �
`1,`2(k) in the or-

bital basis plotted on the FS’s in the physical momentum BZ.
When `

1

and `
2

have the same z-reflection symmetry one has
normal (k,�k) pairing and the gap function �N

n,m

(k) is real
and has even parity. When `

1

and `
2

have di↵erent z-reflection
symmetry, one has (k,�k + Q) ⌘ pairing and �⌘

`1,`2
(k) is

purely imaginary and has odd parity.
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`2
⌫,�k+Q�̃

⌫

(k�Q), `

1

, `

2

even

0, otherwise

and ⌘-pairing terms with center of mass momentum Q,

hc
`1",kc

`2#,�k+Q � c

`1#,kc

`2",�k+Qi / �⌘

`1`2
(k) = (5)

=

8
><

>:

ã

`1
⌫,kã
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Here and in the following we replaced k̃ by k for odd and
k+Q for even orbitals ` as noted in Eq. (1). For a given
Fermi momentum k, ⌫ labels the band that crosses the
Fermi energy at k.

Fig. 2 shows the gap functions �
`1,`2(k) for four di↵er-

ent combinations of orbitals `

1

and `

2

. From panels (a)
and (b) one sees that when `

1

and `

2

have the same z-
reflection symmetry, one has normal (k,�k) pairing and
the gap function �N

`1,`2
(k) is real and has even parity,

i.e. �N

`1,`2
(�k) = �N

`1,`2
(k). In contrast, when `

1

and `

2

have di↵erent z-reflection symmetry, one has (k,�k+Q)
⌘ pairing. In this case �⌘

`1,`2
(k) is purely imaginary and

has odd parity, i.e. �⌘

`1,`2
(�k) = ��⌘

`1,`2
(k). Here we

stress that the odd-parity and imaginary nature of these
terms arises entirely from the product of matrix-elements
ã

`1
⌫,kã

`2
⌫,�k and therefore is merely a reflection of the glide

plane symmetry of the Fe-pnictide/chalcogenide plane. It
does not reflect any exotic behavior of the pairing interac-
tion. Both normal and ⌘-pairing terms, however, coexist
in orbital space and contribute to the pairing condensate.

This raises the question of how these two terms com-
bine given their opposite parity. To study this, we trans-
form the gap back to band representation in physical
crystal momentum k-space, and obtain for the normal
pairing

�N

⌫

(k) = �N

odd

(k) + �N

even

(k) (6)

with

�N

odd

(k) =
X

`1,`2 odd

ã
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`

⇤
2

⌫,�k�⌘

`1`2
(k)

�⌘

even�odd

(k) =
X

`1 even,`2 odd

ã
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Here we have used the fact that the matrix-elements a

`

⌫,k
which provide the transformation from the orbital to the
band representation in physical crystal momentum k-
space are given by the matrix-elements in pseudo-crystal
momentum space, ã

`

⌫,k for ` denoting an odd orbital, and

ã

`

⌫,k�Q for ` denoting an even orbital.
Then, using Eqs. (4) and (5) one can show that the

gap function �̃
⌫

(k) calculated in the 5-orbital model in
the pseudo-crystal momentum representation splits into
normal and eta-pairing terms in the physical crystal mo-
mentum space, i.e.
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Fig. 3 shows a graphical representation of this rela-
tion by plotting a 3D representation of �̃

⌫

(k) in the top
panel, its normal contribution �N

odd

(k)+�N

even

(k+Q) in
the middle panel and its ⌘ contribution �⌘

odd�even

(k) +
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even�odd

(k + Q) in the bottom panel. One sees that
after the transformation to band representation, the ⌘-
pairing term has even pairity (and is real), just like
the normal pairing contribution. This results from the
odd-parity of the imaginary product of matrix-elements
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1
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FIG. 2. (Color online) Gap functions �
`1,`2(k) in the or-

bital basis plotted on the FS’s in the physical momentum BZ.
When `

1

and `
2

have the same z-reflection symmetry one has
normal (k,�k) pairing and the gap function �N

n,m

(k) is real
and has even parity. When `

1

and `
2

have di↵erent z-reflection
symmetry, one has (k,�k + Q) ⌘ pairing and �⌘

`1,`2
(k) is

purely imaginary and has odd parity.
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ã

