Interplay of Kondo effect and geometric frustration in quantum-critical CePdAI

Hilbert v. Löhneysen

Karlsruhe Institute of Technology
Physikalisches Institut and Institut für Festkörperphysik

KITP Workshop on
Strong Correlations and Unconventional Superconductivity:
Towards a Conceptual Framework

September 23, 2014

Kavlí Institute for Theoretical Physics

Outline

CePdAl: A partially frustrated heavy-fermion system

Approaching quantum criticality by Ni substitution

Possibility of a spin-liquid state in pure CePdAl?

Magnetic (B, T) phase diagram probed by magnetostriction

IRONICS: Electronic correlations in AFe_2As_2 (A = K, Rb, Cs) probed by quantum oscillations of the magnetostriction

Who's done it and who paid for it

V. Fritsch, N. Bagrets, W. Kittler, C. Taubenheim,

CePdAI

K. Grube

O. Stockert, S. Woitschach, Z. Hüskes

MPI-CPfS Dresden neutron scattering: ILL, Munich

F. Eilers, D. Zocco, K. Grube, Th. Wolf

 AFe_2As_2

Work supported by Deutsche Forschungsgemeinschaft and Helmholtz Association of Research Centers

Competing interactions with the possibility of quantum phase transitions

Heavy-fermion metals: Kondo vs. RKKY interaction

onsite – intersite competition

"Doniach phase diagram"

Competing nn or nn/nnn interactions in insulating magnets

Geometric frustration of nn interactions

Competing nn and nnn interactions

Approaching a quantum critical point in partially frustrated CePd_{1-x}Ni_xAl

Frustration and conductivity

Frustration parameter $f = \Theta_{CW}/T_c$

V. Fritsch et al., PRB 72 (2006)

CePdAl – a partially frustrated Ce-based compound

Kondo system, $T_{\rm K} \approx 5 \, {\rm K}$

Magnetic structure

Magnetic order below $T_N = 2.7 \text{ K}$

Q =
$$(\frac{1}{2} \ 0 \ \tau)$$
, $\tau \approx 0.35$

1/3 of Ce moments frustrated

Kitazawa et al., Physica B **199&200**, 28 (1994) Dönni et al., J: Phys.: Cond. Matt. **8**, 11213 (1996)

Three-dimensional magnetic structure of CePdAl

Magnetic ordering wector

Q =
$$(\frac{1}{2} \ 0 \ \tau)$$
, $\tau \approx 0.35$

1/3 of Ce moments frustrated

$$\mu(Ce1) = 1.58 \mu_B$$

Note: weak *T*-dependent incommensuration neglected in the picture

Model of frustrated kagomé-like planes

Nunez-Regueiro and Lacroix, Physica C 282-287, 1885 (1997)

nn interaction J_1 (FM) and nnn J_2 (AF) in the ab (kagome) planes, neglect of interplane coupling J_3

$$H = \sum_{i} \Delta_{i}(T) |\mu_{i}|^{2} - \frac{1}{2} \sum_{i \neq j} J_{ij} \vec{\mu}_{i} \cdot \vec{\mu}_{j}$$

Kondo effect modelled by the energy difference $\Delta_i(T)$ between Ce nonmagnetic Kondo state $\mu_i = 0$ and magnetic state $\mu_i \neq 0$.

Mean-field phase diagram

confirmed by variational MC

Motome et al., PRL 105, 036403

coupling between planes neglected!

CePdAl – a partially frustrated Ce-based compound

Suppression of T_N by hydrostatic pressure ...

Goto et al., J. Phys. Chem: Sol. 63, 1159 (2001)

... or by isoelectronic Ni doping

Isikawa et al., Physica B **281&282**, 36 (2000) Fritsch et al., PRB **89**, 054416 (2014)

Quantum critical point?

Specific heat of CePd_{1-x}Ni_xAl polycrystals

Specific-heat anomaly at T_N broadens and is completely suppressed around x = 0.14

Approaching quantum criticality of CePdAl by Ni substitution

$T_N(x)$ of CePd_{1-x}Ni_xAl polycrystals

Comparison of pressure and Ni substitution: $T_N(V(x))$ and $T_N(V(p))$? Experimental $T_N(p)$ data differ strongly!

V. Fritsch et al., PRB 89, 054416 (2014)

Best fit with linear T_N dependence on x, compatible with 2D HMM scenario, deviation for $x \to x_c$ ("order by disorder"?)

$T_N(x)$ of CePd_{1-x}Ni_xAl polycrystals

Comparison of pressure and Ni substitution: $T_N(V(x))$ and $T_N(V(p))$? Experimental $T_N(p)$ data differ strongly!

Likely reason: non-hydrasticity of p. Thermal expansion: $\alpha \parallel c < 0$, $\alpha \perp c > 0$ $\rightarrow dT_{\rm N}/dp_a > 0$ and $dT_{\rm N}/dp_c < 0$.

V. Fritsch et al., PRB 89, 054416 (2014)

Best fit with linear T_N dependence on x, compatible with 2D HMM scenario, deviation for $x \to x_c$ ("order by disorder"?)

AF order and 2D quantum criticality in CePd_{1-x}Ni_xAl?

Interpretation within the Hertz-Millis-Moriya model (1): Candidates for planes with 2D?

kagomé ab planes

FM chains separated by frustrated moments

planes $\mathbf{Q} = (\frac{1}{2} \ 0 \ \tau), \ \tau \approx \frac{1}{3}$

FM planes separated by frustrated moments

AF order and 2D quantum criticality in CePd_{1-x}Ni_xAl?

