

Collaborators

Peter J. Hirschfeld

Maria Navarro Gastiasoro

1) Emergent defect states

- experimental overview (transport, STM).
- model and results; origin and consequences of nematogens.
- new scenario for understanding the resistivity of pnictides.

1) Emergent defect states

- experimental overview (transport, STM).
- model and results; origin and consequences of nematogens.
- new scenario for understanding the resistivity of pnictides.

2) Impurity-induced long-range ordered phases

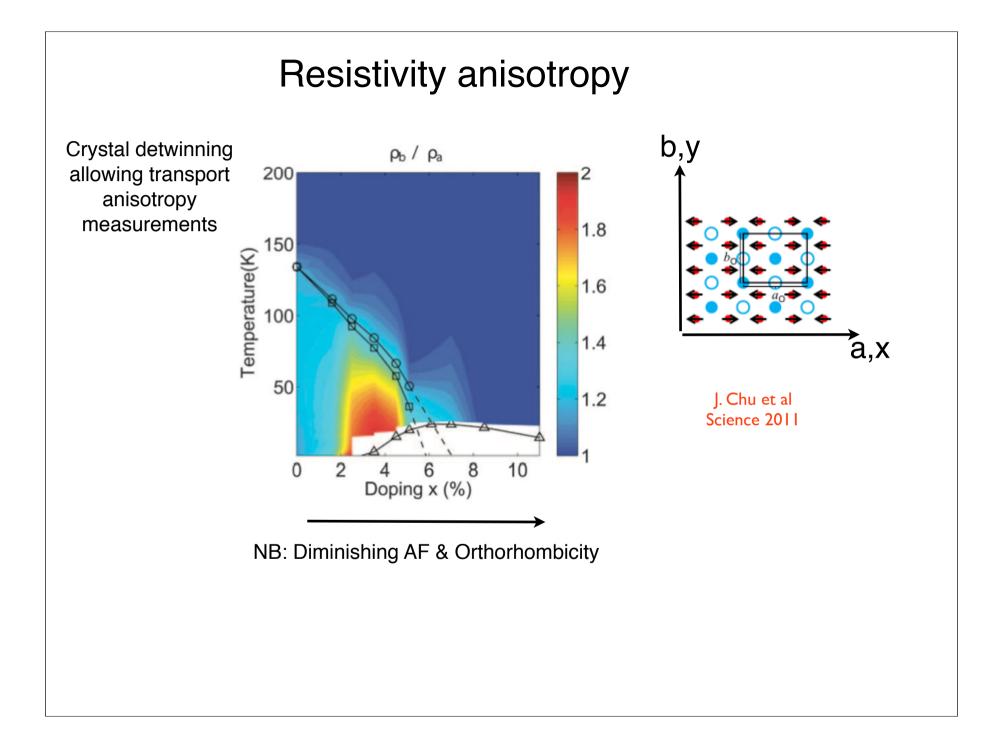
- experimental overview (X-rays, neutron, muSR).
- model and results; origin and consequences of unusual "RKKY" exchange couplings.
- induced magnetic phases and extreme Tc suppression.

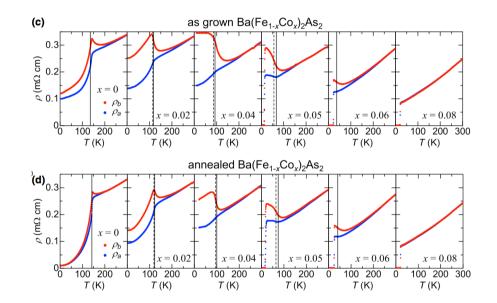
1) Emergent defect states

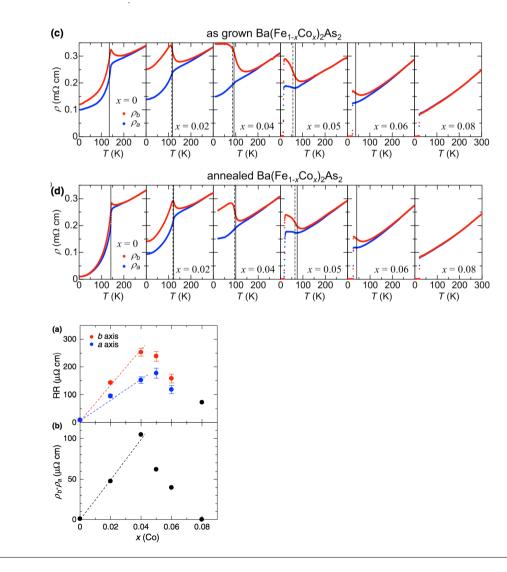
- experimental overview (transport, STM).
- model and results; origin and consequences of nematogens.
- new scenario for understanding the resistivity of pnictides.

2) Impurity-induced long-range ordered phases

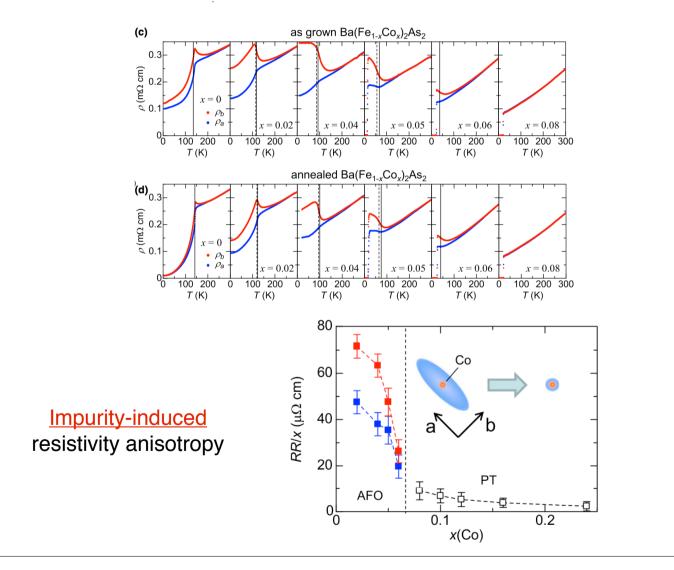
- experimental overview (X-rays, neutron, muSR).
- model and results; origin and consequences of unusual "RKKY" exchange couplings.
- induced magnetic phases and extreme Tc suppression.







Anisotropy of the In-Plane Resistivity of Underdoped $Ba(Fe_{1-x}Co_x)_2As_2$ Superconductors Induced by Impurity Scattering in the Antiferromagnetic Orthorhombic Phase



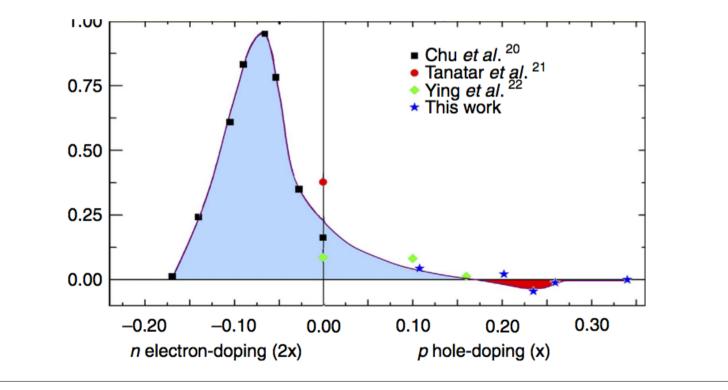
ARTICLE

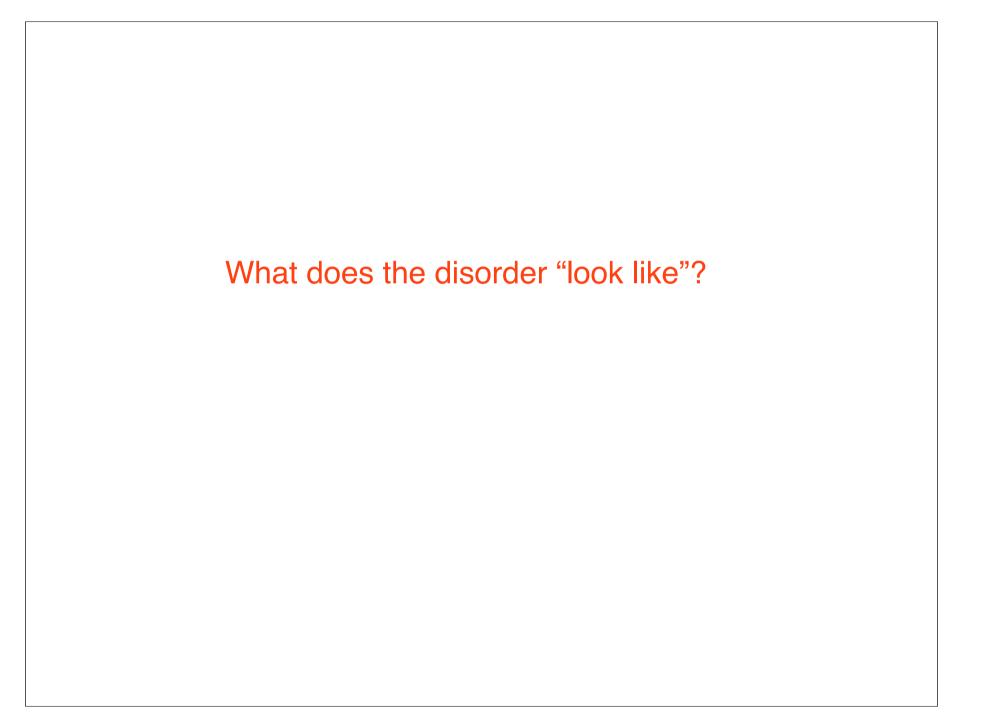
Received 11 Dec 2012 | Accepted 26 Apr 2013 | Published 28 May 2013

DOI: 10.1038/ncomms2933

Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides

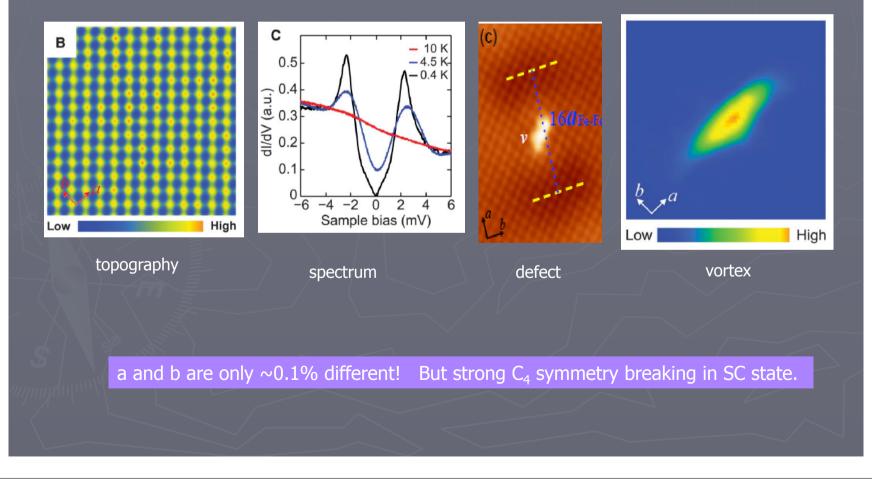
E.C. Blomberg^{1,2}, M.A. Tanatar^{1,2}, R.M. Fernandes³, I.I. Mazin⁴, Bing Shen^{5,6}, Hai-Hu Wen^{5,6}, M.D. Johannes⁴, J. Schmalian⁷ & R. Prozorov^{1,2}

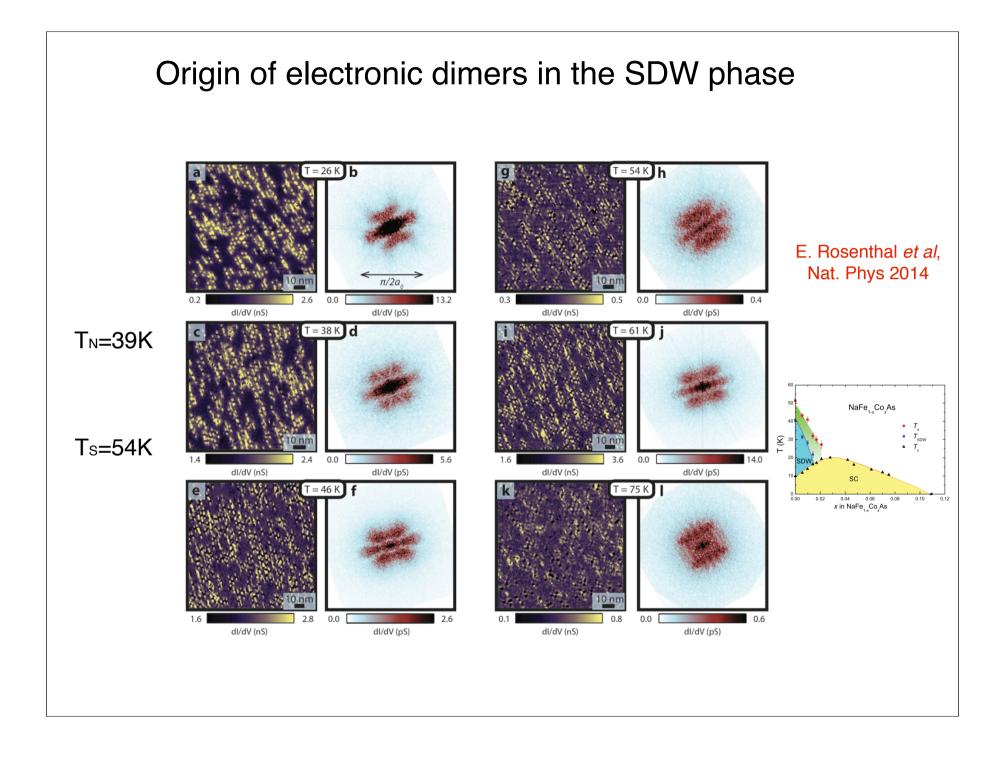




Signatures of electronic nematicity in FeSC II. STM in SC state

FeSe: CL Song et al, Science 2011, PRL 2012





Summary of main exp. facts

Challenges for theory:

1) The emergence of strongly C2 symmetric impurity states

2) The counterintuitive sign of the resistivity anisotropy on the electron-doped side, where $\rho_b > \rho_a$ although b < a.

3) The decrease of the anisotropy upon annealing.

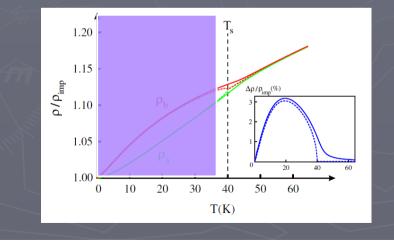
4) The pronounced increase in ρ_b as T_N is approached, with ρ_a remaining metallic like

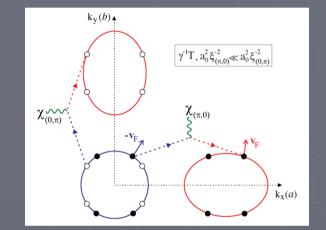
5) The possible sign change but also significant decrease of the anisotropy on the hole-doped side.

6) The decrease in anisotropy both with increasing T and electron overdoping.

Spin-nematic theory of resistivity anisotropy in nematic phase Fernandes, Abrahams and Schmalian PRL 2011

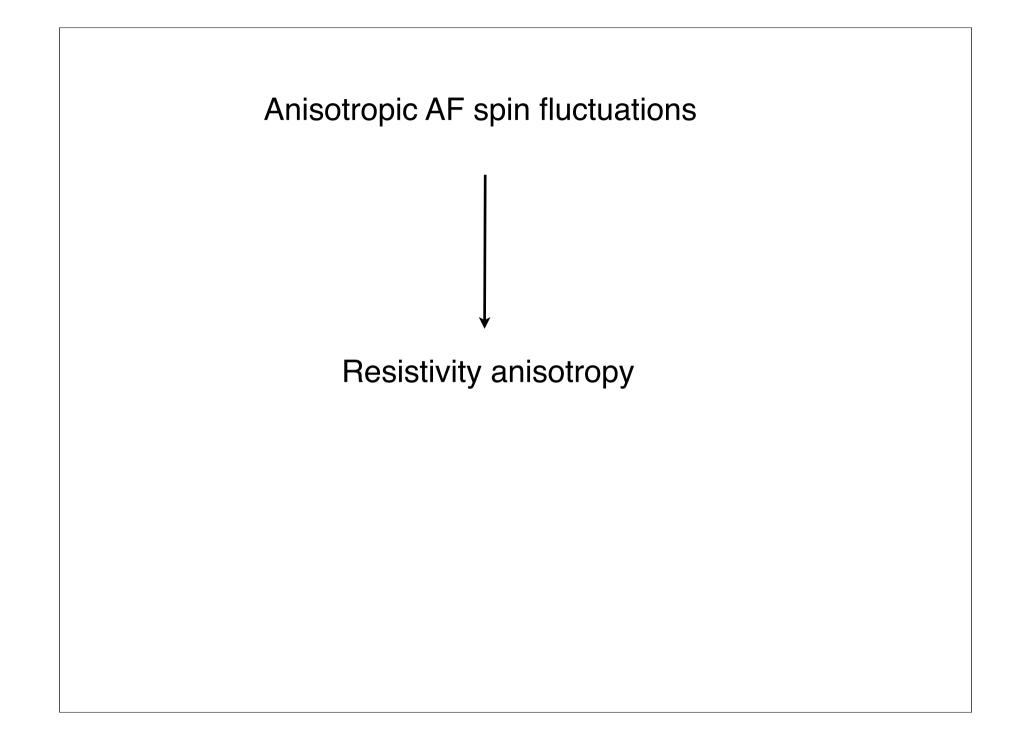
 $a_0^2 \xi^{-2}$ PM/Tet PM/Ort 0.04 $\xi_{(0,\pi)}$ 0.02 AFM/Ort $\xi_{(\pi,0)}$ T(K) \rightarrow ≻ x 0 QCP 20 40 60 (a) (b)

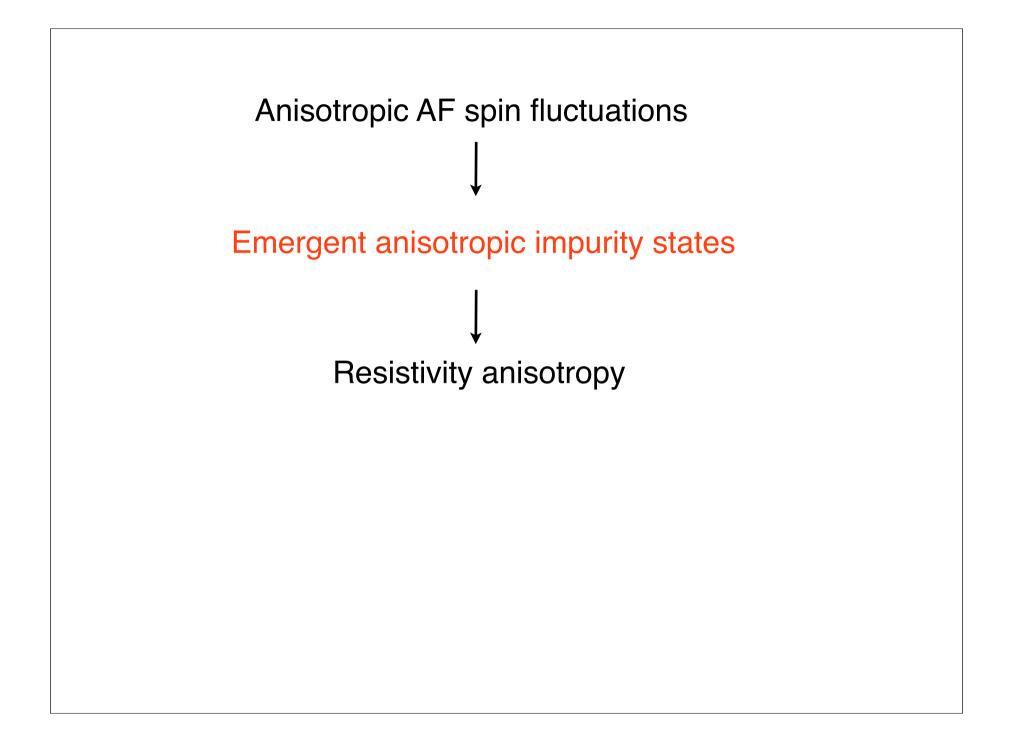




Fluctuations in $(\pi, 0)$ direction soften at T_s

No description of magnetically ordered phase





1) Emergent defect states

- experimental overview (transport, STM).
- model and results; origin and consequences of nematogens.
- scenario for understanding the resistivity of pnictides.