`1
⌫,k�Qã
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`

⇤
2

⌫,�k+Q�N

`1`2
(k) . (7)

Similarly, for the ⌘-pairing terms one obtains

�⌘

⌫

(k) = �⌘

odd�even

(k) + �⌘

even�odd

(k) (8)

�⌘

odd�even

(k) =
X

`1 odd,`2 even

ã
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`2
⌫,�k+Q�̃

⌫

(k�Q), `

1

, `

2

even

0, otherwise

and ⌘-pairing terms with center of mass momentum Q,

hc
`1",kc

`2#,�k+Q � c

`1#,kc

`2",�k+Qi / �⌘

`1`2
(k) = (5)

=

8
><

>:

ã
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`

⇤
2

⌫,�k�⌘

`1`2
(k)

�⌘

even�odd

(k) =
X

`1 even,`2 odd

ã
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the basics. I'm not sure if I'll get to it this week and I'm in Santa Barbara next week, so it might 
not be until two weeks from now that I can get to it. 
 
Best regards, 
Thomas 
===================================================================================== 

Douglas Scalapino 
Dear All, 
I agree with Yan that the main points we should make are: (1) the spectral gap in the ARPES 
signal is the gap found in the 5-orbtal pseudo-momentum calculations (and this is the same as 
that obtained in the 10-0orbital 2Fe/uc calculation) although the qp weights are modulated 
when orbitals of different z-reflection symmetry are mixed, (2) eta-pairing is automatically 
included in the standard spin-fluctuation calculation in the 5-orbital k^{tilte} calculation  and (3) 
in spite of the eta pairing  contribution, the superconducting state has even parity and time 
reversal symmetry. 
Inorder to make the first point clear I believe that we need to show a Figure 1 (a,b,c,d) like that 
in Yan's notes of 8/27. Then I think that we need a Fig2 that is like Fig1(d) of the present 
manuscript. 
Then to explain point (2) we need a Fig3a like "Fig1c" of the present manuscript but without the 
(k,-k) and (k+Q,-k+Q) lines and a Fig3b which combines Thomas's figures shown below to 
illustrate "normal" and "eta" pairing. 
 
This new Fig 3 will look like something as below. It  doesn’t look very nice aesthetically.  Or we 
fit them in one row? 
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FIG. 3. (Color online) (a) The leading gap function
�̃(k̃) in the band representation calculated in the 5-orbital
model in pseudo-crystal momentum space (red=positive,
blue=negative). When transformed to physical crystal mo-
mentum space k, the gap splits into normal even-even and
odd-odd contributions �N

odd

(k)+�N

even

(k+Q) plotted in (b)
and even-odd and odd-even ⌘ contributions �⌘

odd�even

(k) +
�⌘

even�odd

(k + Q) shown in (c). In the band representation,
all the contributions have even parity.

as usual, an frequency gap in the band basis has even
parity for a singlet pair.

Finally, we calculate the spectral function

A(k, !) =
X

`,⌫

|h`k|⌫̃ki|2Ã
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(k̃, !)

as measured in ARPES experiments in the proper 1-Fe
crystal momentum k-space. Here, Ã
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(k̃, !) = �(! �q
✏

2

⌫

(k̃) + �̃2

⌫

(k̃)) is the BCS spectral function in the
pseudo-crystal momentum space. Realizing that
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(
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˜k, ` odd
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⌫,k�Q�k�Q,
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one arrives at
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+
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#
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Thus, the superconducting gap that enters A(k, !) as
measured in ARPES experiments is given by the gap
function �̃

⌫

(k̃) calculated in the 5-orbital 1-Fe zone in
pseudo-crystal momentum space and no further transfor-
mation is necessary. �̃

⌫

(k̃) implicitly encodes the strong
symmetry breaking potential associated with the pnicto-
gen/chalcogen atom. The gap �̃

