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Motivation:The Bechgaard salts, paradigm of SDW- SC proximity 
(TMTSF)2X  X= PF6,  AsF6, ... 

N. Doiron-Leyraud et al., PRB 80, 214531 (2009)

Γ

Quasi-1D organic metal 

• SDW (~10K)  SC (~ 1K)
P

• Spin fluct.(Normal phase)  
⇢ ⇠ AT

1

⇢ ⇠ AT
(T1T )

�1 ⇠ (T +⇥)�1

1

(linear-T resist.)

(CW-NMR relax. )

•  Repulsive Int. dominate  

• Spin fluct.(Normal phase)  

SC magnetically driven  



Spin fluctuations in the metallic state: NMR
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Fig. 1. (a) Pressure–temperature phase diagram of (TMTSF)2PF6 (after Ref. [17]); also shown the variation of the Curie–Weiss scale Θ under pressure
extracted from the NMR data of Fig. 2(b) [20] (owing to a different low temperature determination of pressure in these two sets of experiments, a rigid,
positive, shift of 3 kbar has been applied to the pressure scale of Fig. 2(b)); (b) Longitudinal resistivity vs temperature for (TMTSF)2PF6 at different pressures.

Fig. 2. (a) Pressure dependence of the resistivity coefficients A and B of the polynomial fit ρa(T ) = ρ0 + AT + BT 2 of the data of Fig. 1(b); after Ref. [18].
(b) Temperature dependence of spin–lattice nuclear relaxation rate T −1

1 in (TMTSF)2PF6 at different pressures; after Ref. [20].

even extends toward much lower temperature when a small magnetic field is applied to suppress Tc . Away from Pc , ρa
vs T modifies in a distinctive way. Resistivity ceases to be exclusively linear and acquires some curvature that satisfactorily
fits the polynomial form ρa(T ) = ρ0,a + AT + BT 2. This can be interpreted as a Fermi liquid component that sets in under
pressure, becoming in turn the main contribution to resistivity at very high pressure, namely where the linear-T resistivity
component, like Tc , becomes vanishingly small (Figs. 1(b) and 2(a)). This notable correlation between A and the strength
of superconductivity shows that inelastic scattering and Cooper pairing are interrelated. This feature turns out to be not
unique to the Bechgaard salts [17,18,7], but is also shared by other categories of unconventional superconductors showing
close proximity with antiferromagnetic ordering, especially in the pnictides [17,30] and high-Tc cuprates [31,32,7,33].

Connections between superconductivity and deviations from the Fermi liquid predictions in the same region of the
normal state are not restricted to electrical transport, but are also found in other quantities. The NMR spin–lattice relax-
ation rate T −1

1 is one of these [20,22]. If one first looks at the magnetic sector of the phase diagram of Fig. 1(a), T −1
1 of

Fig. 2(b) displays the characteristic square-root singularity ∼ (T − TSDW)−1/2, which confirms the onset of long-range three-
dimensional SDW correlations at the approach of TSDW [22,34]. In the superconducting sector above Pc , the critical behavior
is suppressed, but an anomalously large enhancement of T −1

1 remains (Fig. 2(b)); its amplitude is huge close to Pc and re-
duces progressively as pressure is raised. The origin of the anomaly lies in the presence of short-range SDW spin fluctuations
whose amplitude shows persistent growing down to Tc [35,16], that is in the same temperature region where linear-T re-
sistivity is seen (Fig. 1(b)). The temperature profile of relaxation rate differs there from the Korringa law, (T1T )−1 ∼ const.,
expected for a Fermi liquid; it rather exhibits an enhancement following the Curie–Weiss behavior (T1T )−1 ∼ (T + Θ)−1

[19]. The Curie–Weiss scale, Θ , linked to the amplitude of the anomaly and in a way to the characteristic energy scale of
spin fluctuations, is rapidly changing under pressure: close to the SDW-SC juncture, Θ is vanishingly small, indicative of
some critical suppression as P ≈ Pc . From Pc upward, Θ raises rapidly and reaches large values at high pressure (Fig. 1(a)).