2) Impurity-induced long-range ordered phases

- experimental overview (X-rays, neutron, muSR).
- model and results; origin and consequences of unusual "RKKY" exchange couplings.
- induced magnetic phases and extreme Tc suppression.

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{oo} + \mathcal{H}_{int} + \mathcal{H}_{imp}$$

$$\mathcal{H}_{0} = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_{0} \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu\sigma}$$

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{oo} + \mathcal{H}_{int} + \mathcal{H}_{imp}$$

$$\mathcal{H}_{0} = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_{0} \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu\sigma}$$

$$\mathcal{H}_{oo} = \frac{\delta}{2} \sum_{\mathbf{i}} \left(n_{\mathbf{i}yz} - n_{\mathbf{i}xz} \right)$$

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{oo} + \mathcal{H}_{int} + \mathcal{H}_{imp}$$

$$\mathcal{H}_{0} = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_{0} \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu\sigma}$$

$$\mathcal{H}_{oo} = \frac{\delta}{2} \sum_{\mathbf{i}} \left(n_{\mathbf{i}yz} - n_{\mathbf{i}xz} \right)$$

$$H_{int} = U \sum_{\mathbf{i},\mu} n_{\mathbf{i}\mu\uparrow} n_{\mathbf{i}\mu\downarrow} + (U' - \frac{J}{2}) \sum_{\mathbf{i},\mu < \nu,\sigma\sigma'} n_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\nu\sigma'}$$

$$-2J\sum_{\mathbf{i},\mu<\nu}\vec{S}_{\mathbf{i}\mu}\cdot\vec{S}_{\mathbf{i}\nu}+J'\sum_{\mathbf{i},\mu<\nu,\sigma}c^{\dagger}_{\mathbf{i}\mu\sigma}c^{\dagger}_{\mathbf{i}\mu\bar{\sigma}}c_{\mathbf{i}\nu\bar{\sigma}}c_{\mathbf{i}\nu\sigma},$$

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{oo} + \mathcal{H}_{int} + \mathcal{H}_{imp}$$

$$\mathcal{H}_{0} = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_{0} \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu\sigma}$$

$$\mathcal{H}_{oo} = \frac{\delta}{2} \sum_{\mathbf{i}} \left(n_{\mathbf{i}yz} - n_{\mathbf{i}xz} \right)$$

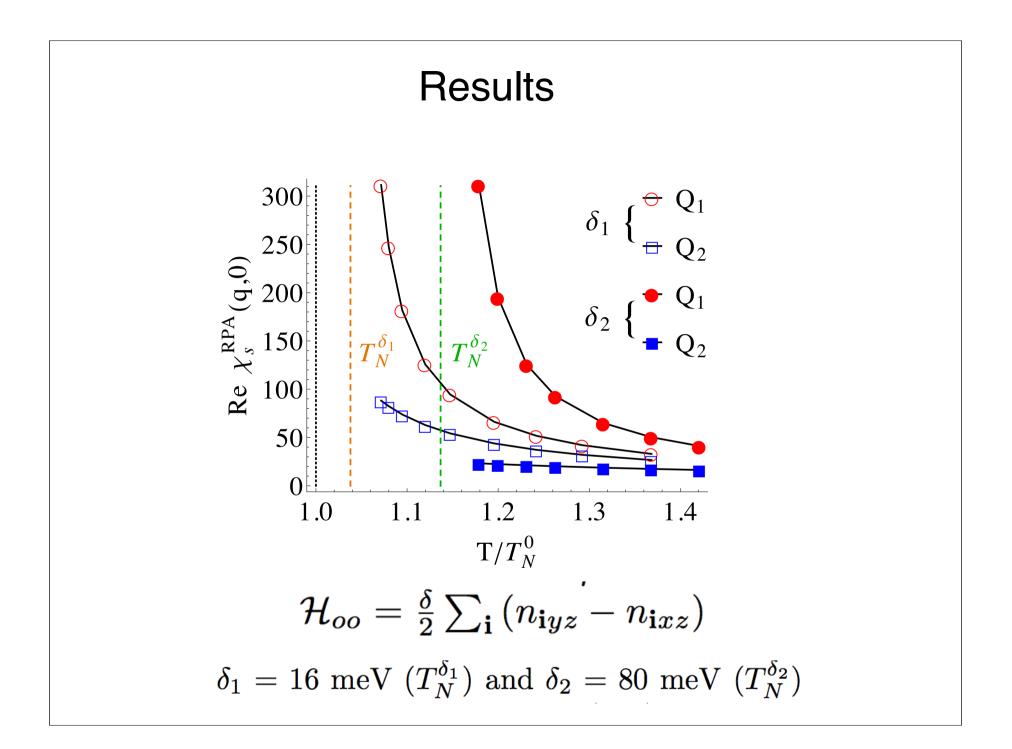
$$H_{int} = U \sum_{\mathbf{i},\mu} n_{\mathbf{i}\mu\uparrow} n_{\mathbf{i}\mu\downarrow} + (U' - \frac{J}{2}) \sum_{\mathbf{i},\mu < \nu,\sigma\sigma'} n_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\nu\sigma'}$$

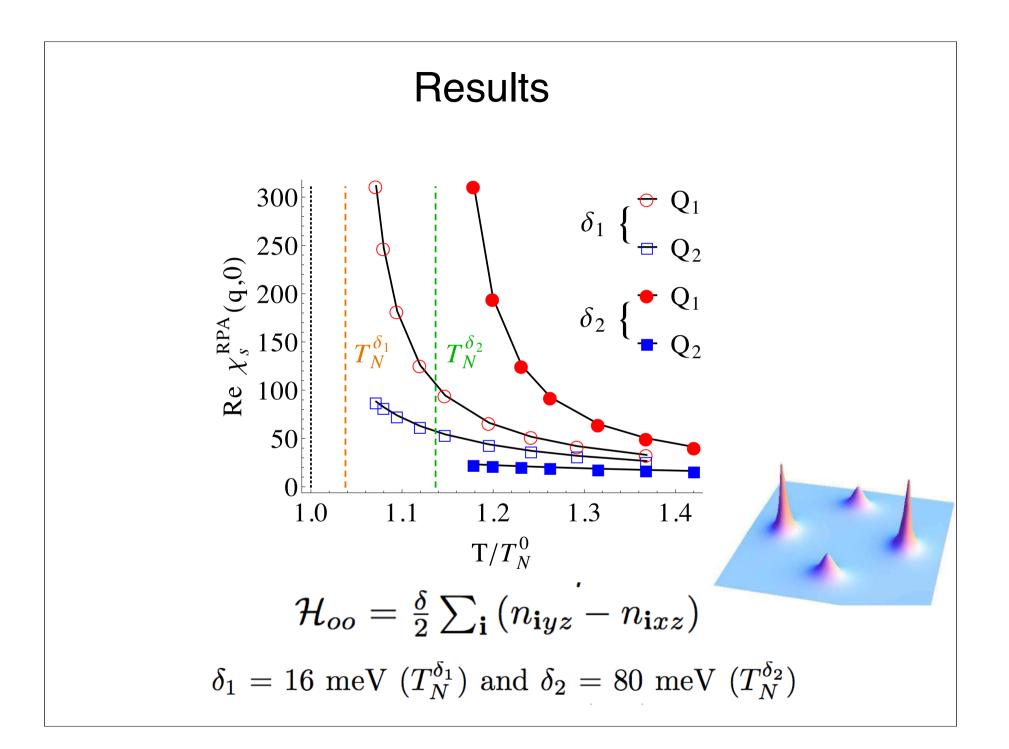
$$-2J\sum_{\mathbf{i},\mu<\nu}\vec{S}_{\mathbf{i}\mu}\cdot\vec{S}_{\mathbf{i}\nu}+J'\sum_{\mathbf{i},\mu<\nu,\sigma}c^{\dagger}_{\mathbf{i}\mu\sigma}c^{\dagger}_{\mathbf{i}\mu\bar{\sigma}}c_{\mathbf{i}\nu\bar{\sigma}}c_{\mathbf{i}\nu\sigma},$$

$$H_{imp} = \sum_{\mathbf{i}^* \mu \sigma} V^{\mu \sigma}_{imp} c^{\dagger}_{\mathbf{i}^* \mu \sigma} c_{\mathbf{i}^* \mu \sigma},$$

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{oo} + \mathcal{H}_{int} + \mathcal{H}_{imp}$$

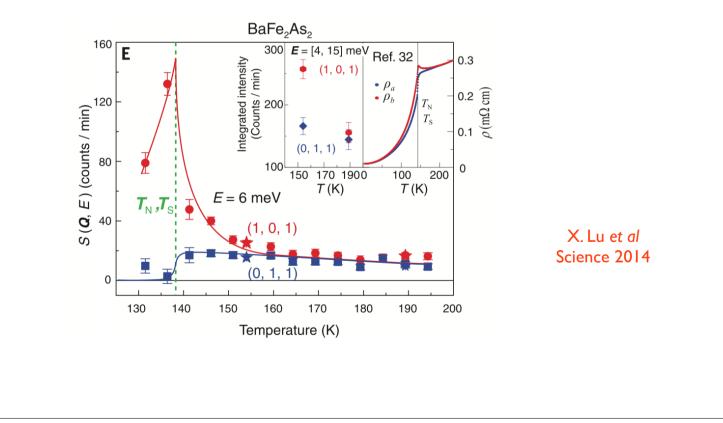
$$\begin{aligned} H_{\mathbf{i}\mathbf{j}\sigma}^{\mu\nu} &= t_{\mathbf{i}\mathbf{j}}^{\mu\nu} + \delta_{\mathbf{i}\mathbf{j}}\delta_{\mu\nu}[-\mu_0 + \delta(\delta_{\mu yz} - \delta_{\mu xz}) + \delta_{\mathbf{i}\mathbf{i}^*}V_{imp} \\ &+ U\langle n_{\mathbf{i}\mu\bar{\sigma}}\rangle + \sum_{\mu'\neq\mu} (U'\langle n_{\mathbf{i}\mu'\bar{\sigma}}\rangle + (U'-J)\langle n_{\mathbf{i}\mu'\sigma}\rangle)], \end{aligned}$$



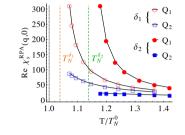


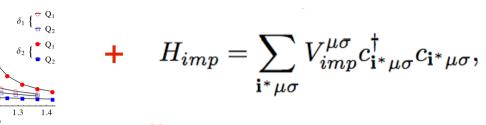
Nematic spin correlations in the tetragonal state of uniaxial-strained BaFe_{2-x}Ni_xAs₂

Xingye Lu,¹ J. T. Park,² Rui Zhang,¹ Huiqian Luo,¹ Andriy H. Nevidomskyy,³ Qimiao Si,³ Pengcheng Dai^{3,1*}

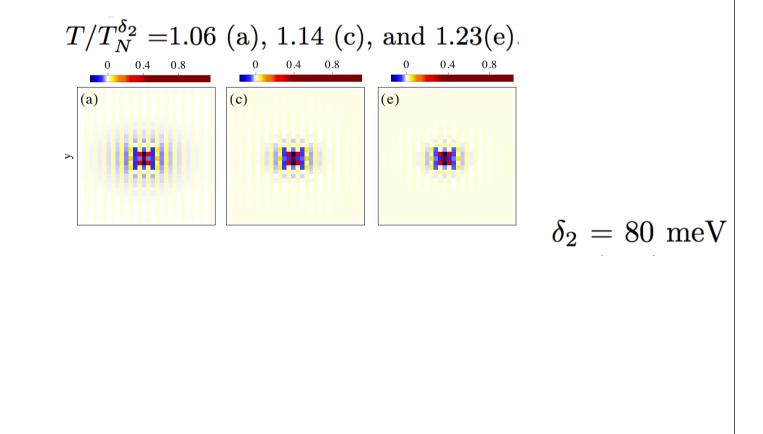


Results: Impurity response

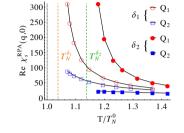


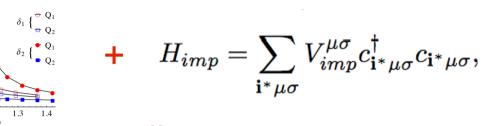


Ш

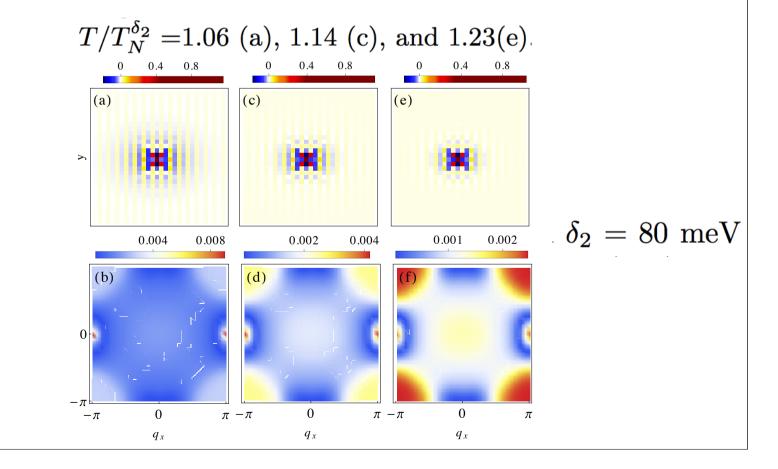


Results: Impurity response





Ш



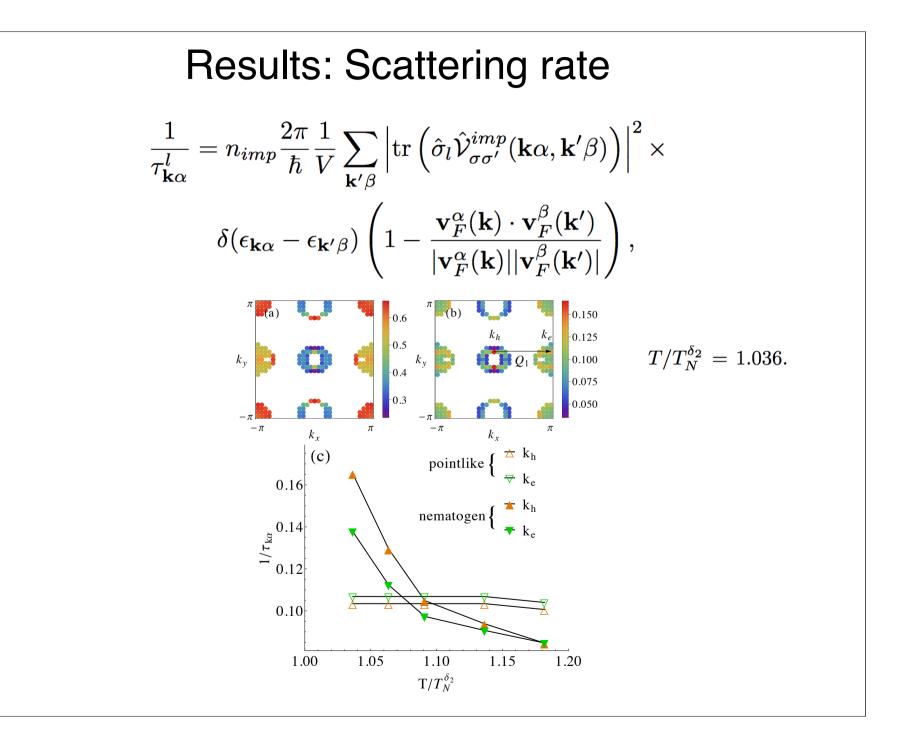
Results: Scattering rate

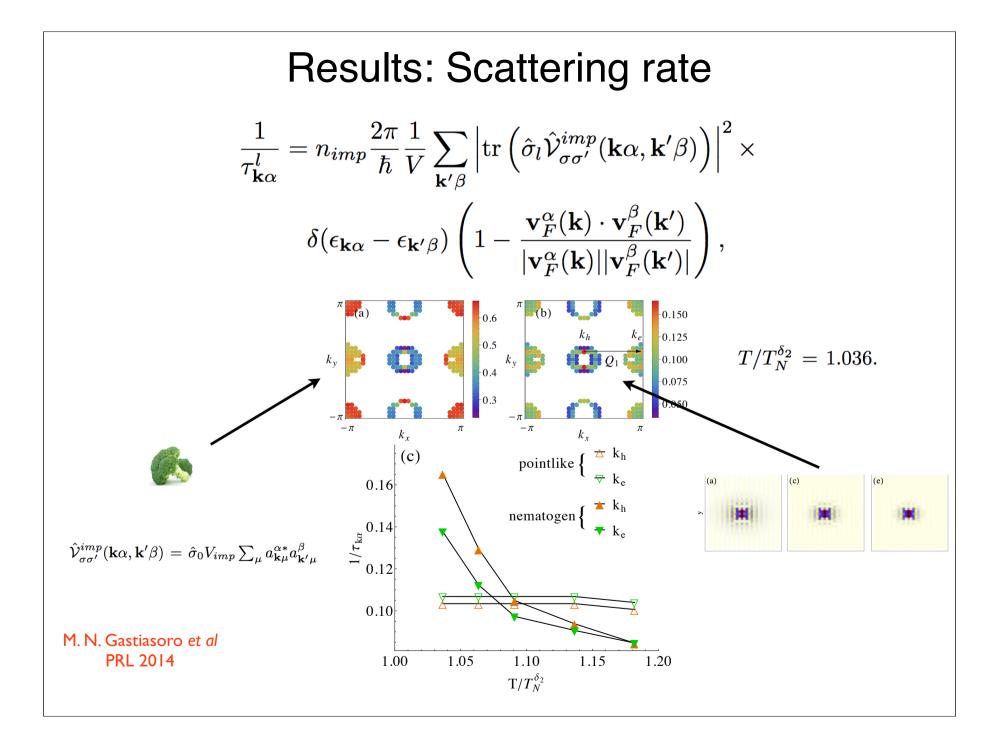
$$\begin{split} \frac{1}{\tau_{\mathbf{k}\alpha}^{l}} &= n_{imp} \frac{2\pi}{\hbar} \frac{1}{V} \sum_{\mathbf{k}'\beta} \left| \operatorname{tr} \left(\hat{\sigma}_{l} \hat{\mathcal{V}}_{\sigma\sigma'}^{imp}(\mathbf{k}\alpha, \mathbf{k}'\beta) \right) \right|^{2} \times \\ & \delta(\epsilon_{\mathbf{k}\alpha} - \epsilon_{\mathbf{k}'\beta}) \left(1 - \frac{\mathbf{v}_{F}^{\alpha}(\mathbf{k}) \cdot \mathbf{v}_{F}^{\beta}(\mathbf{k}')}{|\mathbf{v}_{F}^{\alpha}(\mathbf{k})| |\mathbf{v}_{F}^{\beta}(\mathbf{k}')|} \right), \end{split}$$

