Superconductivity Without Phonons: An Update Gil Lonzarich, University of Cambridge

Early Proposals:

W Heisenberg, Z. Naturforsch (1947); F London, Phys. Rev. (1948); ...

Recent Discussions:

e.g., Strong Correlations and Unconventional Superconductivity: Towards a Conceptual Framework, KITP 2014

Philippe Monthoux and David Pines, with thanks also to many colleagues for their insights and contributions (to be cited in relevant slides).

Induced Interactions Between Charge Carriers

Polarizer-Analyzer Model

Kinetic Superexchange Model

Polarizer-Analyzer Model: Virtual Transitions in Electron System

Pr: Lowest Crystal Field Excitations of 4f Electron States Two f Electrons with L=5, S=1 and J=L-S=4

JG Houmann, BD Rainford, J Jensen & AR Mackintosh, Phys. Rev. B (1979)

Pr: Two Localized 4f Electrons Coupled to Three Conduction Electrons per Pr on the Border of Antiferromagnetism

KA McEwen, WG Stirling & C Vettier, Physica B (1983)

GS Fleming, SH Liu & TL Loucks, *Phys. Rev. Lett.* (1968); RM White & P Fulde, *Phys. Rev. Lett* (1981); M Wulff, GGL, D Fort & HL Skriver, *Europhys. Lett.* (1988) Cf. UPt₃: $m^*/m_{band} \sim 20$, L Taillefer & GGL, *Phys. Rev. Lett.* (1988)

UPd₂Al₃: Two Localized 5f Electrons & One Itinerant 5f Electron per U on Border of Antiferromagnetism

Model consistent with observed superconducting transition at $T_{sc} \approx 1.8$ K in opposite spin pairing state

G Zwicknagl, A Yaresko & P Fulde, *Phys. Rev. B* (2003); P Thalmeier, *Euro. Phys. J. B* (2002); P McHale, P Fulde & P Thalmeier, *Phys. Rev. B* (2004); Cf. itinerant f–electrons in UPt₃: GJ McMullan, SR Julian *et al.*, *New J. Phys.* (2008)

Magnetically Mediated Superconductivity in Spin-Fermion Model

parameter

Jopping

correlation wavevecto

下 王 Band Parameters:

4

a²

Parameter

Interaction

ഥ

D Fay & J Appel, Phys. Rev. B (1980); ...

P Monthoux & GGL, Phys. Rev. B (1999); P Monthoux, D Pines & GGL, Nature (2007) ...

R

 $CeMX_5 \& PuMX_5: T_{sc} \le 20 K$

CeIn₃: IR Walker, FM Grosche, D Freye & GGL, *Physica C* (1997); N Mathur *et al., Nature* (1998); K Betsuyaku & H Harima, *JMMM*(2004); ... CeCu₂Si₂: F Steglich *et al., Phys. Rev. Lett.* (1979); S Kittaka *et al.* (2014); CeRhIn5: H Hegger *et al., Phys. Rev. Lett.* (2000); PuCoGa₅: JD Sarrao *et al., Nature* (2002); T Maehira, T Hotta, K Ueda & A Hasegawa, *New J. Phys.* (2006); ...

Magnetically Mediated Superconductivity in Spin-Fermion Model

parameter

poping

wavevecto

correlation

К П Parameters

Interaction

Band Parameters:

ユ

С

Tuning Parameter ($\kappa^2 a^2$)

D Fay & J Appel, *Phys. Rev. B* (1980); ...; P Monthoux & GGL, *Phys. Rev. B* (1999); ... R Roussev & AJ Millis, , *Phys. Rev. B* (2001); ... Cf. T Nomura & K Yamada, *J. Phys. Soc. Jpn.* (2000); J Kondo, *J. Phys. Soc. Jpn.* (2001);

Superconductivity on Border of 5f-Electron Ferromagnetism

UCoGe: A Gasparini *et al., J Low Temp Phys* (2010); U₂PtC₂: JD Thompson *et al.*, this meeting; UIr: T Akazawa *et al., JPSJ* (2006); URhGe: AD Huxley, *et al., JPSJ* (2007); D Aoki *et al., Nature* (2001); AD Huxley, *et al., J Phys: Condens. Matter* (2003); ... UGe₂: SS Saxena *et al., Nature* (2000); ...

NQR Studies: T Ohta, et al., JPSJ (2010); T Hatton et al., Physica C (2010); Y Kitaoka, et al., JPSJ (2005); ...