The anomaly in the temperature dependence of the nuclear relaxation rate, along with its modification under pressure
hints at a direct participation of spin fluctuations in linear-T resistivity above Tc . Low-energy SDW fluctuations evidenced



Spin fluctuations: Linear-T resistivity at QCP and beyond
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AT + BT2 ~T 2



pc p

⇢ ⇠ T 2

T�1
1 ⇠ T

T

SDW

SC

FL

QCP

A. Sedeki, D. Bergeron and C. B., PRB 85, 165129 (2012)

NFL Extended quantum criticality 

T

pc p

⇢ ⇠ T 2

T�1
1 ⇠ T

T� ⇠ |p� pc|⌫z

SDW FL

Standard scheme
NFL

Role	
  of	
  SC	
  ?	
  
⇢ ⇠ aT + bT 2

(T1T )�1 ⇠ (T + ⇥)�1



  Quasi-1D Fermi surface 

16 C. Bourbonnais

g1 g
2

g3 g3

ε(k)

+π_

a

  π_

a
− k

F
k

F
−- +0

2t

2t−

+−

−

FIGURE 18. Backward (g1), forward (g2) and umklapp (g3) couplings of the 1-D fermion gas model and the corresponding
diagrams (left); The open (full) circle corresponds to the generic vertex part for backward and forward (umklapp) scatterings
(middle); linear spectrum of the model (right).

invariant system of length L, the Hamiltonian of the electron gas model can be written in the form
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where �p(k) ⌥ vF (pk � kF ) is the electron spectrum energy after a linearization close to right (pkF = +kF )
and left (pkF = �kF ) Fermi points; g1 and g2 are the backward and forward scattering amplitudes, respectively,
whereas g3 corresponds to Umklapp scattering, a process made possible at half-filling where the reciprocal lattice
vector G = 4kF = 2⇥/a enters in the momentum conservation law. However, owing to the existence of a small
dimerization gap �D ⌃ EF of organic stacks of (TM)2X (See Fig. 15), only weak half-filled Umklapp scattering
g3 ⇧ g1�D/EF is present [37, 38]. Note that lattice models in their continuum limit can be mapped on the
electron gas (continuum) model. In the Hubbard case, for example, the couplings g1 = g2 = U coincide with the
one-site Coulomb term U .

In the one-loop perturbation theory, the electron scattering amplitudes gi=1,2,3 are corrected by the aforemen-
tioned Cooper and Peierls logarithmic singularities. These logarithms are scale invariant quantities as a function
of energy or temperature, which allow us to write down scaling or renormalization group (RG) flow equations for
the various gi=1,2,3. This can be done according to di⇥erent techniques [36, 39, 40, 41, 42]. We will adopt here the
so-called Kadano⇥-Wilson scheme [41, 42], which has been summarized in the Appendix. After all cancellations
between Cooper and Peierls terms due to interference, the remaining terms allow us to write down flow equations
of the coupling constants as a function of the energy distance from the Fermi level

g̃⇥1 = �g̃2
1 + . . .

(2g̃⇥2 � g̃⇥1) = g̃2
3 + . . .

g̃⇥3 = g̃3(2g̃2 � g̃1) + . . . , (1.20)

where g̃⇥i = ��g̃i. Here ⇣ is the logarithmic – loop – variable; it is related to the energy distance 1
2E0e�� = EF e��

from the Fermi level, where E0 is the band width. The long wavelength spin excitations are governed by the
g̃1 ⇤ g1/⇥vF coupling, whose flow, according to (1.20), is decoupled from both g̃3 ⇤ g3/⇥vF and the combination
2g̃2� g̃1 ⇤ (2g2� g1)/⇥vF connected to charge excitations. In the physically relevant repulsive sector for systems
like (TM)2X where g1,2 > 0, g1 � 2g2 <| g3 |, the integration of Eqs.(1.20) shows that both 2g2 � g1 and g3 are
relevant variables for the charge and scale to the strong coupling sector, where a charge gap �� is found below
the temperature scale T�(⌅ ��/2). In one dimension, T� does no refer to a true phase transition but merely to a
crossover to a charge localization at wave vector 4kF .