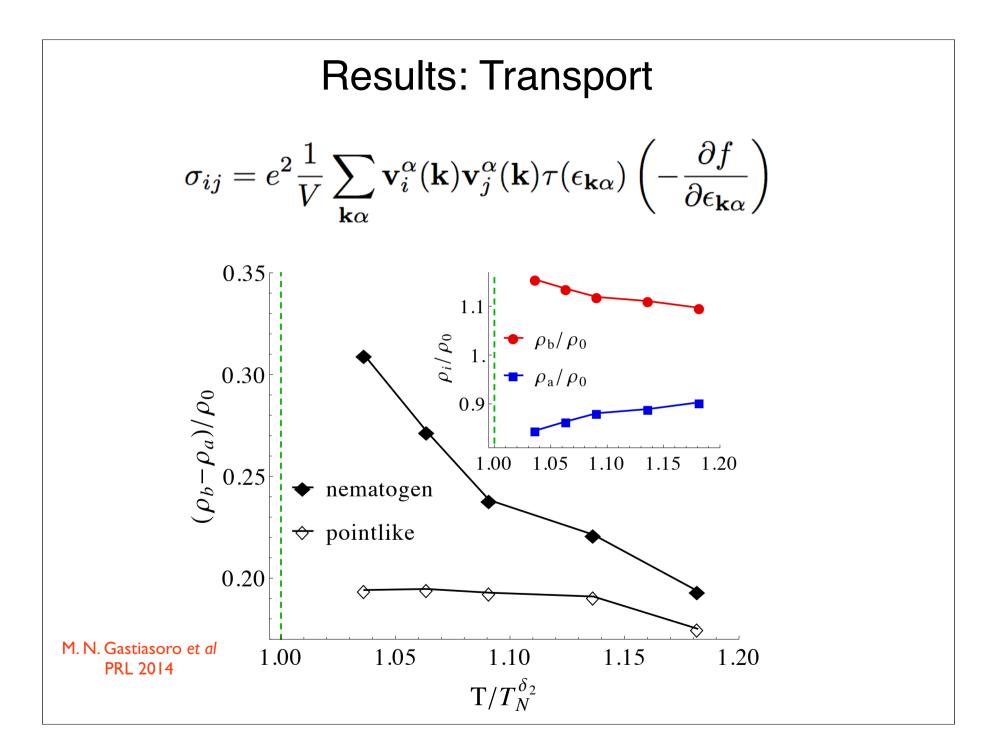
where l = 0 (l = 3) corresponds to the charge (magnetic) scattering rate and $1/\tau_{\mathbf{k}\alpha} \equiv 1/\tau_{\mathbf{k}\alpha}^0 + 1/\tau_{\mathbf{k}\alpha}^3$ is the total scattering rate on band α . The term $\hat{\mathcal{V}}_{\sigma\sigma'}^{imp}(\mathbf{k}\alpha, \mathbf{k}'\beta) \equiv \langle \mathbf{k}'\beta\sigma'|\mathcal{V}^{imp}|\mathbf{k}\alpha\sigma\rangle \equiv \langle \mathbf{k}'\beta\sigma'|\mathcal{H} - \mathcal{H}_{(V_{imp}=0)}|\mathbf{k}\alpha\sigma\rangle$

$$\hat{\mathcal{V}}_{\sigma\sigma'}^{imp}(\mathbf{k}\alpha,\mathbf{k}'\beta) = \sum_{\mu\nu} a^{\alpha*}_{\mathbf{k}\mu} \omega^{\mu\nu}_{\mathbf{k}\sigma\mathbf{k}'\sigma'} a^{\beta}_{\mathbf{k}'\nu} - \epsilon_{\mathbf{k}\alpha} \delta_{\mathbf{k}\mathbf{k}'} \delta_{\alpha\beta}$$

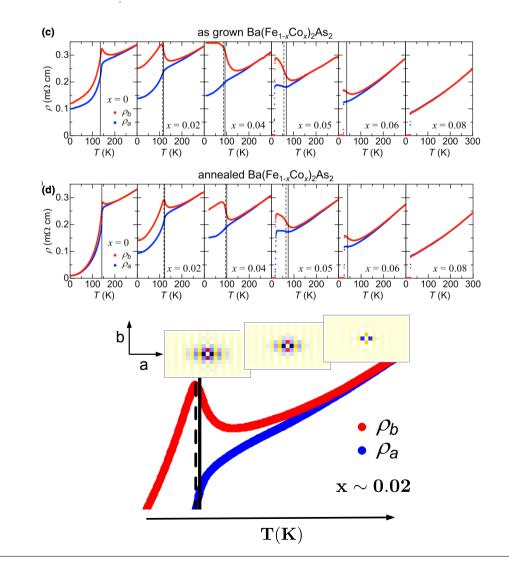
$$\omega_{\mathbf{k}\sigma\mathbf{k}'\sigma'}^{\mu\nu} = \frac{1}{N} \sum_{n} \sum_{\mathbf{i}\mathbf{j}} u_{\mathbf{j}\nu\sigma'}^{n*} u_{\mathbf{i}\mu\sigma}^{n} E_{n\sigma} e^{-i\mathbf{k}'\mathbf{r}_{\mathbf{j}}} e^{i\mathbf{k}\mathbf{r}_{\mathbf{i}}}$$

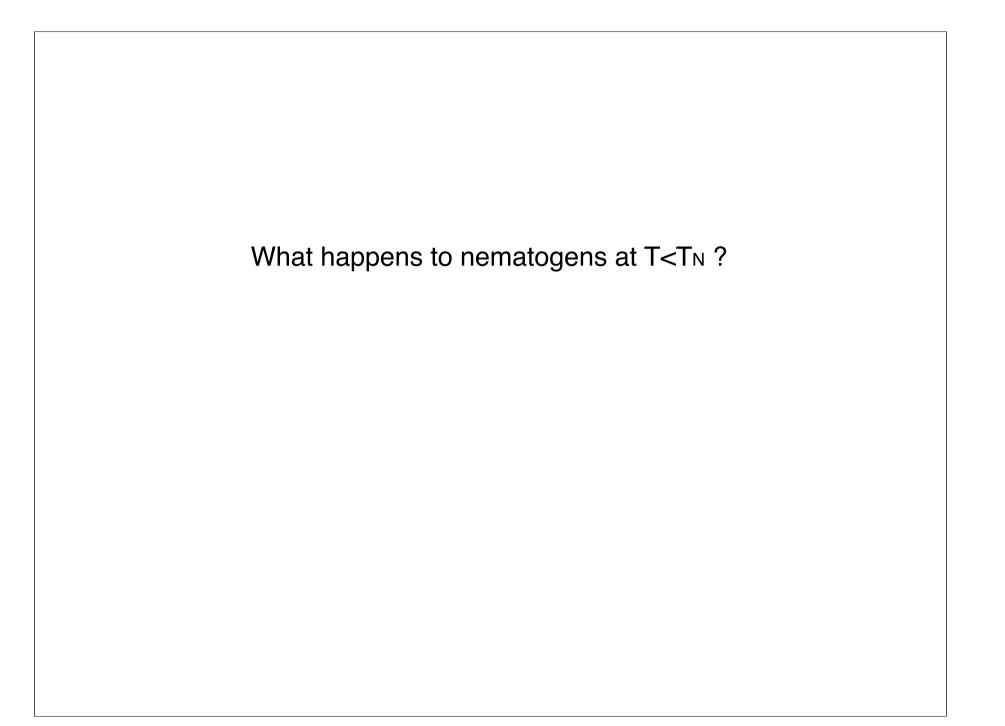


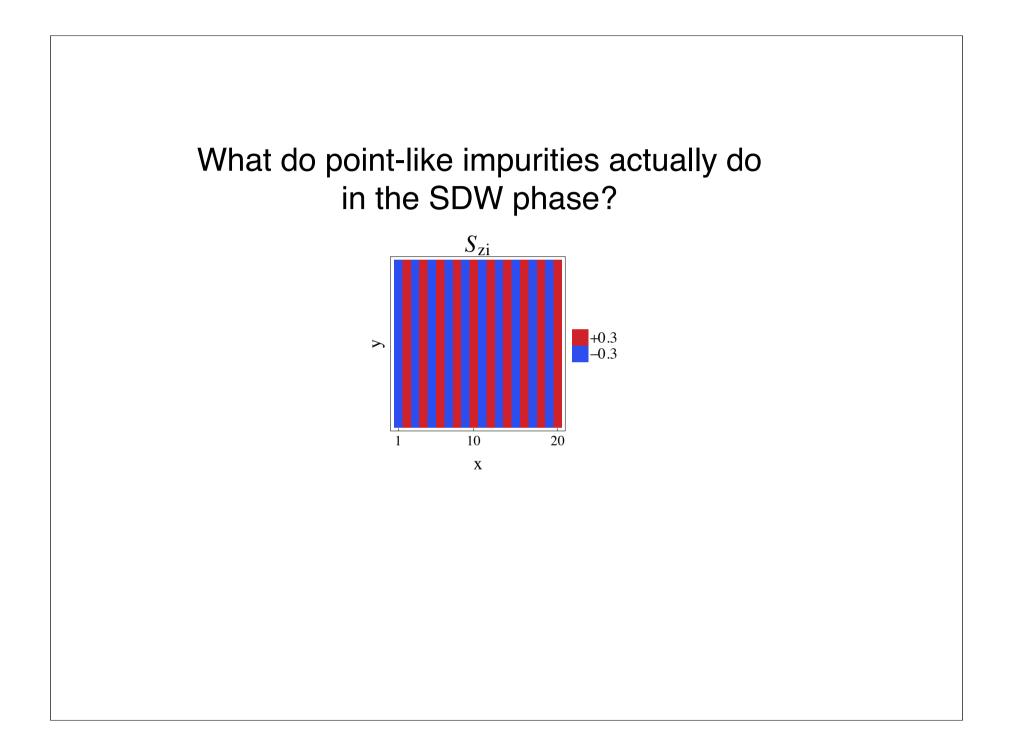


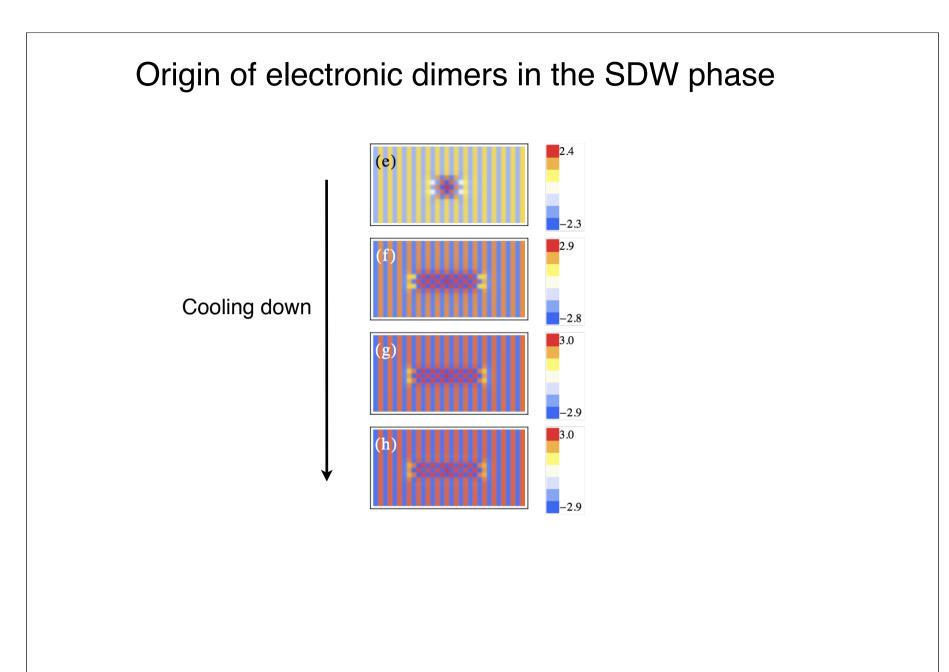


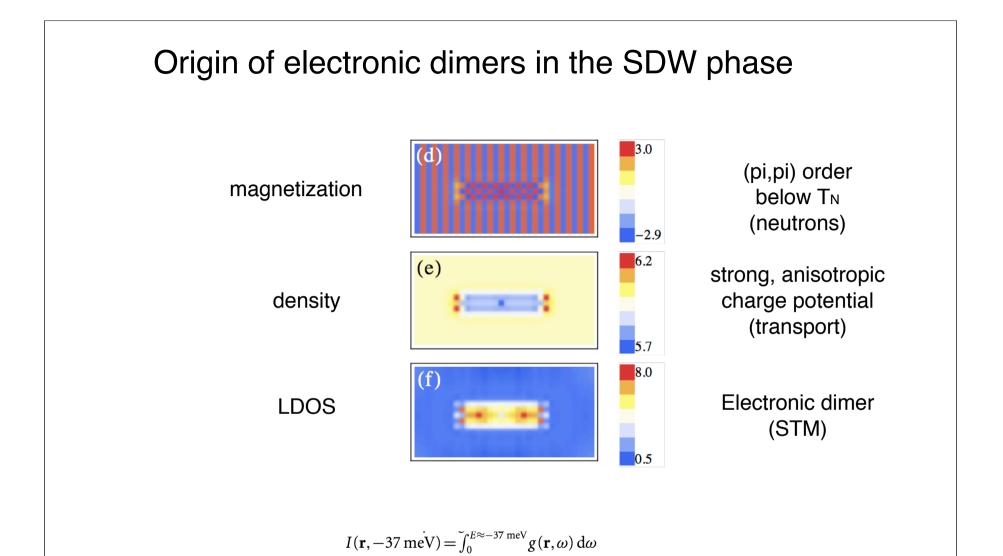
Anisotropy of the In-Plane Resistivity of Underdoped $Ba(Fe_{1-x}Co_x)_2As_2$ Superconductors Induced by Impurity Scattering in the Antiferromagnetic Orthorhombic Phase

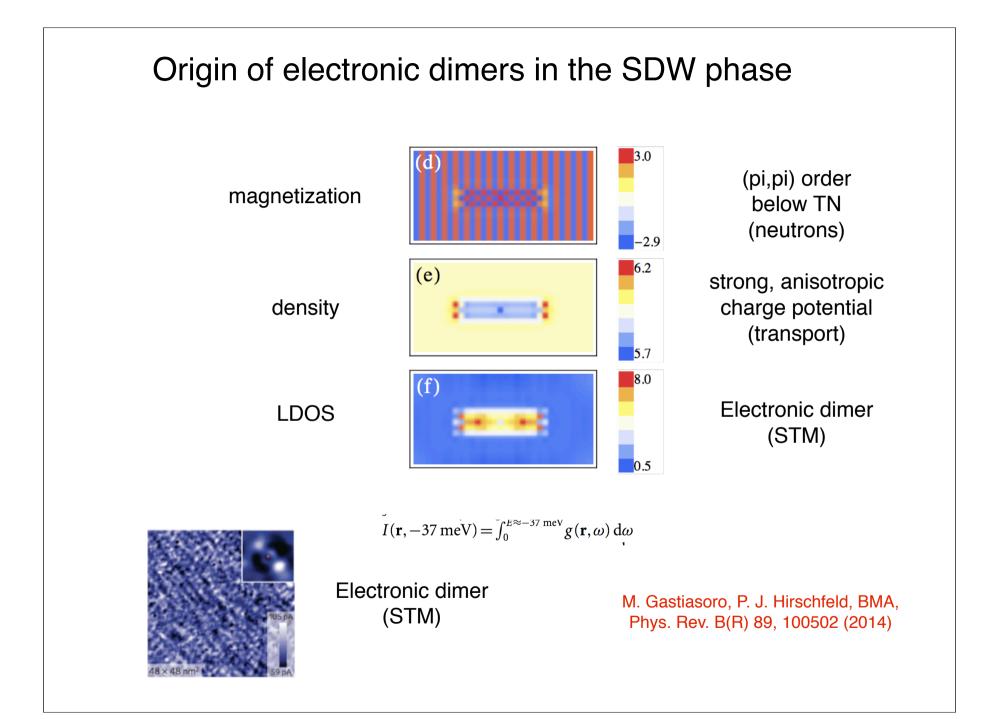








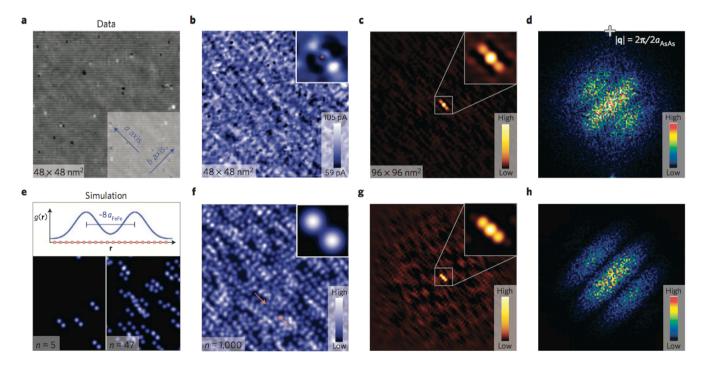




LETTERS PUBLISHED ONLINE: 17 FEBRUARY 2013 | DOI: 10.1038/NPHYS2544 nature physics