⌫

(k̃) entering the first
` = ”odd” term in Eq. (12)) is shown in the top panel
of Fig. 3 while the gap entering the second ` = ”even”
contribution which appears on the ”shadow” pockets is
obtained by shifting the gap by Q. As in the normal
state [11–13] the weight with which each contribution
is seen is determined by the orbital weights |ã`

⌫,k|2 and

|ã`

⌫,k�Q|2, respectively, and can di↵er substantially be-
tween the main and shadow pockets as seen in Fig. 1c.
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FIG. 3. (Color online) (a) The leading gap function
�̃(k̃) in the band representation calculated in the 5-orbital
model in pseudo-crystal momentum space (red=positive,
blue=negative). When transformed to physical crystal mo-
mentum space k, the gap splits into normal even-even and
odd-odd contributions �N

odd

(k)+�N

even

(k+Q) plotted in (b)
and even-odd and odd-even ⌘ contributions �⌘

odd�even

(k) +
�⌘

even�odd

(k + Q) shown in (c). In the band representation,
all the contributions have even parity.
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measured in ARPES experiments is given by the gap
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(k̃) calculated in the 5-orbital 1-Fe zone in
pseudo-crystal momentum space and no further transfor-
mation is necessary. �̃
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(k̃) implicitly encodes the strong
symmetry breaking potential associated with the pnicto-
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when orbitals of different z-reflection symmetry are mixed, (2) eta-pairing is automatically 
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FIG. 3. (Color online) (a) The leading gap function
�̃(k̃) in the band representation calculated in the 5-orbital
model in pseudo-crystal momentum space (red=positive,
blue=negative). When transformed to physical crystal mo-
mentum space k, the gap splits into normal even-even and
odd-odd contributions �N

odd

(k)+�N

even

(k+Q) plotted in (b)
and even-odd and odd-even ⌘ contributions �⌘

odd�even

(k) +
�⌘

even�odd

(k + Q) shown in (c). In the band representation,
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as usual, an frequency gap in the band basis has even
parity for a singlet pair.

Finally, we calculate the spectral function

A(k, !) =
X

`,⌫

|h`k|⌫̃ki|2Ã
⌫

(k̃, !)

as measured in ARPES experiments in the proper 1-Fe
crystal momentum k-space. Here, Ã

⌫

(k̃, !) = �(! �q
✏

2

⌫

(k̃) + �̃2

⌫

(k̃)) is the BCS spectral function in the
pseudo-crystal momentum space. Realizing that

h`k|⌫̃ki =

(
ã

`

⌫,k�k,

˜k, ` odd

ã

`

⌫,k�Q�k�Q,

˜k, ` even
(11)

one arrives at

A(k, !) =
X

⌫

"
X

` odd

|ã`

⌫,k|2Ã⌫

(k, !)

+
X

` even

|ã`

⌫,k�Q|2Ã
⌫

(k�Q, !)

#
. (12)

Thus, the superconducting gap that enters A(k, !) as
measured in ARPES experiments is given by the gap
function �̃

⌫

(k̃) calculated in the 5-orbital 1-Fe zone in
pseudo-crystal momentum space and no further transfor-
mation is necessary. �̃

⌫

(k̃) implicitly encodes the strong
symmetry breaking potential associated with the pnicto-
gen/chalcogen atom. The gap �̃

⌫

(k̃) entering the first
` = ”odd” term in Eq. (12)) is shown in the top panel
of Fig. 3 while the gap entering the second ` = ”even”
contribution which appears on the ”shadow” pockets is
obtained by shifting the gap by Q. As in the normal
state [11–13] the weight with which each contribution
is seen is determined by the orbital weights |ã`