Since Umklapp scattering leads to momentum dissipation, it contributes to the electrical resistivity. From
the imaginary part of the one-particle self-energy in lowest order [43, 40], the electron-electron contribution to

g2
g1, g3

Q-1D electron gas model: Repulsive interactions  
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FIG. 3: Flow equations for the one-particle Matsubara self-
energy, Σ+, the g1,2 (open square) and Umklapp g3 (full
square) scattering amplitudes for right (continuous line) and
left (dashed line) moving electrons. The crossed and slashed
lines refer to the high energy interval and outer energy shell
respectively (permutations between crossed and slashed line
are not shown).

∂ℓz⊥(k̄⊥) = z(k̄⊥)−1 1

2
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)
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(
g2
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)

I ′3(k̃⊥3, iων)
}

(11)

where ∂ℓ ≡ ∂/∂ℓ, and k̃⊥i are defined in (A4).
The temperature dependent coefficients Ii and I ′i are

given in Appendix A. The integration of (10-11) is carried
out up to ℓ → ∞, which leads to the z and z⊥ factors at
temperature T . It worth stressing that both two-loop and
one-loop diagrams are calculated using free propagators
(see Appendix A).

IV. RESULTS

A. Quasi-particle weight

An important quantity entering in the description of
quasi-particles and that can be extracted from the one-
particle self-energy is the ‘angle resolved’ quasi-particle
weight, z(k⊥) ≡ z

(
kF (k⊥), iων=0

)
, defined on the Fermi

surface. It is obtained from the solution of Eq. 10 at
ων=0 = πT . This variation of z(k⊥) on the FS as a
function of k⊥ and T in the SDW and SC parts of the
phase diagram (Fig. 2) is shown in Fig. 4.
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FIG. 4: Variation of the quasi-particle weight on the Fermi
surface as a function of k⊥ at different temperatures. (a):
SDW (t′⊥ = 25 K < t′∗⊥, TSDW ≃ 12 K); (b): SC (t′⊥ =
26.8 K > t′∗⊥, Tc ≃ 0.8 K).

In the SDW region at high temperature, namely well
above the scale of one-particle transverse coherence,
TX ∼ t⊥, where the system is essentially 1D, z(k⊥) dis-
plays little minima at k⊥ = ±π/2. According to (4), the
t⊥ part of the spectrum vanishes at those points, which
from a perturbation viewpoint of t⊥ implies that 1D ef-
fects are the strongest there. Such a high temperature
modulation, thought small, agrees with earlier investiga-
tions based on perturbative and mean field treatments of
t⊥18–24, which found the same location for the the spec-
tral weight minima on the FS. Above TX , Fig. 5 shows
that z(k⊥) ∼ T α decays as a non universal power law in
temperature

(
α ∼ O(g2)

)
, in accordance with the sum-

mation of next-to-leading (two-loop) logarithmic singular
self-energy diagrams of Fig. 3 in the limit of 1D electron
gas model.30,38,39(dashed line of Fig. 5).

As T goes below TX , the influence of t⊥ becomes
clearly non perturbative. The temperature decay of z,
thought still present, becomes less rapid than the power
law above TX ; an indication of weakening of the two-loop
singularity and modified Cooper and Peierls channels in-
terference by the coherent warping of the FS. connection
with marginal Fermi liquid.