Anisotropic impurity states, quasiparticle scattering and nematic transport in underdoped Ca($Fe_{1-x}Co_x$)₂As₂

M. P. Allan^{1,2,3}, T-M. Chuang^{2,3,4,5}, F. Massee^{2,3,6}, Yang Xie², Ni Ni^{7,8}, S. L. Bud'ko^{7,8}, G. S. Boebinger⁵, Q. Wang⁹, D. S. Dessau⁹, P. C. Canfield^{7,8}, M. S. Golden⁶ and J. C. Davis^{2,3,10,11}*



 $I(\mathbf{r}, -37 \text{ meV}) = \int_0^{E^{\approx}-37 \text{ meV}} g(\mathbf{r}, \omega) \,\mathrm{d}\omega$

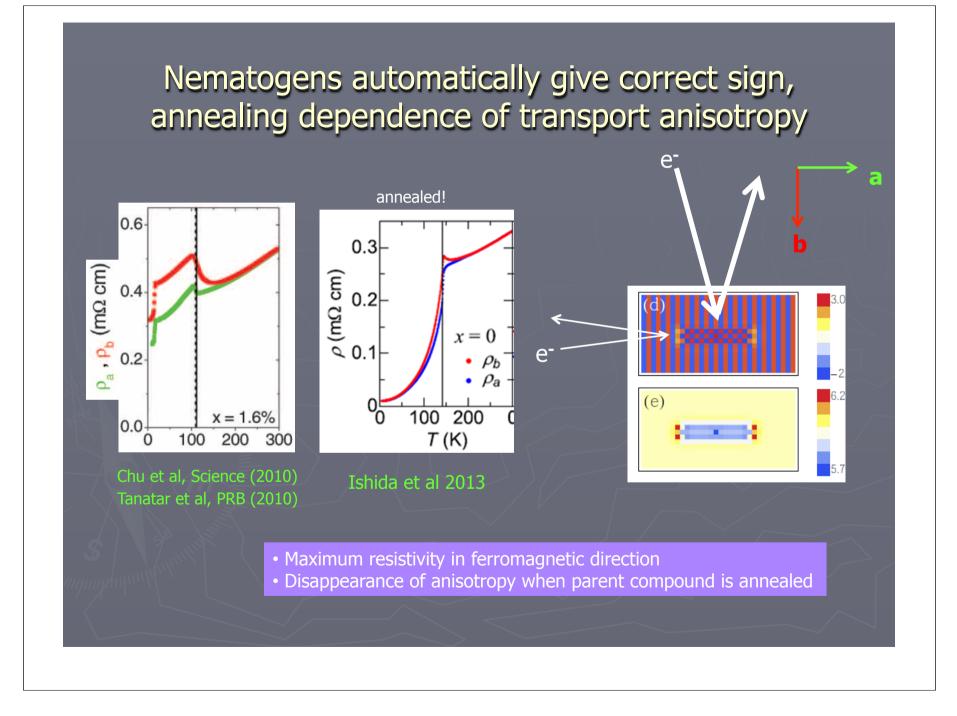
Talk outline

1) Emergent defect states

- experimental overview (transport, STM).
- model and results; origin and consequences of nematogens.
- scenario for understanding the resistivity of pnictides.

2) Impurity-induced long-range ordered phases

- experimental overview (X-rays, neutron, muSR).
- model and results; origin and consequences of unusual "RKKY" exchange couplings.
- induced magnetic phases and extreme Tc suppression.



Anomalous effect of Lifshitz transitions on DC transport in magnetic phases of Fe-based superconductors

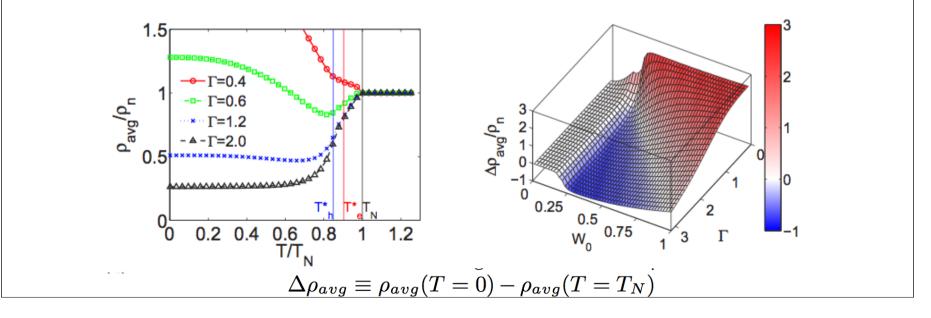
Y. Wang,¹ Maria N. Gastiasoro,² Brian M. Andersen,² Indranil Paul,³ and P. J. Hirschfeld¹

¹Department of Physics, University of Florida, Gainesville, Florida 32611, USA ²Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark ³Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris VII & CNRS, UMR 7162, 75205 Paris, France

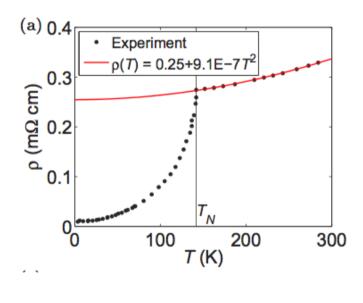
ArXiv:1408.1933

 $\mathcal{H} = \mathcal{H}_c + \mathcal{H}_f + \mathcal{H}_{\text{SDW}} + \mathcal{H}_{imp}.$

 $\mathcal{H}_{\rm SDW} = \sum_{\mathbf{k},\sigma} \sigma W \bar{c}^{\dagger}_{\mathbf{k},\sigma} f_{\mathbf{k}+\mathbf{Q},\sigma} \qquad \mathcal{H}_{imp} = \sum_{\mathbf{k},\mathbf{q},\sigma} V_{\mathbf{q}} c^{\dagger}_{\mathbf{k},\sigma} c_{\mathbf{k}+\mathbf{q},\sigma} + (c \to f),$ $W = W_0 \tanh(2\sqrt{\bar{T}_N/T - 1}) \text{ for } T \le T_N, \qquad V_{\mathbf{q}} = V_0 + V_1(1 + 2\cos q_x),$



Impurity scattering dominates



$$\rho_{avg} = A + BT^2$$

 $A \gg BT_N^2$

Anomalous effect of Lifshitz transitions on DC transport in magnetic phases of Fe-based superconductors

Y. Wang,¹ Maria N. Gastiasoro,² Brian M. Andersen,² Indranil Paul,³ and P. J. Hirschfeld¹

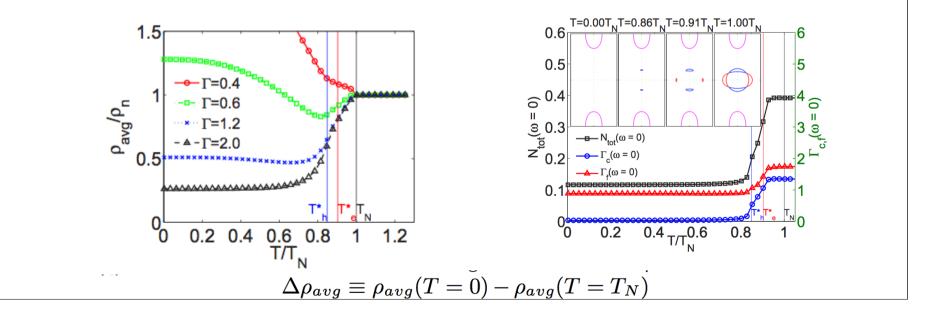
¹Department of Physics, University of Florida, Gainesville, Florida 32611, USA ²Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark ³Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris VII & CNRS, UMR 7162, 75205 Paris, France

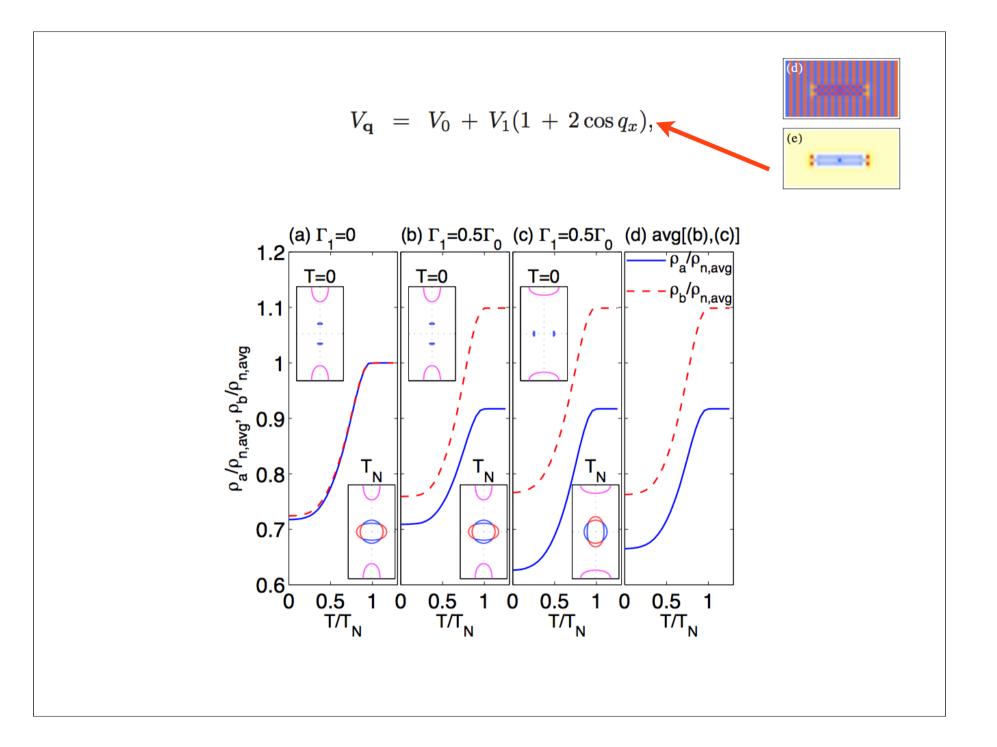
$$\mathcal{H} = \mathcal{H}_c + \mathcal{H}_f + \mathcal{H}_{ ext{SDW}} + \mathcal{H}_{imp}$$

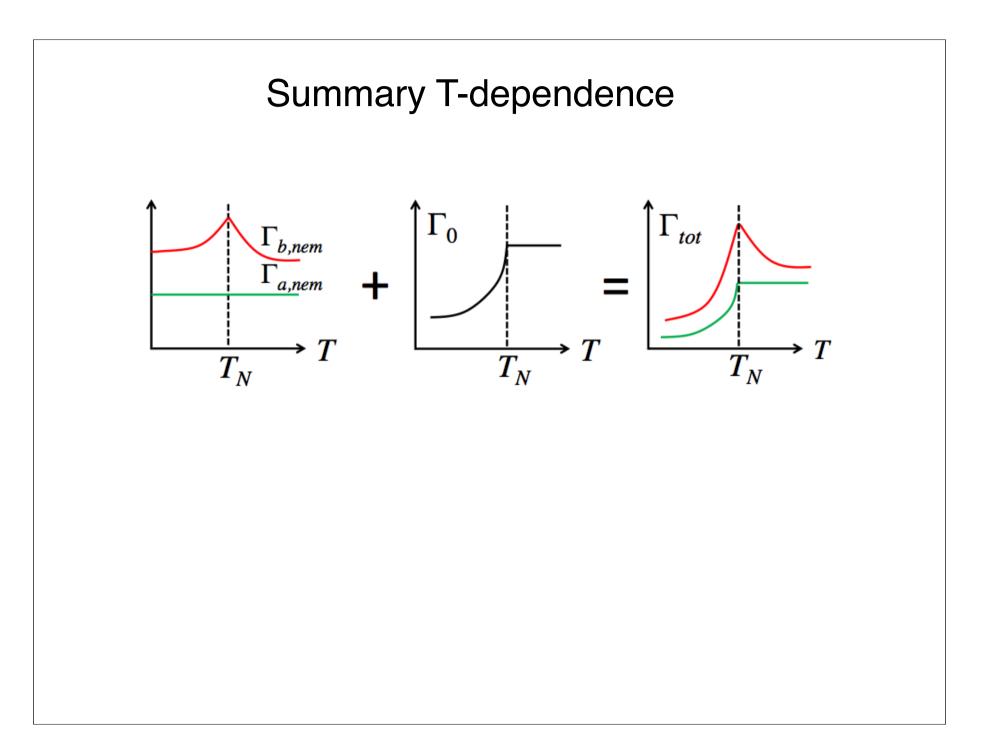
$$\mathcal{H}_{\mathrm{SDW}} = \sum_{\mathbf{k},\sigma} \sigma W \breve{c}^{\dagger}_{\mathbf{k},\sigma} f_{\mathbf{k}+\mathbf{Q},\sigma}$$

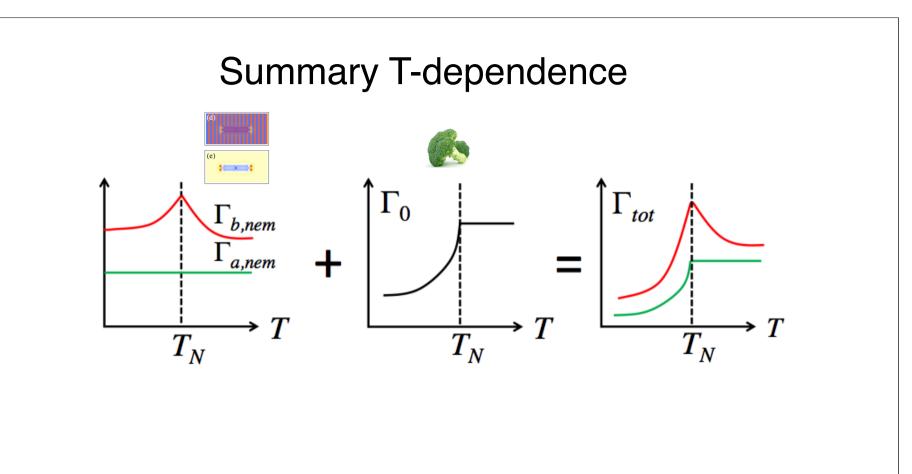
$$V_{\mathbf{q}} = V_0 + V_1(1 + 2\cos q_x),$$

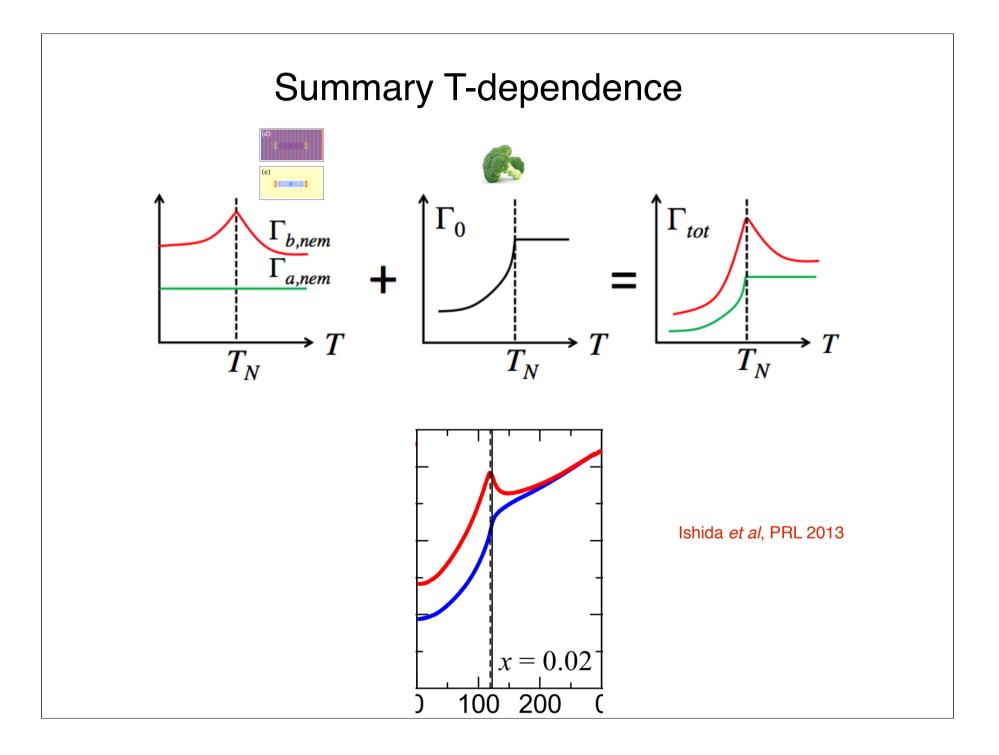
$$W = W_0 \tanh(2\sqrt{\overline{T_N/T}-1})$$
 for $T \le T_N$,