Interpretation within the Hertz-Millis-Moriya model (2): Candidates for planes with 2D?

planes ⊥ *ab*

AF planes separated by frustrated moments

Proposition needs to be checked by inelastic neutron scattering

In this scenario, frustrated moments play a key role and provide a rationale for 2D fluctuations

However, frustrated moments may lead to additional fluctuations not contained in the HMM model

Magnetic susceptibility of a CePdAI single crystal

Strong Ising-like anisotropy due to single-ion crystal-field effects

*Isikawa et al., J. Phys. Soc. Jpn. 65, Suppl. B, 117 (1996)

First experiments on CePd_{1-x}Ni_xAl single crystals

x = 0.14, close to QCP

finite Θ_{CW} of $1/\chi$ vs. T

Specific heat and thermal expansion

Magnetic ntropy of CePd_{1-x}Ni_xAl

Systematic shift of $S^*_{mag}(T)$ to lower T upon approaching the quantum critical point

Frustrated Ce moments in CePdAI: spin liquid?

Spin liquid in CePdAl?

Metallic spin liquids are a rare species, one example: Geometrically frustrated Kondo lattice $Pr_2Ir_2O_7$

Nakatsuji et al., PRL 96, 087204 (2006)

CePdAl: planes ⊥ ab

Frustrated planes between AF planes form a rectangular 2D lattice:

2D Ising spin liquid?

²⁷Al NMR measurements down to 30 mK Dynamics of frustrated moments prevails down to very low T, with $T_1^{-1} \sim T$

Oyamada et al., Phys. Rev. B **77**, 064432 (2008).

Long-range and short-range magnetic order in CePdAl

LRO/SRO intensity ratio of 2/1 below $T_{\rm N}$: compatible with short-range (dynamic?) order of frustrated moments \rightarrow rationale for quasi-2D fluctations

cf. NMR measurements

Oyamada et al., Phys. Rev. B 77, 064432 (2008).

Specific heat of CePdAl at low temperature

Several unusual features:

large γT term corresponding to

 $\gamma \sim 0.8 \text{ J/mole}_{\text{Ce-no}} \text{K}^2$

Term ~ T^2 setting in at 0.5 K

indication of a gap of corresponding excitations:

2D spin waves in an Ising system

T⁻² contribution at very low T presumably due to nuclear hyperfine splitting

Electrical resistivity of CePdAl single crystals

with decreasing *T*:

- Kondo increase
- coherence maximum
- drop to ρ_0

strong decrease of the residual resistivity ρ_0 in magnetic field above B_c :

 $\Delta \rho_0/\rho_0$ strongest for ho II c

at lowest temperature: $\rho(T) = \rho_0 + AT^{1.8}$

- no indication of Kondo effect
 by non-ordered frustrated Ce moments
- assuming T² resistivity:

$$A/\gamma^2 \sim 13 \ a_{KW}$$

Spinon excitations?

Field-induced phases in CePdAI close to the critical field

T. Goto et al., J. Phys. Chem. Sol. 63, 1159 (2002)

Features in magnetizattion M(B) and resistivity $\rho(T)$ are suggestive of first-order transitions Possible origin: lifting of geometric frustration Check with magnetostriction measurements

K. Grube et al., unpublished

Magnetic phase diagram of CePdAl from thermal expansion and magnetostriction

Electronic correlations in AFe_2As_2 (A = K, Rb, Cs) probed by quantum oscillations of the magnetostriction

Strong correlations in AFe_2As_2 (A = K, Rb, Cs)

 KFe_2As_2 Sommerfeld coefficient $\gamma = 94 \text{ mJ} / \text{mol } K^2$

Kadowaki-Woods ratio $A/\gamma^2 = 2 \cdot 10^{-6} \,\mu\Omega$ cm K² mol² mJ⁻²

F. Hardy et al., PRL 111, 027002 (2013)

Large γ in line with ARPES and dHvA measurements

 γ increases for RbFe₂As₂, reaching 180 μ J / mole K² for CsFe₂As₂,

Increasing lattice constant and Fe-As distance along the K-Rb-Cs series: origin of strong correlations?

→ Quantum oscillations, here: magnetostriction

Quantum oscillations in the magnetostriction of AFe_2As_2 (A = K, Rb, Cs)

Effective masses of the series AFe_2As_2 (A = K, Rb, Cs)

Evolution of the Sommerfeld coefficient γ

Volume dependence of γ

Yu et al., Curr. Opin. Sol. State Mat. Sci. **17**, 65 (2013)

- (1) Substitution of Ba by K
- (2) log divergence of γ with increasing V_{FeAs}
- (3) Substitution of As by P. volume effect

Summary

CePdAl – a partially geometrically frustrated heavy-fermion metal

- Approach to QCP by Ni substitution:
 C/T ~ log (T/T₀) → 2D AF quantum critical fluctuations or novel QCP?
- Rationale f
 ür 2D fluctuations: AF planes decoupled by frustrated moments?
- No indication of a low-T Kondo effect of frustrated moments: 2D spin liquid?
- Complex magnetic (B, T) phase diagram with several phases near B_c:
 lifting the frustration close to B_c

AFe₂As₂ – a route toward orbital selective Mott transition driven by volume expansion

General issues

- Universality classes of quantum phase transitions in metallic magnets?
- Electrons: spectators or activists?
- Spin liquid in the presence of frustrated magnetic moments?

The magic triangles of correlated systems