Moreover, the position of minima in z(k⊥) gradually
shifts to k⊥ = ±π/4 and k⊥ = ±3π/4 as the details of
the Fermi surface becomes coherent. This shift results
from the nesting condition of the whole spectrum on the
FS,

E+(kF + q0) = −E−(kF ) + δ(k⊥), (12)

where δ(k⊥) = 4t′⊥ cos 2k⊥. The minima coincide with
the loci, k⊥ = ±π/4, and ±3π/4 on the FS where
δ(±π/4) and δ(±3π/4) vanish and perfect nesting con-
ditions prevail. Conversely, at k⊥ = ±π/2, 0, and ±π,
δ(k⊥) = ±4t′⊥, and deviations reach their maximum. As
the temperature comes close to TSDW, z(k⊥) enters in the
critical SDW regime and falls off toward zero due to sin-
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Normal phase:   extended Curie Weiss  regime
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Impact on the normal phase : NMR
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II - Electron-Phonon Interaction

X-Ray diffuse scattering
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In the purely electronic part that has been made ex-
plicit, the operator c†p,k,� (cp,k,�) creates (destroys) a
right (p = +) and left (p = �) moving electron of wave
vector k = (k, k?) and spin �. The free part is modeled
by the anisotropic one-electron energy spectrum in two
dimensions,

Ep(k) = vF (pk � kF ) + ✏(k?), (2)

where

✏(k?) = �2t? cos k? � 2t0? cos 2k?. (3)

The longitudinal part has been linearized around the lon-
gitudinal Fermi wave vector given by pkF = ±⇡/2 for a
dimerized chain with one electron per dimer. The lon-
gitudinal Fermi velocity is vF = 2t where t is the aver-
age nearest-neighbour hopping. Here t? is the nearest-
neighbor hopping integral in the perpendicular direction
and t0? is a second nearest-neighbor hopping parama-
terizing deviations to perfect nesting at q0 = (2kF ,⇡),
which simulates the most important e↵ect of pressure
in our model. The quasi-1D anisotropy of the spec-
trum is EF ' 15t?, where EF = vF kF ' 3000K is
the longitudinal Fermi energy congruent with the range
found in the Bechgaard salts53–55; EF is taken as half
the bandwidth cuto↵ E0 = 2EF in the model. In the
framework of the electron gas model56,57, the interact-
ing part of the Hamiltonian is described by the bare
backward, g1 ⌘ g1(+kF ,�kF ; +kF ,�kF ), and forward,
g2 ⌘ g2(+kF ,�kF ;�kF ,+kF ), scattering amplitudes be-
tween right and left moving electrons defined on the 1D
Fermi surface. The half-filling character of the band
– a consequence of a small dimerization of the chains
– gives rise to Umklapp scattering of bare amplitude
g3 ⌘ g3(±kF ,±kF ;⌥kF ,⌥kF ), and for which momentum
conservation involves the longitudinal reciprocal lattice
vector G = (4kF , 0). Within the electron gas model, the
deviation k±kF of longitudinal momentum with respect
to the Fermi points in the scattering amplitudes are ir-
relevant in the RG sense and can be neglected56–58. All
couplings are normalized by ⇡vF and are initially inde-
pendent of transverse momenta k?i, but acquire such an
dependence along the RG flow. This momentum depen-
dence refers to the angular dependence along the Fermi
surface.

Regarding the values taken by the interaction param-
eters throughout the present calculations, we shall take

g1 = g2/2 ' 0.32 and g3 ' 0.025, which follows from the
phenomenological analysis of previous works that fixes
their amplitude from di↵erent experiments in the weakly
dimerized systems like the Bechgaard salts31,32. This
pertains to a range of couplings generic of the interplay
between SDW and SCd orders as a function of antinest-
ing.