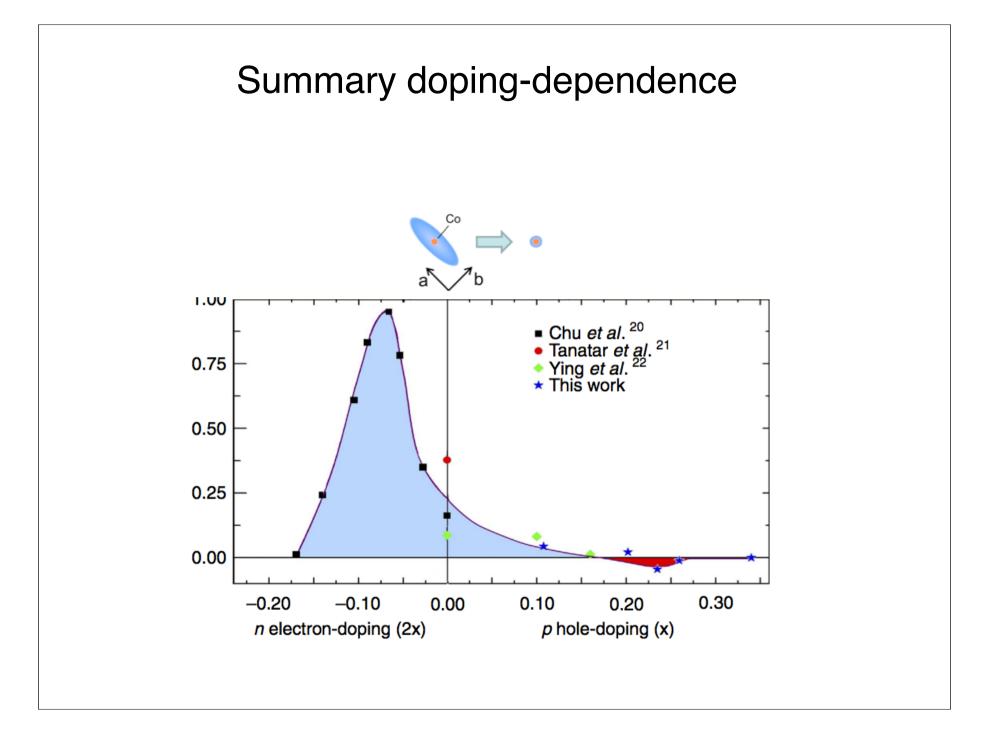


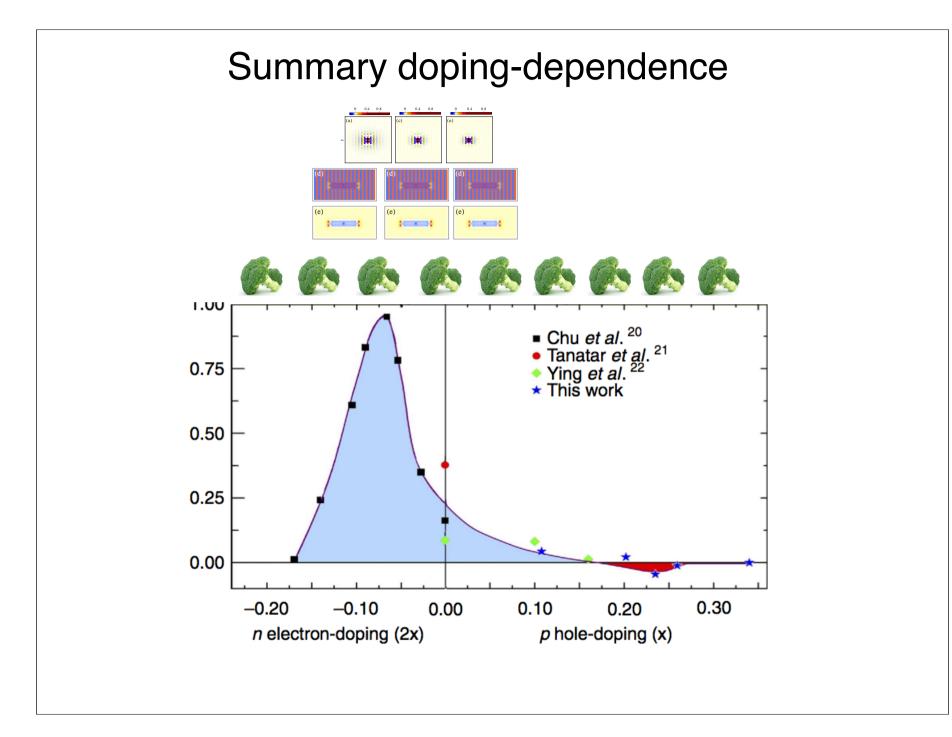












Challenges for theory:

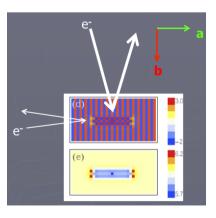
1) The counterintuitive sign of the resistivity anisotropy on the electron-doped side, where $\rho_b > \rho_a$ although b < a.

2) The decrease of the anisotropy upon annealing.

3) The pronounced increase in ρ_b as T_N is approached, with little or no increase in ρ_a .

4) The possible sign change but also significant decrease of the anisotropy on the hole-doped side.

5) The decrease in anisotropy both with increasing T and electron overdoping.



Challenges for theory:

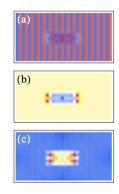
1) The counterintuitive sign of the resistivity anisotropy on the electron-doped side, where $\rho_b > \rho_a$ although b < a.

2) The decrease of the anisotropy upon annealing.

3) The pronounced increase in ρ_b as T_N is approached, with little or no increase in ρ_a .

4) The possible sign change but also significant decrease of the anisotropy on the hole-doped side.

5) The decrease in anisotropy both with increasing T and electron overdoping.



Challenges for theory:

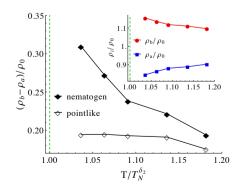
1) The counterintuitive sign of the resistivity anisotropy on the electron-doped side, where $\rho_b > \rho_a$ although b < a.

2) The decrease of the anisotropy upon annealing.

3) The pronounced increase in ρ_b as T_N is approached, with little or no increase in ρ_a .

4) The possible sign change but also significant decrease of the anisotropy on the hole-doped side.

5) The decrease in anisotropy both with increasing T and electron overdoping.



Challenges for theory:

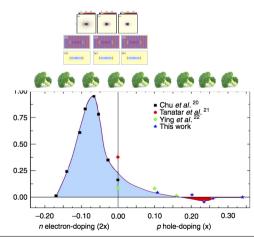
1) The counterintuitive sign of the resistivity anisotropy on the electron-doped side, where $\rho_b > \rho_a$ although b < a.

2) The decrease of the anisotropy upon annealing.

3) The pronounced increase in ρ_b as T_N is approached, with little or no increase in ρ_a .

4) The possible sign change but also significant decrease of the anisotropy on the hole-doped side.

5) The decrease in anisotropy both with increasing T and electron overdoping.



Challenges for theory:

1) The counterintuitive sign of the resistivity anisotropy on the electron-doped side, where $\rho_b > \rho_a$ although b < a.

2) The decrease of the anisotropy upon annealing.

3) The pronounced increase in ρ_b as T_N is approached, with little or no increase in ρ_a .

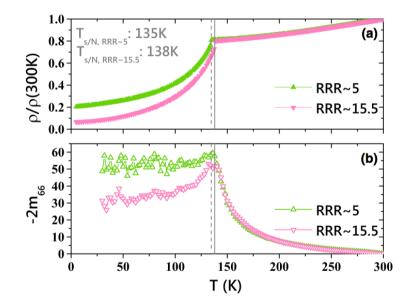
4) The possible sign change but also significant decrease of the anisotropy on the hole-doped side.

5) The decrease in anisotropy both with increasing T and electron overdoping.

1

Effect of Disorder on the Resistivity Anisotropy Near the Electronic Nematic Phase Transition in Pure and Electron-Doped BaFe₂As₂

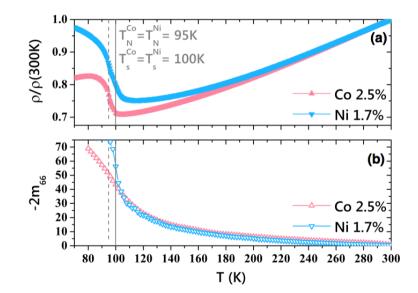
Hsueh-Hui Kuo^{1,3} and Ian R. Fisher^{2,3}



1

Effect of Disorder on the Resistivity Anisotropy Near the Electronic Nematic Phase Transition in Pure and Electron-Doped BaFe₂As₂

Hsueh-Hui Kuo^{1,3} and Ian R. Fisher^{2,3}



Talk outline

1) Emergent defect states

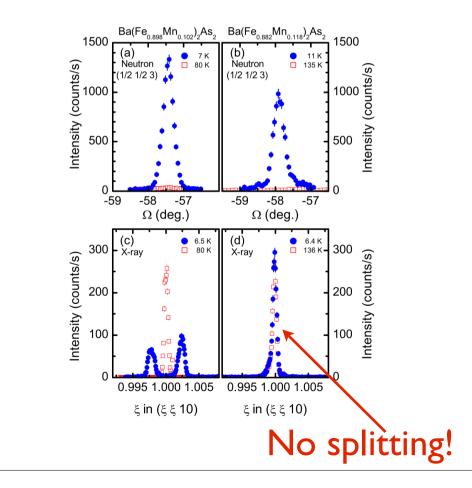
- experimental overview (transport, STM).
- model and results; origin and consequences of nematogens.
- scenario for understanding the resistivity of pnictides.

- 2) Impurity-induced long-range ordered phases
- experimental overview (X-rays, neutron, muSR).
- model and results; origin and consequences of unusual "RKKY" exchange couplings.
- induced magnetic phases and extreme Tc suppression.

A magnetic tetragonal phase

PHYSICAL REVIEW B 82, 220503(R) (2010)

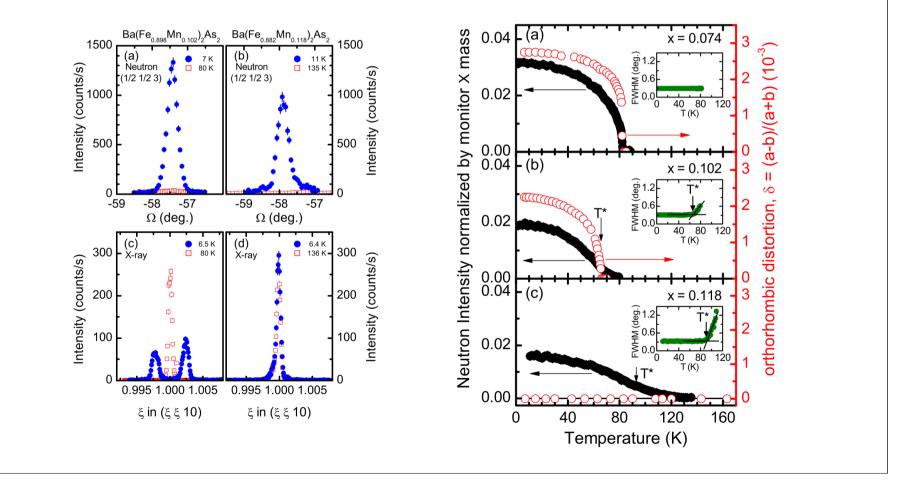
Antiferromagnetic ordering in the absence of structural distortion in $Ba(Fe_{1-x}Mn_x)_2As_2$



A magnetic tetragonal phase

PHYSICAL REVIEW B 82, 220503(R) (2010)

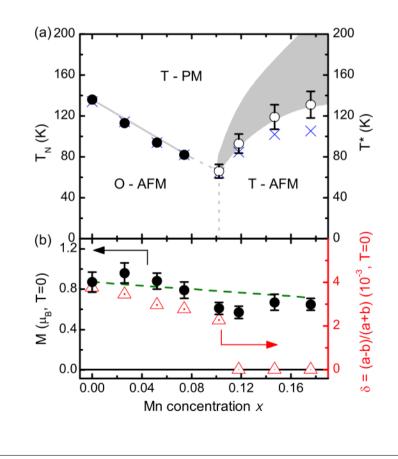
Antiferromagnetic ordering in the absence of structural distortion in $Ba(Fe_{1-x}Mn_x)_2As_2$



A possibility of unusual magnetic order

PHYSICAL REVIEW B 82, 220503(R) (2010)

Antiferromagnetic ordering in the absence of structural distortion in $Ba(Fe_{1-x}Mn_x)_2As_2$

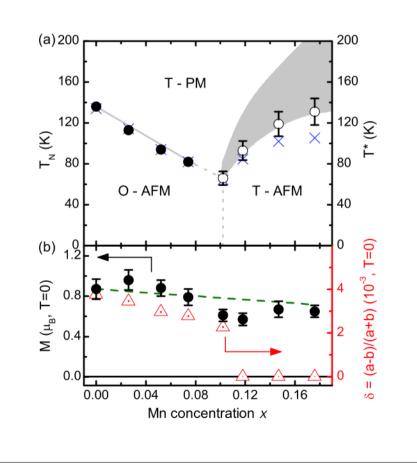


A possibility of unusual magnetic order

PHYSICAL REVIEW B 82, 220503(R) (2010)

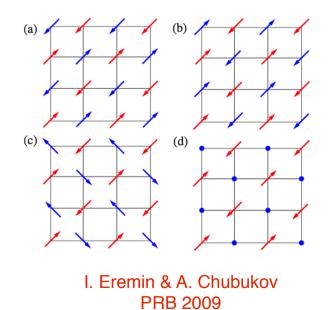
Antiferromagnetic ordering in the absence of structural distortion in $Ba(Fe_{1-x}Mn_x)_2As_2$

M. G. Kim,¹ A. Kreyssig,¹ A. Thaler,¹ D. K. Pratt,¹ W. Tian,¹ J. L. Zarestky,¹ M. A. Green,^{2,3} S. L. Bud'ko,¹ P. C. Canfield,¹ R. J. McQueeney,¹ and A. I. Goldman¹



Is this proof that orbital ordering is not driving orthorhombicity and concomitant SDW?

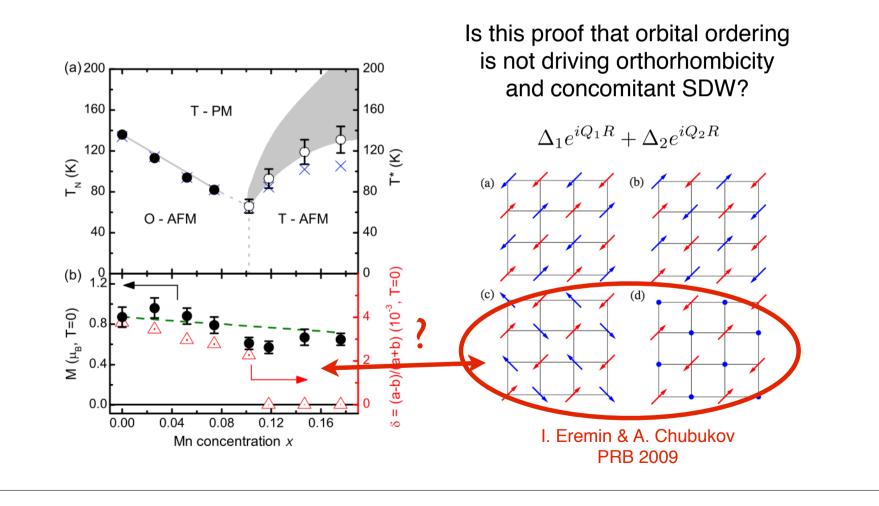
 $\Delta_1 e^{iQ_1R} + \Delta_2 e^{iQ_2R}$

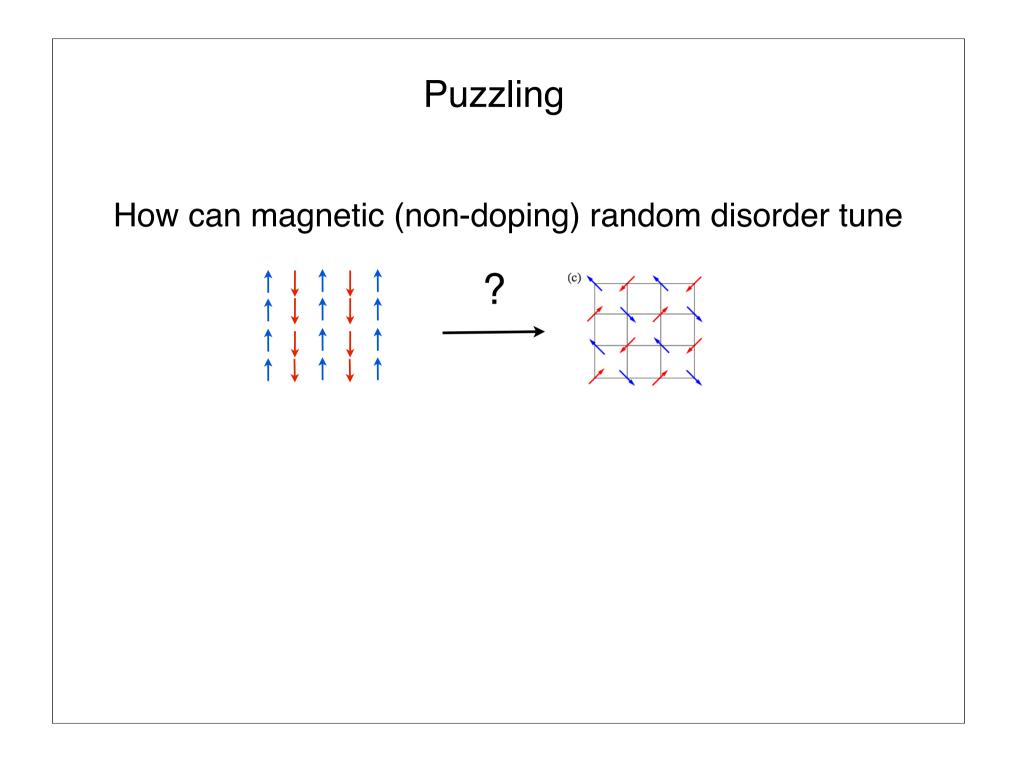


A possibility of unusual magnetic order

PHYSICAL REVIEW B 82, 220503(R) (2010)

Antiferromagnetic ordering in the absence of structural distortion in $Ba(Fe_{1-x}Mn_x)_2As_2$



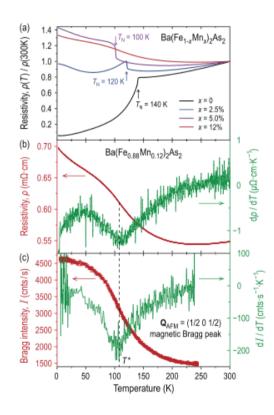


Phase coexistence

PHYSICAL REVIEW B 87, 224425 (2013)

Possible realization of an antiferromagnetic Griffiths phase in Ba($Fe_{1-x}Mn_x$)₂As₂

D. S. Inosov,^{1,2,*} G. Friemel,¹ J. T. Park,^{1,3} A. C. Walters,¹ Y. Texier,⁴ Y. Laplace,⁴ J. Bobroff,⁴ V. Hinkov,^{1,5} D. L. Sun,¹ Y. Liu,¹ R. Khasanov,⁶ K. Sedlak,⁶ Ph. Bourges,⁷ Y. Sidis,⁷ A. Ivanov,⁸ C. T. Lin,¹ T. Keller,^{1,3} and B. Keimer¹



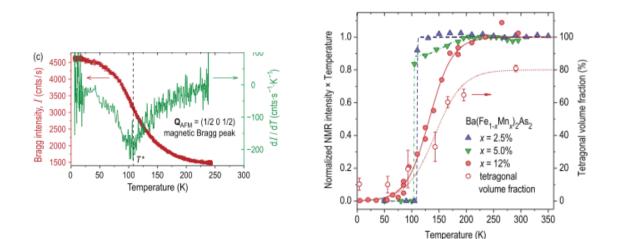
Initial suppression of T_N followed by a cooperative impurity effect stabilizing (pi,0) order at high T.