⌫,k|2 and

|ã`

⌫,k�Q|2, respectively, and can di↵er substantially be-
tween the main and shadow pockets as seen in Fig. 1c.
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FIG. 2. (Color online) Gap functions �
`1,`2(k) in the or-

bital basis plotted on the FS’s in the physical momentum BZ.
When `

1

and `
2

have the same z-reflection symmetry one has
normal (k,�k) pairing and the gap function �N

n,m

(k) is real
and has even parity. When `

1

and `
2

have di↵erent z-reflection
symmetry, one has (k,�k + Q) ⌘ pairing and �⌘

`1,`2
(k) is

purely imaginary and has odd parity.

momentum,

hc
`1",kc

`2#,�k � c

`1#,kc

`2",�ki / �N

`1`2
(k) = (4)

=

8
><

>:

ã
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⌫,kã

`2
⌫,�k�̃

⌫
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odd

ã

`1
⌫,k�Qã

`2
⌫,�k+Q�̃
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(k�Q), `
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, `
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even

0, otherwise

and ⌘-pairing terms with center of mass momentum Q,

hc
`1",kc

`2#,�k+Q � c

`1#,kc

`2",�k+Qi / �⌘

`1`2
(k) = (5)

=

8
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ã
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⌫,kã

`2
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⌫,k�Qã
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⌫

(k�Q), `
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even, `

2
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0, otherwise .

Here and in the following we replaced k̃ by k for odd and
k+Q for even orbitals ` as noted in Eq. (1). For a given
Fermi momentum k, ⌫ labels the band that crosses the
Fermi energy at k.

Fig. 2 shows the gap functions �
`1,`2(k) for four di↵er-

ent combinations of orbitals `

1

and `

2

. From panels (a)
and (b) one sees that when `

1

and `

2

have the same z-
reflection symmetry, one has normal (k,�k) pairing and
the gap function �N

`1,`2
(k) is real and has even parity,

i.e. �N

`1,`2
(�k) = �N

`1,`2
(k). In contrast, when `

1

and `

2

have di↵erent z-reflection symmetry, one has (k,�k+Q)
⌘ pairing. In this case �⌘

`1,`2
(k) is purely imaginary and

has odd parity, i.e. �⌘

`1,`2
(�k) = ��⌘

`1,`2
(k). Here we

stress that the odd-parity and imaginary nature of these
terms arises entirely from the product of matrix-elements
ã

`1
⌫,kã

`2
⌫,�k and therefore is merely a reflection of the glide

plane symmetry of the Fe-pnictide/chalcogenide plane. It
does not reflect any exotic behavior of the pairing interac-
tion. Both normal and ⌘-pairing terms, however, coexist
in orbital space and contribute to the pairing condensate.

This raises the question of how these two terms com-
bine given their opposite parity. To study this, we trans-
form the gap back to band representation in physical
crystal momentum k-space, and obtain for the normal
pairing

�N

⌫

(k) = �N

odd

(k) + �N

even

(k) (6)

with

�N

odd

(k) =
X

`1,`2 odd

ã

`

⇤
1

⌫,kã

`

⇤
2

⌫,�k�N

`1`2
(k)

�N

even

(k) =
X

`1,`2 even

ã

`

⇤
1

⌫,k�Qã

`

⇤
2

⌫,�k+Q�N

`1`2
(k) . (7)

Similarly, for the ⌘-pairing terms one obtains

�⌘

⌫

(k) = �⌘

odd�even

(k) + �⌘

even�odd

(k) (8)

�⌘

odd�even

(k) =
X

`1 odd,`2 even

ã

`

⇤
1

⌫,kã

`

⇤
2

⌫,�k�⌘

`1`2
(k)

�⌘

even�odd

(k) =
X

`1 even,`2 odd

ã

`

⇤
1

⌫,k�Qã

`

⇤
2

⌫,�k+Q�⌘

`1`2
(k) .

(9)

Here we have used the fact that the matrix-elements a

`

⌫,k
which provide the transformation from the orbital to the
band representation in physical crystal momentum k-
space are given by the matrix-elements in pseudo-crystal
momentum space, ã

`

⌫,k for ` denoting an odd orbital, and

ã

`

⌫,k�Q for ` denoting an even orbital.
Then, using Eqs. (4) and (5) one can show that the

gap function �̃
⌫

(k) calculated in the 5-orbital model in
the pseudo-crystal momentum representation splits into
normal and eta-pairing terms in the physical crystal mo-
mentum space, i.e.