The electron-phonon part of the hamiltonian (1) fol-
lows from the modulation of the longitudinal hop-
ping integral by acoustic phonons in the tight-binding
approximation59. It reads
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where ⌫ is related to the di↵erent polarization of acoustic
phonons. For phonons of interest propagating parallel to
the chains axis, we have
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�� sin q

2
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for the phonon spectrum and

g⌫(k, q) = i4
�⌫p
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k +

q
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�
, (6)

for the electron-phonon matrix element, which depends
on both electron momentum k and momentum transfer
q. The coupling amplitude �⌫ = rt · e⌫ is expressed in
terms of the spatial variation of longitudinal hooping in-
tegral and the unit vector e⌫ of the lattice displacement;
!⌫ = 2

p
⌫/M is the Debye frequency for the acoustic

branch ⌫, and M is the mass of molecular unit. The
bandwidth of acoustic branches in the molecular systems
like the Bechgaard salts does not exceed !⌫ ⇠ 100 K60–62.
We shall consider in the following the interval normalized
phonon frequency 0 < !D/t?  0.5.
For the partition function Z, it is straightforward to

proceed to the partial trace of harmonic phonon degrees
of freedom and express the partition function,

Z =

Z Z
D ⇤D ⇤eS0+SI ,

as a functional integral over the fermion anti commuting
fields  (⇤). The bare action in the Matsubara-Fourier
space is given by
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[G0
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p,�(k̄) p,�(k̄) (7)

where k̄ = (k,!n = ±⇡T,±3⇡T, . . .) and

G0
p(k̄) = [i!n � Ep(k)]

�1 (8)

is the bare fermion propagator. The interacting part of
the action is of the form
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FIGURE 18. Backward (g1), forward (g2) and umklapp (g3) couplings of the 1-D fermion gas model and the corresponding
diagrams (left); The open (full) circle corresponds to the generic vertex part for backward and forward (umklapp) scatterings
(middle); linear spectrum of the model (right).

invariant system of length L, the Hamiltonian of the electron gas model can be written in the form

H =
�

k,p,⇥

�p(k)c†p,k,⇥cp,k,⇥

+
1
L

�

{k,q,⇥}
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+
1
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g3 c†p,k1+p2kF +q,⇥c†p,k2�p2kF�q+pG,⇥�c�p,k2,⇥�c�p,k1,⇥, (1.19)

where �p(k) ⌥ vF (pk � kF ) is the electron spectrum energy after a linearization close to right (pkF = +kF )
and left (pkF = �kF ) Fermi points; g1 and g2 are the backward and forward scattering amplitudes, respectively,
whereas g3 corresponds to Umklapp scattering, a process made possible at half-filling where the reciprocal lattice
vector G = 4kF = 2⇥/a enters in the momentum conservation law. However, owing to the existence of a small
dimerization gap �D ⌃ EF of organic stacks of (TM)2X (See Fig. 15), only weak half-filled Umklapp scattering
g3 ⇧ g1�D/EF is present [37, 38]. Note that lattice models in their continuum limit can be mapped on the
electron gas (continuum) model. In the Hubbard case, for example, the couplings g1 = g2 = U coincide with the
one-site Coulomb term U .

In the one-loop perturbation theory, the electron scattering amplitudes gi=1,2,3 are corrected by the aforemen-
tioned Cooper and Peierls logarithmic singularities. These logarithms are scale invariant quantities as a function
of energy or temperature, which allow us to write down scaling or renormalization group (RG) flow equations for
the various gi=1,2,3. This can be done according to di⇥erent techniques [36, 39, 40, 41, 42]. We will adopt here the
so-called Kadano⇥-Wilson scheme [41, 42], which has been summarized in the Appendix. After all cancellations
between Cooper and Peierls terms due to interference, the remaining terms allow us to write down flow equations
of the coupling constants as a function of the energy distance from the Fermi level

g̃⇥1 = �g̃2
1 + . . .