Phase coexistence

PHYSICAL REVIEW B 87, 224425 (2013)

Possible realization of an antiferromagnetic Griffiths phase in Ba($Fe_{1-x}Mn_x$)₂As₂

D. S. Inosov,^{1,2,*} G. Friemel,¹ J. T. Park,^{1,3} A. C. Walters,¹ Y. Texier,⁴ Y. Laplace,⁴ J. Bobroff,⁴ V. Hinkov,^{1,5} D. L. Sun,¹ Y. Liu,¹ R. Khasanov,⁶ K. Sedlak,⁶ Ph. Bourges,⁷ Y. Sidis,⁷ A. Ivanov,⁸ C. T. Lin,¹ T. Keller,^{1,3} and B. Keimer¹



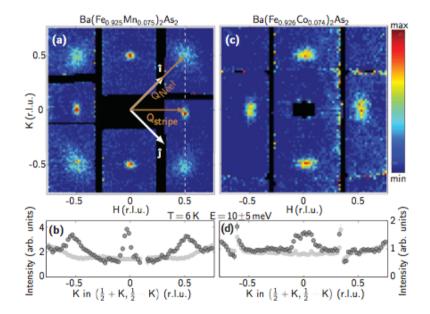
12% Mn sample exhibits *coexistence* of tetragonal and orthorhombic phases

Induced magnetic (pi,pi) scattering

PHYSICAL REVIEW B 86, 020503(R) (2012)

Competition between stripe and checkerboard magnetic instabilities in Mn-doped BaFe₂As₂

G. S. Tucker,¹ D. K. Pratt,¹ M. G. Kim,¹ S. Ran,¹ A. Thaler,¹ G. E. Granroth,² K. Marty,² W. Tian,¹ J. L. Zarestky,¹ M. D. Lumsden,² S. L. Bud'ko,¹ P. C. Canfield,¹ A. Kreyssig,¹ A. I. Goldman,¹ and R. J. McQueeney¹



Summary of main exp. facts for Mn-122

Challenges for theory:

1) Mn impurities are a source of (non-doping) magnetic impurities.

2) Mn induce local (pi,pi) order in their vicinity both above and below $$T_{\rm N}$$

3) (pi,0) order is induced above T_N but only for enough Mn.

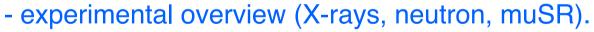
4) Explain apparent absence of orthorhombicity.

Talk outline

1) Emergent defect states

- experimental overview (transport, STM).
- model and results; origin and consequences of nematogens.
- scenario for understanding the resistivity of pnictides.

2) Impurity-induced long-range ordered phases



- model and results; origin and consequences of unusual "RKKY" exchange couplings.
- induced magnetic phases and extreme Tc suppression.

<u>The 5-band model + magnetic impurity</u>

$$H = H_0 + H_{int} + H_{imp},$$

$$H_0 = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_0 \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu.\sigma}$$

$$H_{int} = U \sum_{\mathbf{i},\mu} n_{\mathbf{i}\mu\uparrow} n_{\mathbf{i}\mu\downarrow} + (U' - \frac{J}{2}) \sum_{\mathbf{i},\mu<\nu,\sigma\sigma'} n_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\nu\sigma'}$$
(3)
$$- 2J \sum_{\mathbf{i},\mu} \vec{S}_{\mathbf{i}\mu} \cdot \vec{S}_{\mathbf{i}\nu} + J' \sum_{\mathbf{i},\mu} c^{\dagger}_{\mathbf{i}\mu\sigma} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{i}\nu\sigma} c_{\mathbf{i}\nu\sigma},$$

$$\frac{25}{i,\mu < \nu} \sum_{\mu < \nu} \frac{5}{i,\mu < \nu} \frac{5}{i,\mu < \nu,\sigma} \sum_{\mu < \nu,\sigma} < \nu,$$

$$\mathcal{H}_{imp} = \sum_{\{\mathbf{i}^*\}\mu\sigma\sigma'} \mathbf{S}_{\mathbf{i}^*} \cdot (c^{\dagger}_{\mathbf{i}^*\mu\sigma}\sigma_{\sigma\sigma'}c_{\mathbf{i}^*\mu\sigma'}),$$

M. N. Gastiasoro et al PRL 2014

<u>The 5-band model + magnetic impurity</u>

$$H = H_0 + H_{int} + H_{imp},$$

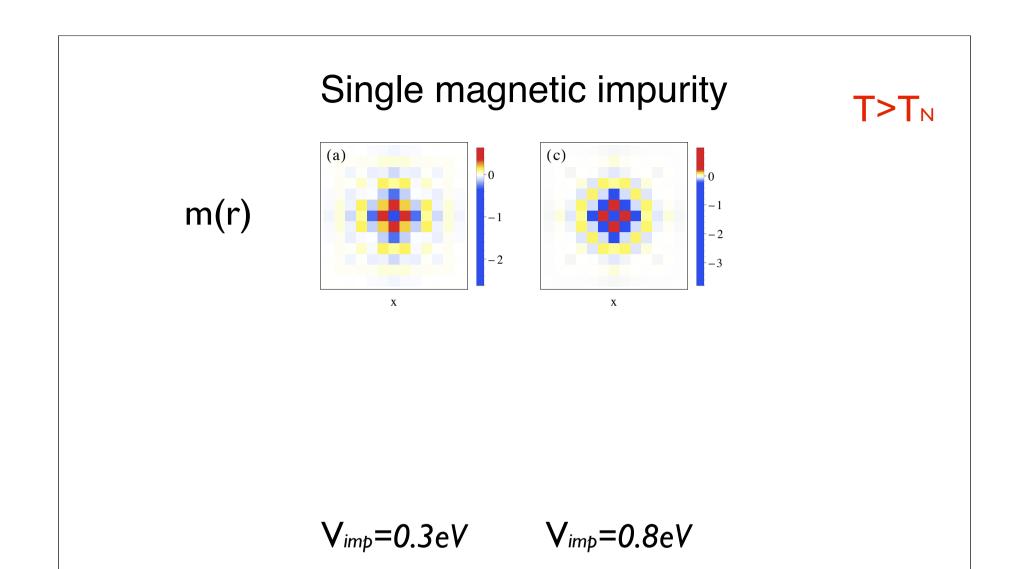
$$H_0 = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_0 \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu.\sigma}$$

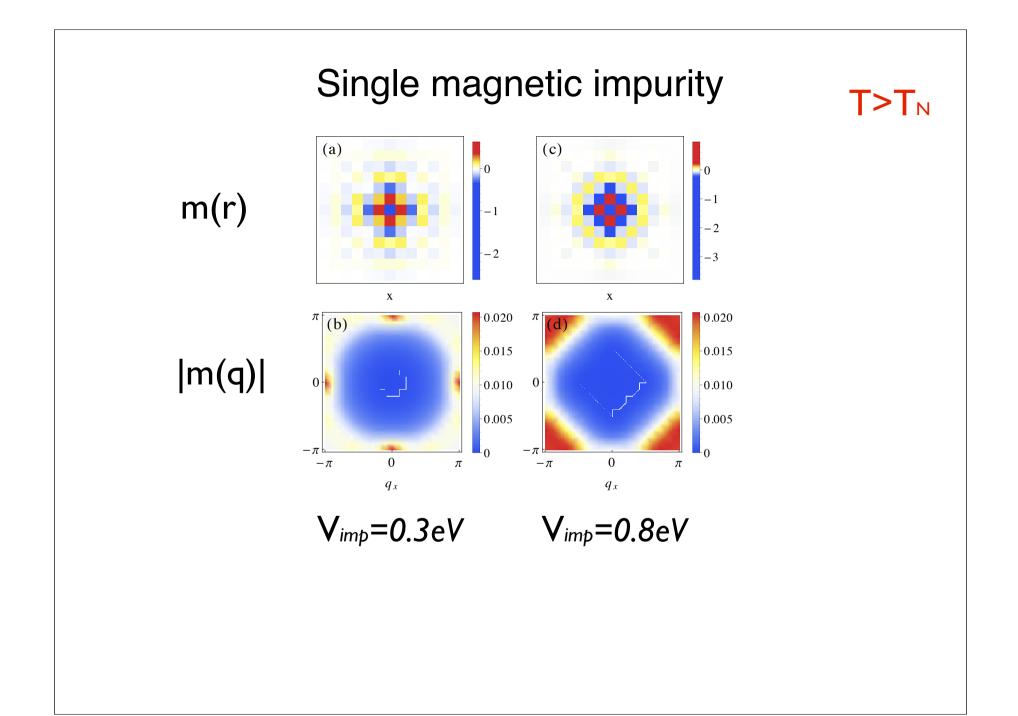
$$H_{int} = U \sum_{\mathbf{i},\mu} n_{\mathbf{i}\mu\uparrow} n_{\mathbf{i}\mu\downarrow} + (U' - \frac{J}{2}) \sum_{\mathbf{i},\mu<\nu,\sigma\sigma'} n_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\nu\sigma'}$$
(3)
$$- 2J \sum_{\mathbf{i},\mu} \vec{S}_{\mathbf{i}\mu} \cdot \vec{S}_{\mathbf{i}\nu} + J' \sum_{\mathbf{i},\mu\sigma} c^{\dagger}_{\mathbf{i}\mu\sigma} c^{\dagger}_{\mathbf{i}\nu\bar{\sigma}} c_{\mathbf{i}\nu\sigma},$$

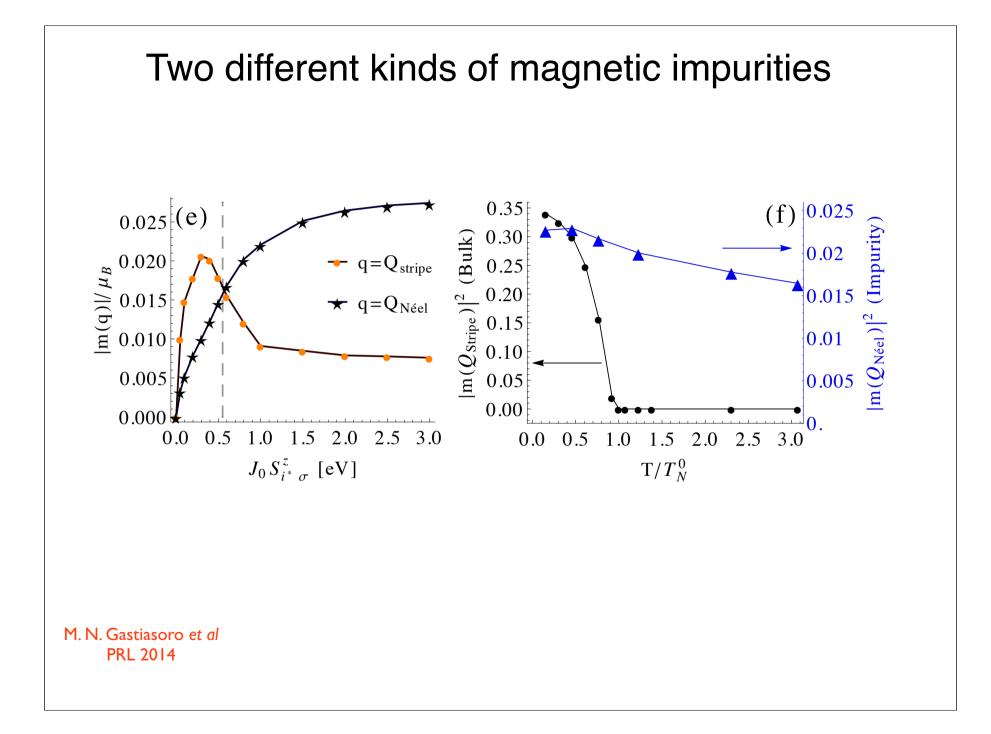
$$-2J\sum_{\mathbf{i},\mu<\nu}S_{\mathbf{i}\mu}\cdot S_{\mathbf{i}\nu}+J\sum_{\mathbf{i},\mu<\nu,\sigma}C_{\mathbf{i}\mu\sigma}C_{\mathbf{i}\mu\bar{\sigma}}C_{\mathbf{i}\nu\bar{\sigma}}C_{\mathbf{i}\nu}$$

$$\mathcal{H}_{imp} = \sum_{\{\mathbf{i}^*\}\mu\sigma\sigma'} \mathbf{S}_{\mathbf{i}^*} \cdot (c^{\dagger}_{\mathbf{i}^*\mu\sigma}\sigma_{\sigma\sigma'}c_{\mathbf{i}^*\mu\sigma'}),$$

Mean-field decoupling and self-consistent solution for all densities at all orbitals and sites.







Multiple magnetic impurities

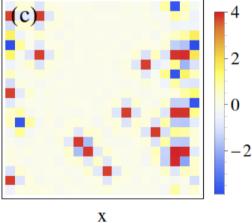
Energy calculation : "Monte Carlo"

$$F = U - TS$$

$$U = \langle H \rangle$$

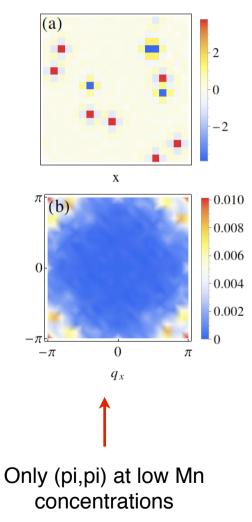
$$S = -k_B \sum_{n} (f(E_n) Ln f(E_n) + f(-E_n) Ln f(-E_n))$$