�̃
⌫

(k) = �N

odd

(k) + �N

even

(k + Q)

+ �⌘

odd�even

(k) + �⌘

even�odd

(k + Q) (10)

Fig. 3 shows a graphical representation of this rela-
tion by plotting a 3D representation of �̃

⌫

(k) in the top
panel, its normal contribution �N

odd

(k)+�N

even

(k+Q) in
the middle panel and its ⌘ contribution �⌘

odd�even

(k) +
�⌘

even�odd

(k + Q) in the bottom panel. One sees that
after the transformation to band representation, the ⌘-
pairing term has even pairity (and is real), just like
the normal pairing contribution. This results from the
odd-parity of the imaginary product of matrix-elements

ã

`

⇤
1

⌫,kã

`

⇤
2

⌫,�k combining with the odd-parity and imaginary
�⌘

`1,`2
(k) for odd-even combinations of `

1

and `

2

. Thus,
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and `
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Here and in the following we replaced k̃ by k for odd and
k+Q for even orbitals ` as noted in Eq. (1). For a given
Fermi momentum k, ⌫ labels the band that crosses the
Fermi energy at k.

Fig. 2 shows the gap functions �
`1,`2(k) for four di↵er-

ent combinations of orbitals `

1

and `

2

. From panels (a)
and (b) one sees that when `

1

and `

2

have the same z-
reflection symmetry, one has normal (k,�k) pairing and
the gap function �N

`1,`2
(k) is real and has even parity,

i.e. �N
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(�k) = �N
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(k). In contrast, when `
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and `
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have di↵erent z-reflection symmetry, one has (k,�k+Q)
⌘ pairing. In this case �⌘
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(k) is purely imaginary and

has odd parity, i.e. �⌘
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terms arises entirely from the product of matrix-elements
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`2
⌫,�k and therefore is merely a reflection of the glide

plane symmetry of the Fe-pnictide/chalcogenide plane. It
does not reflect any exotic behavior of the pairing interac-
tion. Both normal and ⌘-pairing terms, however, coexist
in orbital space and contribute to the pairing condensate.

This raises the question of how these two terms com-
bine given their opposite parity. To study this, we trans-
form the gap back to band representation in physical
crystal momentum k-space, and obtain for the normal
pairing
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Here we have used the fact that the matrix-elements a

`

⌫,k
which provide the transformation from the orbital to the
band representation in physical crystal momentum k-
space are given by the matrix-elements in pseudo-crystal
momentum space, ã

`

⌫,k for ` denoting an odd orbital, and
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⌫,k�Q for ` denoting an even orbital.
Then, using Eqs. (4) and (5) one can show that the

gap function �̃
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(k) calculated in the 5-orbital model in
the pseudo-crystal momentum representation splits into
normal and eta-pairing terms in the physical crystal mo-
mentum space, i.e.
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Fig. 3 shows a graphical representation of this rela-
tion by plotting a 3D representation of �̃

⌫

(k) in the top
panel, its normal contribution �N

odd

(k)+�N

even

(k+Q) in
the middle panel and its ⌘ contribution �⌘

odd�even

(k) +
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even�odd

(k + Q) in the bottom panel. One sees that
after the transformation to band representation, the ⌘-
pairing term has even pairity (and is real), just like
the normal pairing contribution. This results from the
odd-parity of the imaginary product of matrix-elements
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. Thus,

‣ Gap calculated in 1 Fe pseudo-crystal momentum basis splits 
into normal and η-pairing gaps in physical momentum basis 
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your mind? We can plot them in two text columns, or, as you said, in three rows.

 
 
Please let me know what you think. I will be glad to work on the manuscript once we agree on 
the basics. I'm not sure if I'll get to it this week and I'm in Santa Barbara next week, so it might 
not be until two weeks from now that I can get to it. 
 