Superconductivity on Border of 4d-Electron Ferromagnetism

Ca₂RuO₄: PL Alireza, F Nakamura, SK Goh, Y Maeno, S Nakatsuji, YTC Ko, M Sutherland, S Julian & GGL, *J Phys: Condens. Matter* (2010) Sr₂RuO₄: Y Maeno *et al., Nature* (1994) *P Monthoux & GGL, *Phys. Rev. B* (1999); ...

Unconventional Superconductivity on Border of Magnetism

 T_{SC} = Superconducting Transition Temperature

*T** = Characteristic Spin-Fluctuation Temperature

Not too close to a quantum critical point: $T^* \approx \frac{10^4 \text{K}}{\gamma / (\text{mJ mol}^{-1} \text{K}^{-2})}$

Systems with Reduced T_{SC} / T^* :

- Cubic f and d electron systems
 - Border of ferromagnetism
- Yb heavy electron systems (f-hole analogues of Ce)

YbAlB₄: T^{3/2} Resistivity & Superconducting Transition

S Nakatsuji et al., Nature Phys. (2008), (2010); ECT O'Farrell et al., Phys. Rev. Lett. (2009);

DA Tompsett, ZP Yin, GGL & WE Pickett. , Phys. Rev. B (2010)

Critical Nodal Metal: A Ramires, P Coleman, AH Nevidomskyy & AM Tsvelik, Phys. Rev. Lett. (2012)

Why is Superconductivity Rare in Yb Heavy Fermion Systems?

- Compactness of f-orbitals in Yb: weak f-spd hybridization, crystal field splittings, double f-hole occupancy and intersite spin couplings
- Prevalence of ferromagnetic correlations (high Wilson ratios and ferromagnetic transitions) and valence transitions
- Role of f-level degeneracy together with crystal field splittings:

$$\begin{split} k_B T_K &\approx D \exp(-1/\rho J) \rightarrow D \exp(-1/\rho J) (D/\Delta_X)^{(N/2)-1} & D \\ & k_B T_{RKKY} &\approx \rho J^2 \\ N &= \text{orbital degeneracy for } \Delta_X &= 0 \ (N=6 \ \text{for Ce}, \ N=8 \ \text{for Yb}) \\ \Delta_X &= \text{crystal field splitting } (2 \ \text{to } N-2, \ k_B T_K < \Delta_X < D) \\ T_{RKKY} &\approx T_K \ \text{yields } J_{crit} \ \text{which decreases with increasing } N \end{split}$$

S Doniach, Phys. Rev. B (1987); J Flouquet & H Harima (2009); F Honda, T Onuki et al., J. Phys.: Conf. Ser. (2012);

A Tsvelik, P Coleman & GGL (2014); ...

Double Superconducting Dome in CeCu₂Si₂

G Seyfarth, AS Ruetschi, K Sengupta, A Georges & D Jaccard, *EPL* (2012); HQ Yuan, FM Grosche, M Deppe, C Geibel, G Sparn & F Steglich, *Science* (2003); ...

Models: Onishi & Miyake, J. Phys. Soc. Jpn. (2001); P Monthoux & GGL, Phys. Rev. B (2004); CeNi₂Ge₂: FM Grosche et al., J. Phys.-Cond. Matter **12** (2000); A Demuer, et al., J. Phys.-Cond. Mat. **14** (2002); G Knebel, et al., High Pressure Research **22** (2002); ... Ferroelectricity in SrTi¹⁸O₃ & Superconductivity on Border of Ferroelectricity in Nb Doped SrTiO₃

EL Venturini et al., Phys. Rev. B (2004); ER Pfeiffer & JF Schooley, J. Low Temp. Phys. (1970); Ferroelectric Quantum Critical Point: R Roussev & AJ Millis, Phys. Rev. B (2003); L Palova, P Chandra & P Coleman, Phys. Rev. B (2009); SE Rowley, SS Saxena et al., Nature Phys. (2014); ...

Some Conditions Advantageous for Magnetically Mediated Superconductivity

High T^* on border of magnetism in the metallic state with:

- anisotropic (quasi-2D) electronic and magnetic structures;
- antiferromagnetic, or uniaxial ferromagnetic correlations;
- reduced or compatible orbital degeneracies;
- compatible charge couplings (cf. FeSe/SrTiO₃ interfaces).

Further Comments

- Can we explain the unusual and exceptional cases:
 - ♦ very high T_{SC}/T^* in UBe₁₃ & the related compound PrTi₂Al₂₀ with cubic rather than layered crystal structures;
 - ♦ vanishing T_{SC}/T^* in many systems tuned to magnetic quantum critical points, including Cr and Pr metals?

• Can particularly strong pairing interactions arise in systems engineered to be on the border of coinciding antiferroelectric *and* antiferromagnetic quantum critical points?