Find the configuration that minimizes $\,F\,$



Generation of (0,pi) order-from-disorder

3% Mn

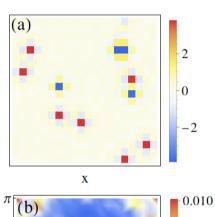


Generation of (0,pi) order-from-disorder

0

π

3% Mn



0

 q_x

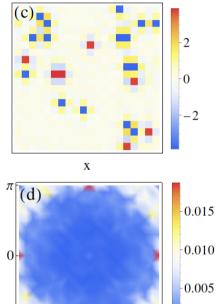
(pi,pi) at low Mn

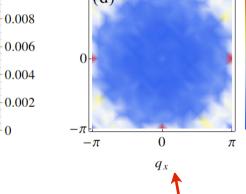
concentrations

 $-\pi$

 $-\pi$

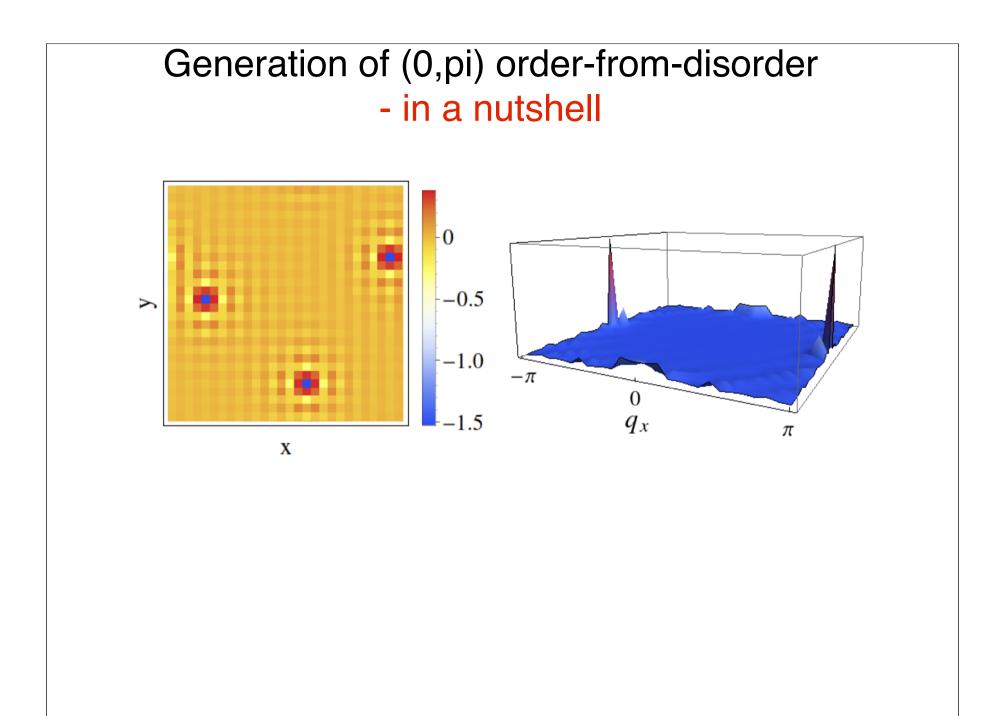
6% Mn

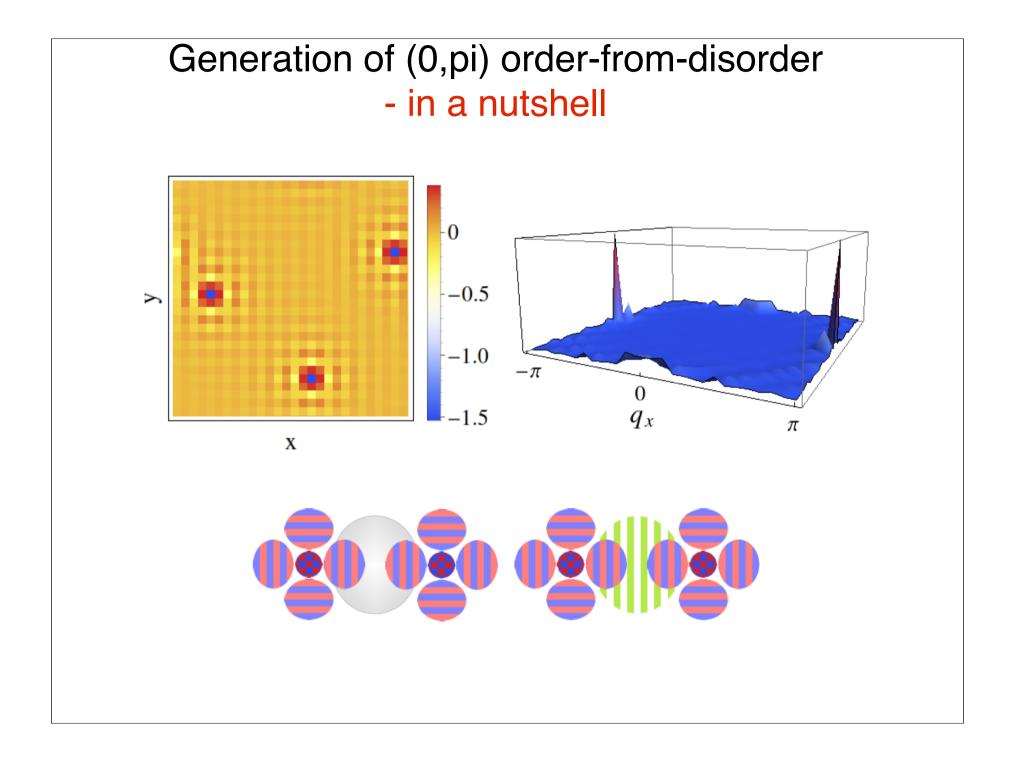


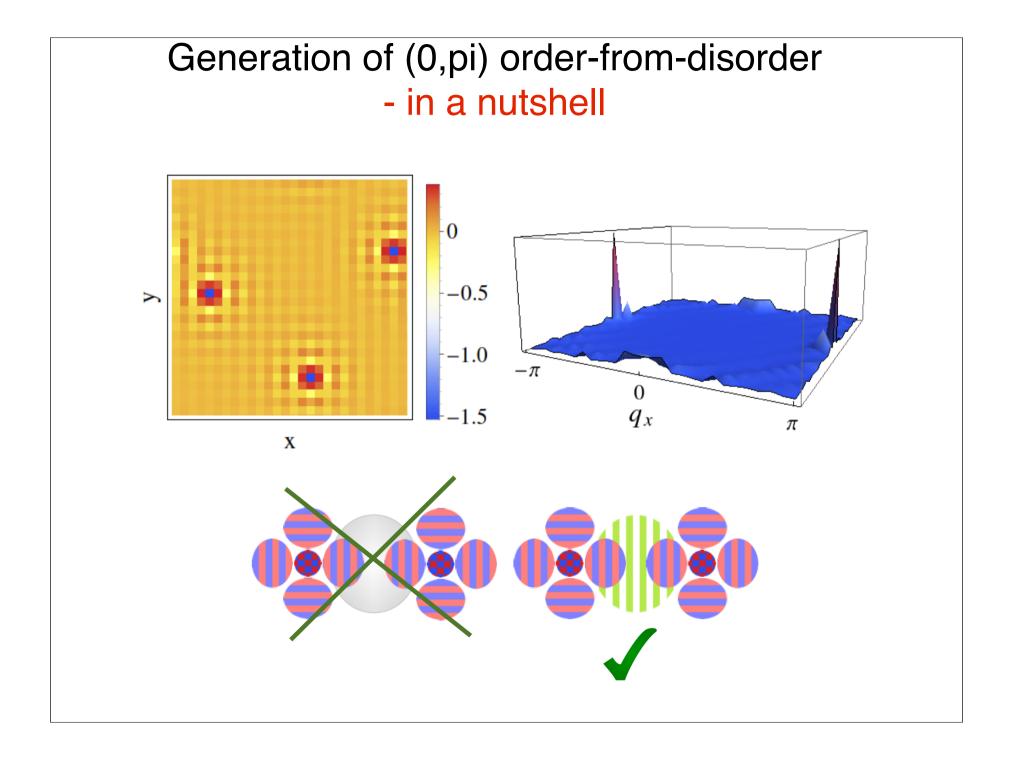


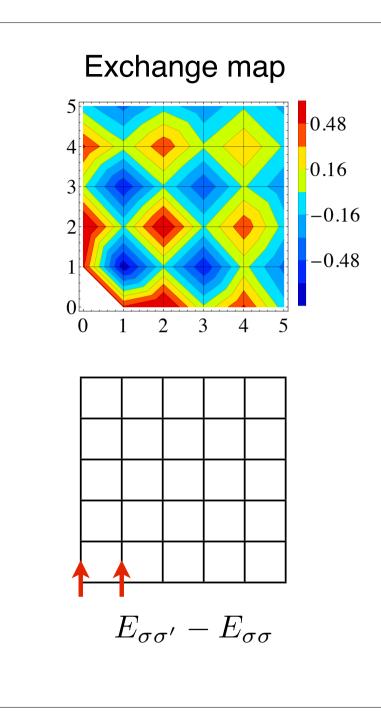
(pi,0) at high enough Mn concentrations

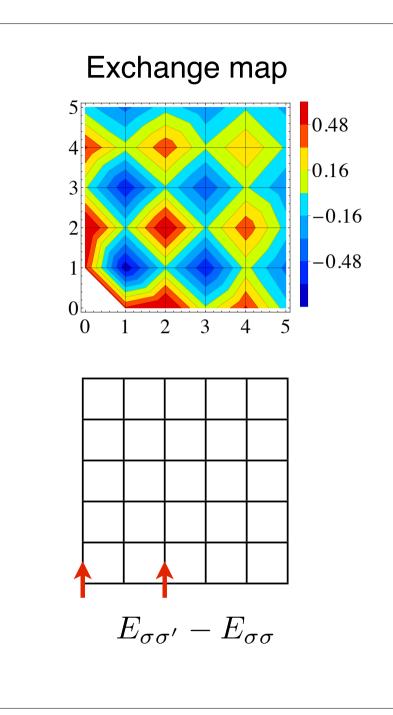
L₀

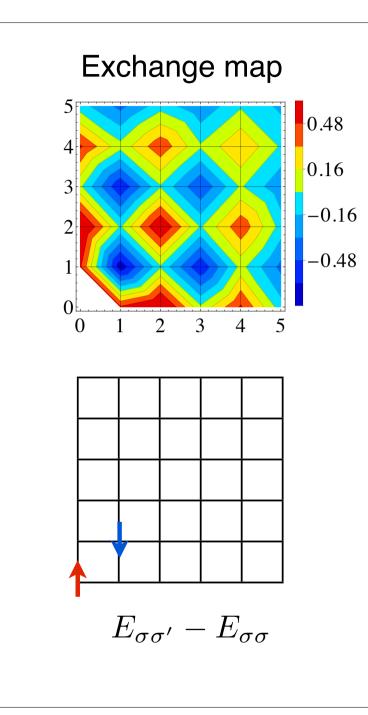


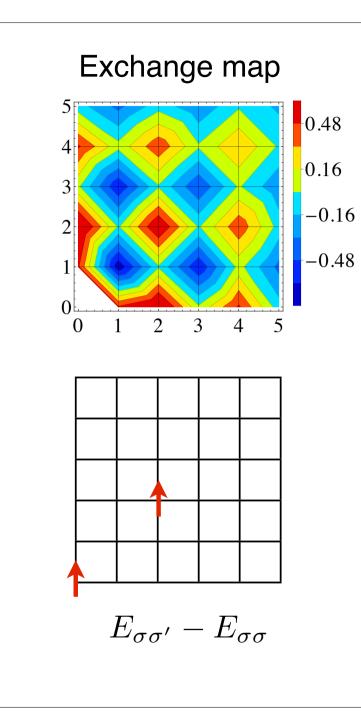


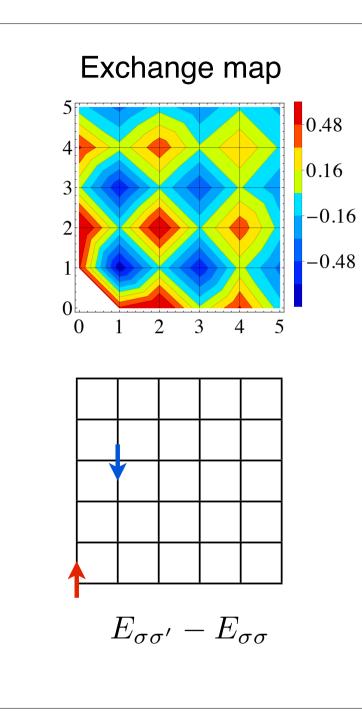


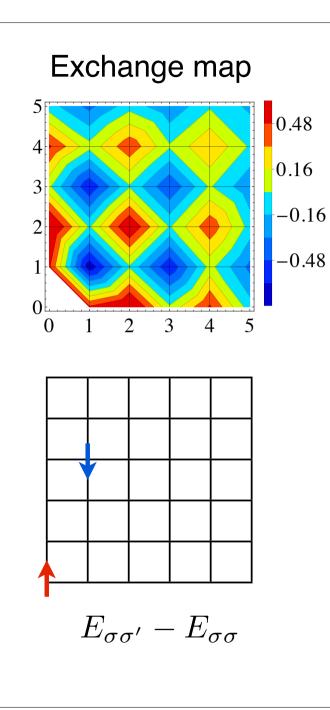


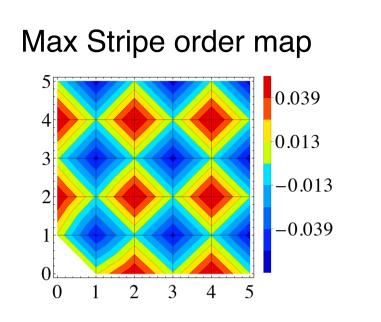






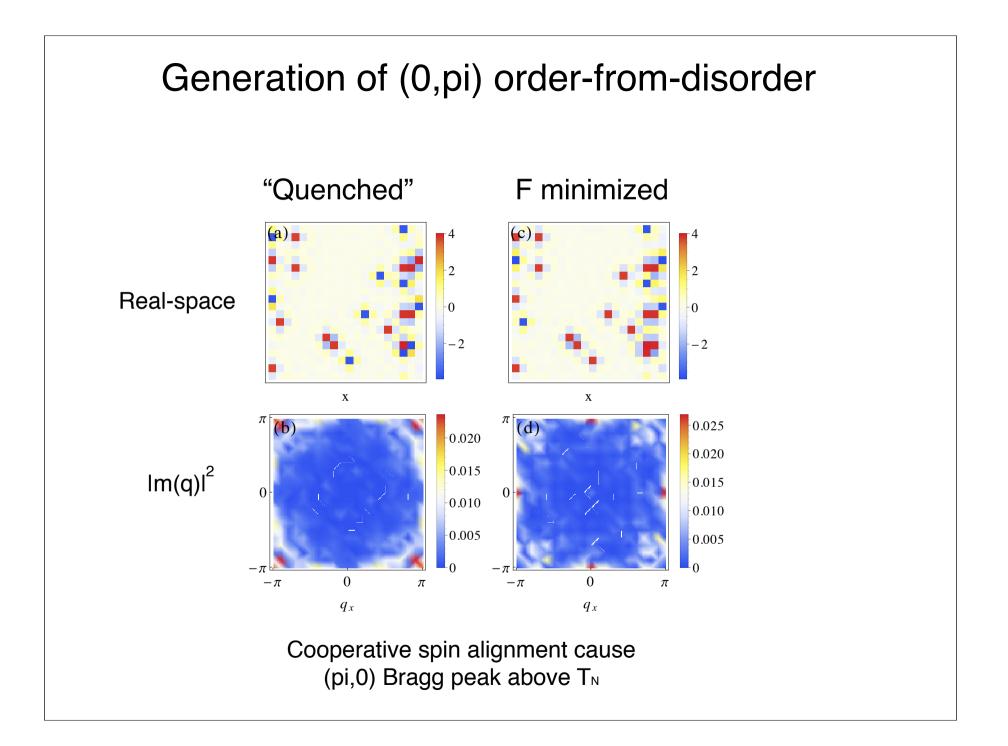




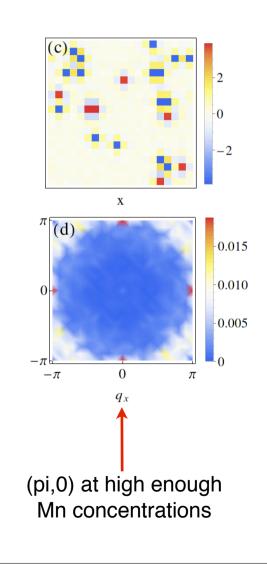


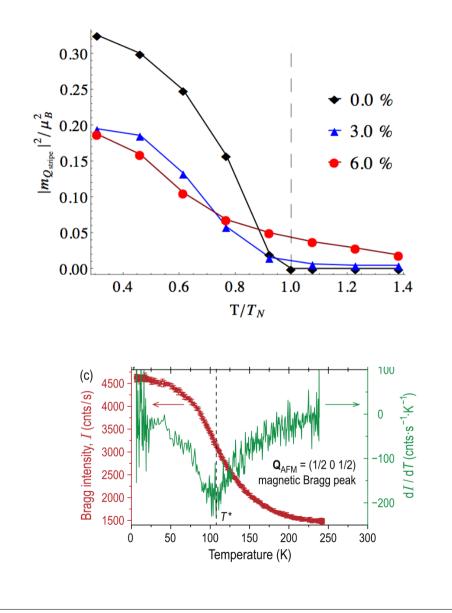
$$I = M_s(\sigma\sigma) - M_s(\sigma\sigma')$$