Best regards, 
Thomas 
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Dear All, 
I agree with Yan that the main points we should make are: (1) the spectral gap in the ARPES 
signal is the gap found in the 5-orbtal pseudo-momentum calculations (and this is the same as 
that obtained in the 10-0orbital 2Fe/uc calculation) although the qp weights are modulated 
when orbitals of different z-reflection symmetry are mixed, (2) eta-pairing is automatically 
included in the standard spin-fluctuation calculation in the 5-orbital k^{tilte} calculation  and (3) 
in spite of the eta pairing  contribution, the superconducting state has even parity and time 
reversal symmetry. 
Inorder to make the first point clear I believe that we need to show a Figure 1 (a,b,c,d) like that 
in Yan's notes of 8/27. Then I think that we need a Fig2 that is like Fig1(d) of the present 
manuscript. 
Then to explain point (2) we need a Fig3a like "Fig1c" of the present manuscript but without the 
(k,-k) and (k+Q,-k+Q) lines and a Fig3b which combines Thomas's figures shown below to 
illustrate "normal" and "eta" pairing. 
 
This new Fig 3 will look like something as below. It  doesn’t look very nice aesthetically.  Or we 
fit them in one row? 
 

+ = 
your mind? We can plot them in two text columns, or, as you said, in three rows.

 
 
Please let me know what you think. I will be glad to work on the manuscript once we agree on 
the basics. I'm not sure if I'll get to it this week and I'm in Santa Barbara next week, so it might 
not be until two weeks from now that I can get to it. 
 
Best regards, 
Thomas 
===================================================================================== 

Douglas Scalapino 
Dear All, 
I agree with Yan that the main points we should make are: (1) the spectral gap in the ARPES 
signal is the gap found in the 5-orbtal pseudo-momentum calculations (and this is the same as 
that obtained in the 10-0orbital 2Fe/uc calculation) although the qp weights are modulated 
when orbitals of different z-reflection symmetry are mixed, (2) eta-pairing is automatically 
included in the standard spin-fluctuation calculation in the 5-orbital k^{tilte} calculation  and (3) 
in spite of the eta pairing  contribution, the superconducting state has even parity and time 
reversal symmetry. 
Inorder to make the first point clear I believe that we need to show a Figure 1 (a,b,c,d) like that 
in Yan's notes of 8/27. Then I think that we need a Fig2 that is like Fig1(d) of the present 
manuscript. 
Then to explain point (2) we need a Fig3a like "Fig1c" of the present manuscript but without the 
(k,-k) and (k+Q,-k+Q) lines and a Fig3b which combines Thomas's figures shown below to 
illustrate "normal" and "eta" pairing. 
 
This new Fig 3 will look like something as below. It  doesn’t look very nice aesthetically.  Or we 
fit them in one row? 
 

+ = 

your mind? We can plot them in two text columns, or, as you said, in three rows.

 
 
Please let me know what you think. I will be glad to work on the manuscript once we agree on 
the basics. I'm not sure if I'll get to it this week and I'm in Santa Barbara next week, so it might 
not be until two weeks from now that I can get to it. 
 
Best regards, 
Thomas 
===================================================================================== 

Douglas Scalapino 
Dear All, 
I agree with Yan that the main points we should make are: (1) the spectral gap in the ARPES 
signal is the gap found in the 5-orbtal pseudo-momentum calculations (and this is the same as 
that obtained in the 10-0orbital 2Fe/uc calculation) although the qp weights are modulated 
when orbitals of different z-reflection symmetry are mixed, (2) eta-pairing is automatically 
included in the standard spin-fluctuation calculation in the 5-orbital k^{tilte} calculation  and (3) 
in spite of the eta pairing  contribution, the superconducting state has even parity and time 
reversal symmetry. 
Inorder to make the first point clear I believe that we need to show a Figure 1 (a,b,c,d) like that 
in Yan's notes of 8/27. Then I think that we need a Fig2 that is like Fig1(d) of the present 
manuscript. 
Then to explain point (2) we need a Fig3a like "Fig1c" of the present manuscript but without the 
(k,-k) and (k+Q,-k+Q) lines and a Fig3b which combines Thomas's figures shown below to 
illustrate "normal" and "eta" pairing. 
 
This new Fig 3 will look like something as below. It  doesn’t look very nice aesthetically.  Or we 
fit them in one row? 
 

+ = 

FIG. 3. (Color online) (a) The leading gap function
�̃(k̃) in the band representation calculated in the 5-orbital
model in pseudo-crystal momentum space (red=positive,
blue=negative). When transformed to physical crystal mo-
mentum space k, the gap splits into normal even-even and
odd-odd contributions �N

odd

(k)+�N

even

(k+Q) plotted in (b)
and even-odd and odd-even ⌘ contributions �⌘

odd�even

(k) +
�⌘

even�odd

(k + Q) shown in (c). In the band representation,
all the contributions have even parity.

as usual, an frequency gap in the band basis has even
parity for a singlet pair.

Finally, we calculate the spectral function
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as measured in ARPES experiments in the proper 1-Fe
crystal momentum k-space. Here, Ã
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⌫

(k̃)) is the BCS spectral function in the
pseudo-crystal momentum space. Realizing that

h`k|⌫̃ki =

(
ã

`

⌫,k�k,

˜k, ` odd

ã

`

⌫,k�Q�k�Q,

˜k, ` even
(11)

one arrives at

A(k, !) =
X

⌫

"
X

` odd

|ã`

⌫,k|2Ã⌫

(k, !)

+
X

` even

|ã`

⌫,k�Q|2Ã
⌫

(k�Q, !)

#
. (12)

Thus, the superconducting gap that enters A(k, !) as
measured in ARPES experiments is given by the gap
function �̃

⌫

(k̃) calculated in the 5-orbital 1-Fe zone in
pseudo-crystal momentum space and no further transfor-
mation is necessary. �̃

⌫

(k̃) implicitly encodes the strong
symmetry breaking potential associated with the pnicto-
gen/chalcogen atom. The gap �̃

⌫

(k̃) entering the first
` = ”odd” term in Eq. (12)) is shown in the top panel
of Fig. 3 while the gap entering the second ` = ”even”
contribution which appears on the ”shadow” pockets is
obtained by shifting the gap by Q. As in the normal
state [11–13] the weight with which each contribution
is seen is determined by the orbital weights |ã`

⌫,k|2 and

|ã`

⌫,k�Q|2, respectively, and can di↵er substantially be-
tween the main and shadow pockets as seen in Fig. 1c.
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‣ ARPES sees the gap calculated in the 1 Fe zone pseudo-crystal 
momentum space
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Summary & Conclusions
η-pairing in the Fe-based superconductors appears in the 1 Fe 
zone because of broken translational symmetry 

It is implicitly included in 1 Fe zone calculations in pseudo-crystal 
momentum basis 

The gap calculated in the 1 Fe zone pseudo-crystal momentum 
representation is the gap that enters observables  

An even frequency gap for a singlet pair has even parity in the 
band basis and there is no time-reversal symmetry breaking as a 
result of η-pairing
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resented as
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0
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0
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The five Fe 3d orbitals n’s are categorized into even or-
bital parity (d3z2�r

2 , d
x

2�y

2 , d
xy

) with p
n

= +1 and odd
(d

xz

, d
yz

) with p
n

= �1. The Fe lattice site is labeled by
i ⌘ (i

x

, i
y

, i
z

) and ik ⌘ (i
x

, i
y

). In addition, ✓
i

⌘ i
x

+ i
y

and ⇥ ⌘ (�1)✓i distinguish the two Fe sublattices. In
this notation, the term t

n

0
n

(i0k� ik, i
0
z

� i
z

) is an abbrevi-
ation of the hopping integral from one Fe n orbital at the
origin to another n0 orbital at a site (i0k � ik, i

0
z

� i
z

) and

only depends on the relative distance (i � i0) of lattice
sites. The presence of the sign-changing factors (p

n

0p
n

)✓i

and ⇥ is required by the glide symmetry.