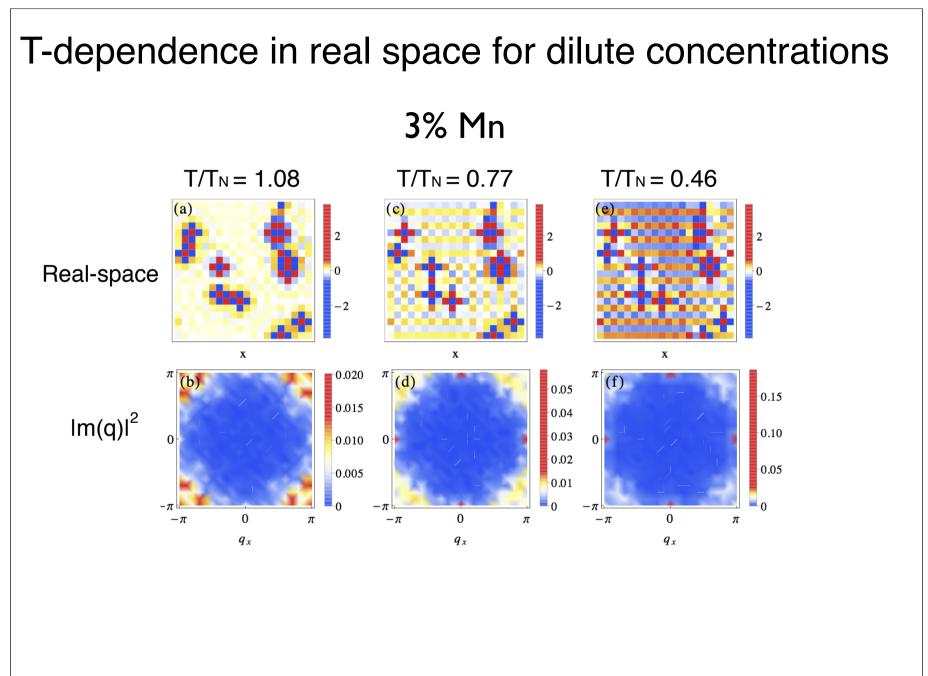
$$M_s = m(Q_1) + m(Q_2)$$

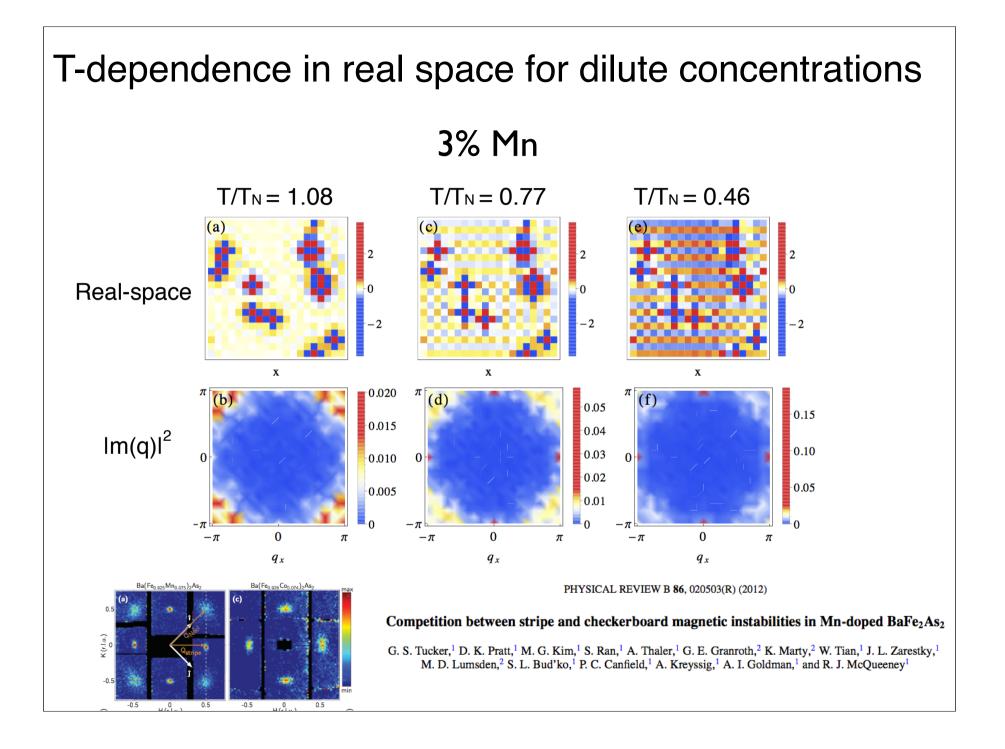


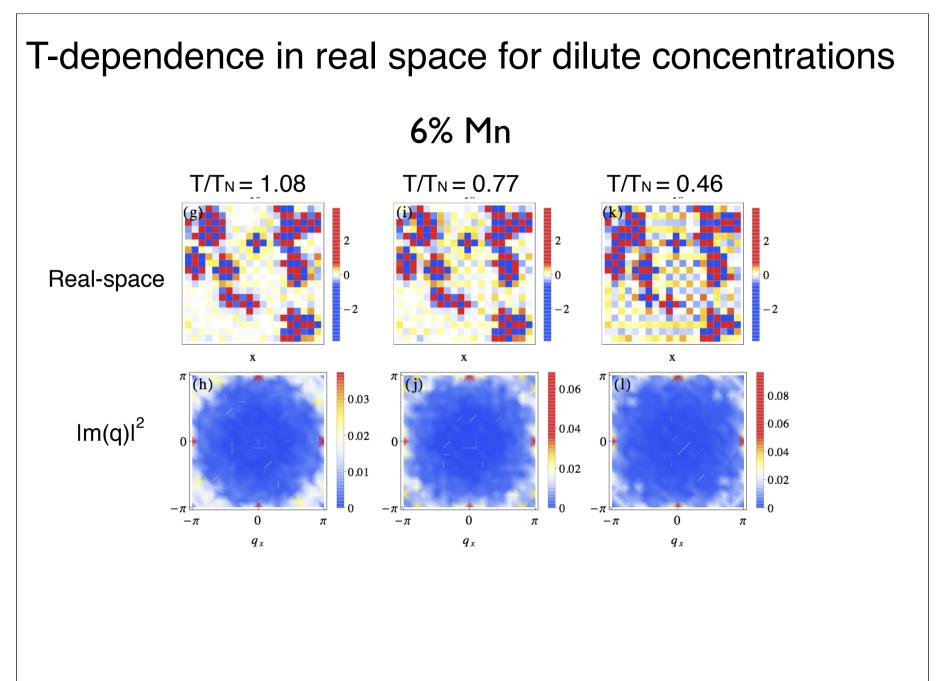
T-dependence of Mn-induced (0,pi) order

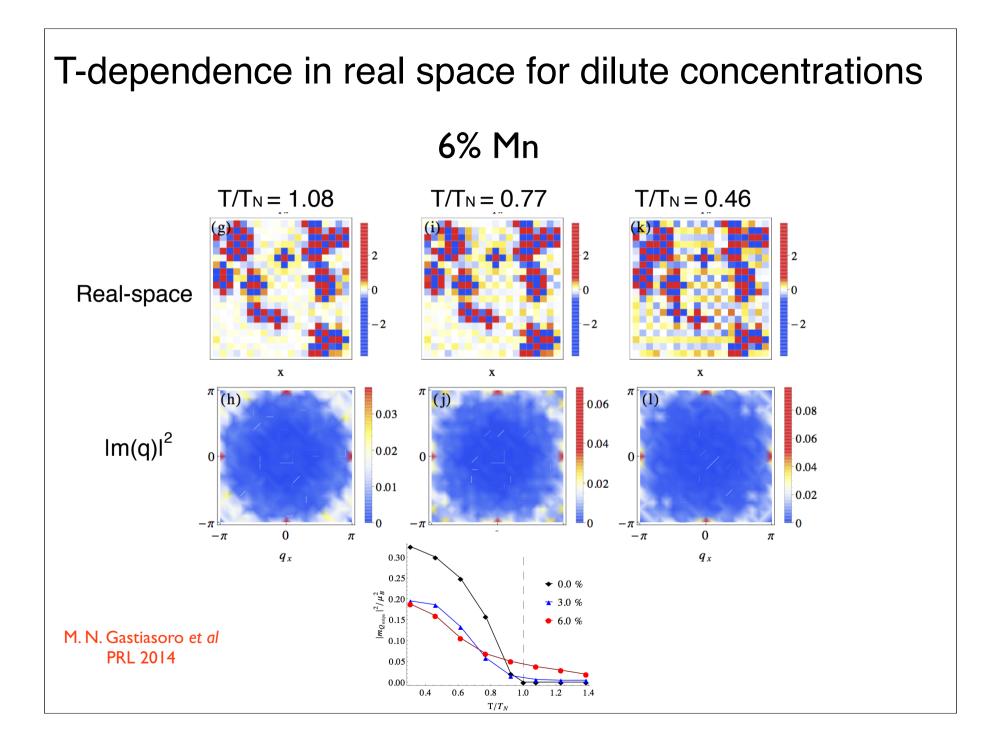












Challenges for theory:

1) Mn impurities are a source of magnetic impurities.

2) Mn induce local (pi,pi) order in their immediate vicinity both above and below $T_{\mbox{\tiny N}}$

3) (pi,0) order is induced above T_N but only for enough Mn.

Challenges for theory:

1) Mn impurities are a source of magnetic impurities.

2) Mn induce local (pi,pi) order in their immediate vicinity both above and below $T_{\mbox{\tiny N}}$

3) (pi,0) order is induced above T_N but only for enough Mn.

Challenges for theory:

1) Mn impurities are a source of magnetic impurities.

2) Mn induce local (pi,pi) order in their immediate vicinity both above and below T_N

3) (pi,0) order is induced above T_N but only for enough Mn.

Challenges for theory:

1) Mn impurities are a source of magnetic impurities.

2) Mn induce local (pi,pi) order in their immediate vicinity both above and below $T_{\mbox{\tiny N}}$

3) (pi,0) order is induced above T_N but only for enough Mn.

Talk outline

1) Emergent defect states

- experimental overview (transport, STM).
- model and results; origin and consequences of nematogens.
- scenario for understanding the resistivity of pnictides.

2) Impurity-induced long-range ordered phases

- experimental overview (X-rays, neutron, muSR).
- model and results; origin and consequences of unusual "RKKY" exchange couplings.
- induced magnetic phases and extreme Tc suppression.

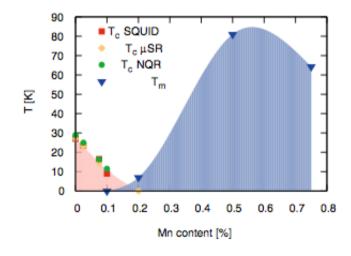
Poisoning effects

PHYSICAL REVIEW B 89, 134503 (2014)

Poisoning effect of Mn in LaFe_{1-x}Mn_xAsO_{0.89}F_{0.11}: Unveiling a quantum critical point in the phase diagram of iron-based superconductors

F. Hammerath,^{1,*} P. Bonfà,² S. Sanna,¹ G. Prando,^{1,+} R. De Renzi,² Y. Kobayashi,³ M. Sato,³ and P. Carretta¹ ¹Dipartimento di Fisica and Unità CNISM di Pavia, I-27100 Pavia, Italy ²Dipartimento di Fisica and Unità CNISM di Parma, I-43124 Parma, Italy ³Department of Physics, Division of Material Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (Received 29 January 2014; revised manuscript received 17 March 2014; published 4 April 2014)

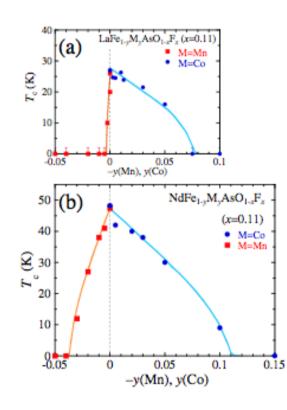
A superconducting-to-magnetic transition is reported for LaFeAsO_{0.89}F_{0.11} where a per-thousand amount of Mn impurities is dispersed. By employing local spectroscopic techniques like muon spin rotation (μ SR) and nuclear quadrupole resonance (NQR) on compounds with Mn contents ranging from x = 0.025% to x = 0.75%, we find that the electronic properties are extremely sensitive to the Mn impurities. In fact, <u>a small amount of Mn as low as 0.2% suppresses superconductivity completely.</u> Static magnetism, involving the FeAs planes, is observed to arise for x > 0.1% and becomes further enhanced upon increasing Mn substitution. Also a progressive increase of low-energy spin fluctuations, leading to an enhancement of the NQR spin-lattice relaxation rate T_1^{-1} , is observed upon Mn substitution. The analysis of T_1^{-1} for the sample closest to the crossover between superconductivity and magnetism (x = 0.2%) points toward the presence of an antiferromagnetic quantum critical point around that doping level.



Journal of the Physical Society of Japan Vol. 79, No. 1, January, 2010, 014710 ©2010 The Physical Society of Japan

Studies on Effects of Impurity Doping and NMR Measurements of La 1111 and/or Nd 1111 Fe-Pnictide Superconductors

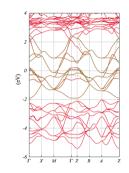
Masatoshi SATO^{1,2}, Yoshiaki KOBAYASHI^{1,2}, Sang Chul LEE¹, Hidefumi TAKAHASHI¹, Erika SATOMI¹, and Yoko MIURA^{1,2}



Extreme Tc suppression

$$H = H_0 + H_{int} + H_{BCS} + H_{imp},$$

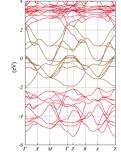
$$H_0 = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_0 \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu.\sigma}.$$



LaFeAsO 1111

$$H = H_0 + H_{int} + H_{BCS} + H_{imp},$$

$$H_0 = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_0 \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu.\sigma}.$$



$$H_{int} = U \sum_{\mathbf{i},\mu} n_{\mathbf{i}\mu\uparrow} n_{\mathbf{i}\mu\downarrow} + (U' - \frac{J}{2}) \sum_{\mathbf{i},\mu<\nu,\sigma\sigma'} n_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\nu\sigma}$$

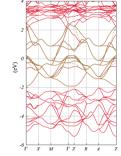
LaFeAsO 1111

$$-2J\sum_{\mathbf{i},\mu<\nu}\vec{S}_{\mathbf{i}\mu}\cdot\vec{S}_{\mathbf{i}\nu}+J'\sum_{\mathbf{i},\mu<\nu,\sigma}c^{\dagger}_{\mathbf{i}\mu\sigma}c^{\dagger}_{\mathbf{i}\mu\bar{\sigma}}c_{\mathbf{i}\nu\bar{\sigma}}c_{\mathbf{i}\nu\sigma},$$

-

$$H = H_0 + H_{int} + H_{BCS} + H_{imp},$$

$$H_0 = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_0 \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu.\sigma}.$$



$$H_{int} = U \sum_{\mathbf{i},\mu} n_{\mathbf{i}\mu\uparrow} n_{\mathbf{i}\mu\downarrow} + (U' - \frac{J}{2}) \sum_{\mathbf{i},\mu<\nu,\sigma\sigma'} n_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\nu\sigma}$$

LaFeAsO 1111

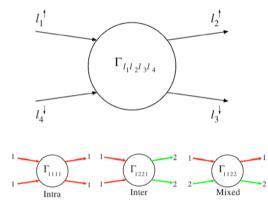
$$-2J\sum_{\mathbf{i},\mu<\nu}\vec{S}_{\mathbf{i}\mu}\cdot\vec{S}_{\mathbf{i}\nu}+J'\sum_{\mathbf{i},\mu<\nu,\sigma}c^{\dagger}_{\mathbf{i}\mu\sigma}c^{\dagger}_{\mathbf{i}\mu\bar{\sigma}}c_{\mathbf{i}\nu\bar{\sigma}}c_{\mathbf{i}\nu\sigma},$$

-

$$H_{BCS} = -\sum_{\mathbf{i}\neq\mathbf{j},\mu\nu} [\Delta^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\uparrow} c^{\dagger}_{\mathbf{j}\nu\downarrow} + H.c.],$$

Pairing

$$H_{BCS} = -\sum_{\mathbf{i}\neq\mathbf{j},\mu\nu} [\Delta^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\uparrow} c^{\dagger}_{\mathbf{j}\nu\downarrow} + H.c.],$$

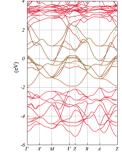


The pairing vertex in the singlet channel:

$$\Gamma_{pqst}(k-k',0) = \left[\frac{3}{2}U^{s}\chi_{s}^{RPA}(k-k',0)U^{s} + \frac{1}{2}U^{s} - \frac{1}{2}U^{c}\chi_{c}^{RPA}(k-k',0)U^{c} + \frac{1}{2}U^{c}\right]_{pq}^{st}$$

$$H = H_0 + H_{int} + H_{BCS} + H_{imp},$$

$$H_0 = \sum_{\mathbf{ij},\mu\nu,\sigma} t^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\sigma} c_{\mathbf{j}\nu\sigma} - \mu_0 \sum_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\mu.\sigma}.$$



$$H_{int} = U \sum_{\mathbf{i},\mu} n_{\mathbf{i}\mu\uparrow} n_{\mathbf{i}\mu\downarrow} + (U' - \frac{J}{2}) \sum_{\mathbf{i},\mu<\nu,\sigma\sigma'} n_{\mathbf{i}\mu\sigma} n_{\mathbf{i}\nu\sigma}$$

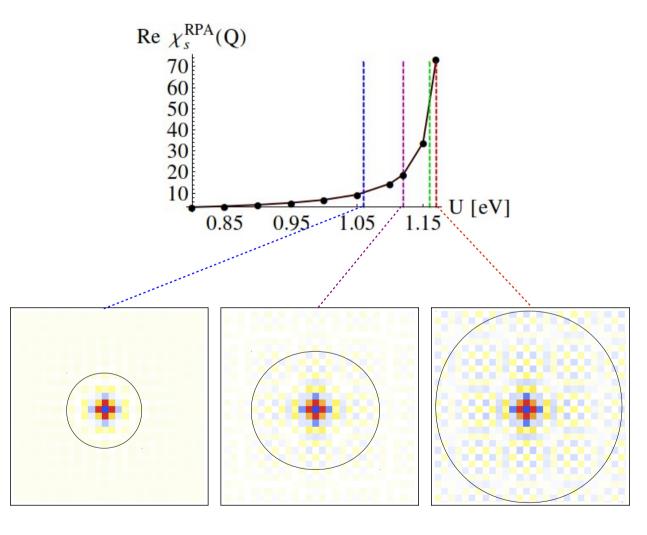
LaFeAsO 1111

$$-2J\sum_{\mathbf{i},\mu<\nu}\vec{S}_{\mathbf{i}\mu}\cdot\vec{S}_{\mathbf{i}\nu}+J'\sum_{\mathbf{i},\mu<\nu,\sigma}c^{\dagger}_{\mathbf{i}\mu\sigma}c^{\dagger}_{\mathbf{i}\mu\bar{\sigma}}c_{\mathbf{i}\nu\bar{\sigma}}c_{\mathbf{i}\nu\sigma},$$

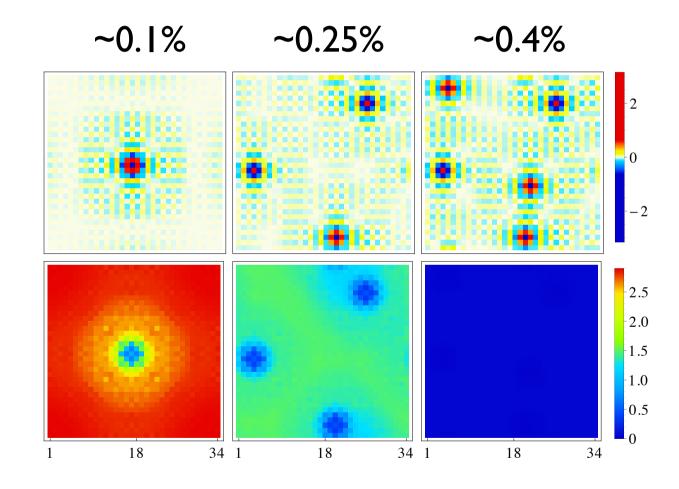
-

$$H_{BCS} = -\sum_{\mathbf{i}\neq\mathbf{j},\mu\nu} [\Delta^{\mu\nu}_{\mathbf{ij}} c^{\dagger}_{\mathbf{i}\mu\uparrow} c^{\dagger}_{\mathbf{j}\nu\downarrow} + H.c.],$$

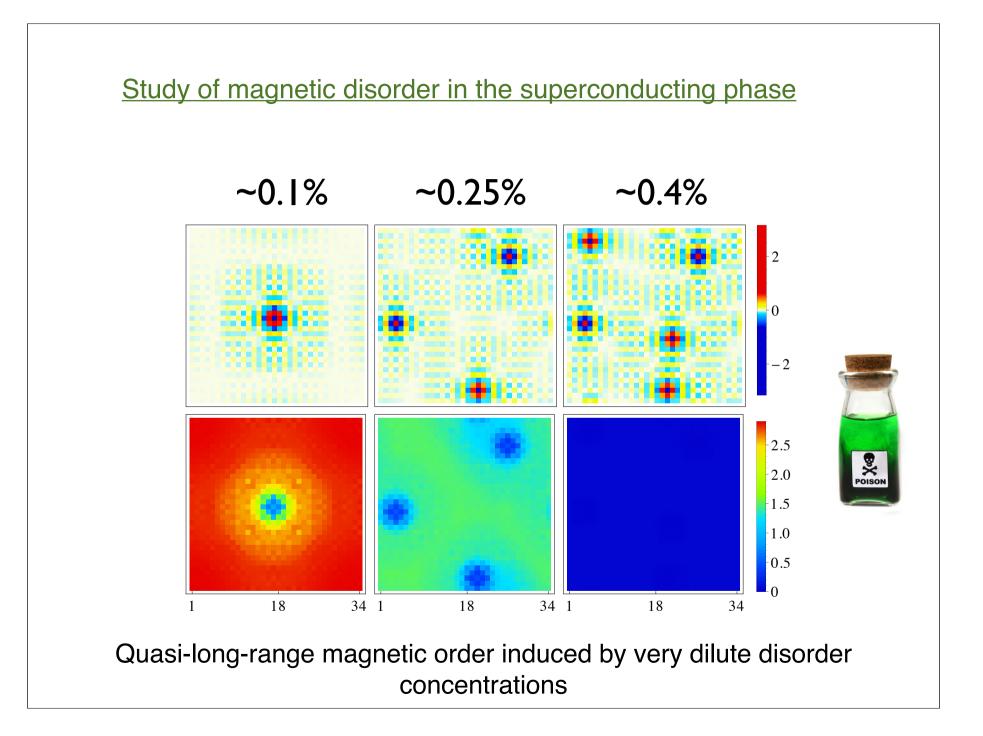
$$\mathcal{H}_{imp} = \sum_{\{\mathbf{i}^*\}\mu\sigma\sigma'} \mathbf{S}_{\mathbf{i}^*} \cdot (c^{\dagger}_{\mathbf{i}^*\mu\sigma}\sigma_{\sigma\sigma'}c_{\mathbf{i}^*\mu\sigma'}),$$



Growing magnetization bubble upon approaching the QCP



Quasi-long-range magnetic order induced by very dilute disorder concentrations



Thank you for your attention