Because of the layered structure of FeSCs, it is natural

to divide H0 into an in-plane part Hk
0 with i0

z

= i
z

and an
out-of-plane part H?

0 with i0
z

6= i
z

. The dominant term
of the translational symmetry breaking in FeSCs origi-

nates from the sign factor (p
n

0p
n

)✓i in H
k
0 . Instead of

being a small correction, the band folding from the one-
Fe Brillouin zone (BZ) to the two-Fe BZ involves a non-
perturbative potential in the same order of magnitude
as regular hopping terms. As depicted by the orbital-
dependent one-particle spectral function represented in
the one-Fe BZ basis in Fig. 1(a), a

k,n

is strongly hy-
bridized with a

k+Q,n

0 only when p
n

p
n

0 = �1. As an con-
sequence, the three hole pockets surrounding � are folded
to the replica at zone corner M , and the orbital changes
from d

yz

/d
xz

(red/blue) to d
xy

(green) and vice versa.
This orbital-parity switching folding [22] throughout the
whole dispersion implies a strong umklapp process within
the one-Fe BZ. Therefore, it is problematic to first study
lower-energy physics, e.g. superconductivity, and then
switch on the strong folding potential as a correction.

There are two obvious representations to handle the
unusual glide translational symmetry. The simpler one
is to use eigenstates of the out-of-plane translational op-
erator of T

z

so that a larger two-Fe unit cell is neces-
sary. Alternatively, one can perform a canonical trans-
formation to recover the in-plane translational symme-
try T̃ = U†TkU while sacrificing the out-of-plane trans-
lational symmetry (by mixing k

z

with �k
z

). (Since
[T

z

, P
z

Tk] 6= 0, they cannot be simultaneously diago-
nalized. Thus a three dimensional momentum cannot
be rigourously a good quantum number in the one-Fe
unit.) A more convenient but approximate approach is to
perform a local gauge transformation c
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⌘ (�p
n

)✓ia
i,n

[23, 25] so that
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dxz dyz 
(a) 

(b) (c) 
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𝑘 = 0.5𝜋  𝑘 = 0.5𝜋  

FIG. 1: (a) The unfolded one-particle spectral function
An(k,! = 0) at the Fermi energy calculated from the first-
principles FeTe Wannier orbitals (see Ref. 22 for details). The
spectral function in the local gauge space Ãn(k̃,! = 0) (b)
with and (c) without the symmetry breaking part of H?

0 . The
enlargements show that the folded spectral weights due to H?

0

are hardly visible in (b) and vanish in (c).
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where i

z

6= i0
z

. In this way, other than the small out-
of-plane hopping integrals in part of H?

0 , the system re-
covers the standard three dimensional translational sym-
metry. The Fourier space of c

i,n

is now labeled by
(k̃

x

, k̃
y

, k
z

), where the tilde denotes the pseudo-crystal
momentum and other quantities in this local gauge space.

Figure 1(b) and its enlargement show the weak sym-
metry breaking e↵ects remaining in H?

0 . In our first-
principle results of the prototypical FeTe compound, the
folded spectral weights are negligibly weak in the local
gauge space, due to the small out-of-plane parameters
|t?/tk| ⌧ 1 in such quasi-two-dimensional systems. In
fact, if one neglects the symmetry breaking part of H?

0 ,
Fig. 1(c) and its enlargement show no obvious change in
both the dispersion and wavefunction except for the dis-
appearance of the weak folded weights. Therefore, the
pseudo-crystal momentum representation o↵ers a good
basis to study the essential physics without the compli-
cation of not having translational symmetry, as has been
recognized by various existing studies.

The use of this local gauge space aids decoding the
obscure spectral function in Fig. 1(a) and reveals the
orbital-parity splitting of quasiparticles. From the trans-
formation between the physical and pseudo-crystal mo-
mentum bases, a

k,o

= c
k̃,o

and a
k,e

= c
k̃+Q,e

, the spectral
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