(2g̃⇥2 � g̃⇥1) = g̃2
3 + . . .

g̃⇥3 = g̃3(2g̃2 � g̃1) + . . . , (1.20)

where g̃⇥i = ��g̃i. Here ⇣ is the logarithmic – loop – variable; it is related to the energy distance 1
2E0e�� = EF e��

from the Fermi level, where E0 is the band width. The long wavelength spin excitations are governed by the
g̃1 ⇤ g1/⇥vF coupling, whose flow, according to (1.20), is decoupled from both g̃3 ⇤ g3/⇥vF and the combination
2g̃2� g̃1 ⇤ (2g2� g1)/⇥vF connected to charge excitations. In the physically relevant repulsive sector for systems
like (TM)2X where g1,2 > 0, g1 � 2g2 <| g3 |, the integration of Eqs.(1.20) shows that both 2g2 � g1 and g3 are
relevant variables for the charge and scale to the strong coupling sector, where a charge gap �� is found below
the temperature scale T�(⌅ ��/2). In one dimension, T� does no refer to a true phase transition but merely to a
crossover to a charge localization at wave vector 4kF .

Since Umklapp scattering leads to momentum dissipation, it contributes to the electrical resistivity. From
the imaginary part of the one-particle self-energy in lowest order [43, 40], the electron-electron contribution to
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Figure 3: One loop RG flow equations for the normal g1,2, (open square) and Umklapp g3 (full square) scattering amplitudes. Here C and P stand
for the Cooper and Peierls loops.

In the g-ology prescription, the electron-electron interaction separates into normal and Umklapp processes. The
former part,

g{σ}(k′b1, kb1, kb2) = g2δσ2σ′2δσ1σ′1 − g1δσ′1σ2δσ′2σ1 , (5)

retains the backward (g1) and forward (g2) bare scattering amplitudes between right and left moving carriers. As for
Umklapp scattering, for which Ḡ = (4kF , 0), it is defined by the bare amplitude g3(k′b1, kb1, kb2) = g1∆D/EF , which is
small for weakly dimerized chains. This is the situation that prevails in the Bechgaard salts where one has typically
∆D/EF ! 0.1 [33]. All the above scattering amplitudes are independent of the momentum at the bare level. They are
commonly expressed in terms of the one-site and nearest-neighbor site couplings parametersU and V of the extended
Hubbard model in the continuum (electron gas) limit, namely g1 = U − 2V , g2 = U + 2V , and g3 = g1∆D/EF .

The range of various band and coupling parameters of the above quasi-1D electron gas model can be fixed from
various sources. Band calculations, as well experiments are compatible with the following typical set of values for
the kinetic part of the Hamiltonian, EF ≃ 3000 K, t⊥b ≃ 200 K and t⊥c ! 10 K. As for the bare amplitude of the gi ′s,
the observed enhancement of uniform magnetic susceptibility can be called for to fix the range of the backscattering
amplitude g1 [30]. The analysis of the temperature dependence of susceptibility is consonant with a value revolving
around g̃1 ≡ g1/πvF ∼ 0.3 (henceforth normalized by the longitudinal bandwidth). Given the size of the dimerization
gap ∆D, this fixes the amplitude of Umklapp scattering at a small, but finite value, g̃3 ≃ 0.02. Finally, the bare g̃2 can
be estimated by the value needed to match the calculated scale for the optimal TSDW, as obtained from RG with the
above set of figures in the limit of small t′⊥b. Thus the maximum T 0SDW (∼ 25K) found on experimental grounds in the
cousin compounds (TMTTF)2X [34], yields g̃2 ∼ 0.6.

3.2. One-loop renormalisation group results
Long-distance correlations and the propensity for ordering in the most conducting – ab – plane can be explored

by the RG method [35, 36, 12]. In this approach, one proceeds in the partition function Z to the successive integration
of electronic degrees of freedom ψ(∗), from the high energy cutoff EF down to the energy distance EFe−ℓ above and
below each Fermi sheet at step ℓ ≥ 0. Constant energy surfaces at ℓ are divided into a number patches [37, 36], each
being indexed by a particular kb value for the momentum along b.

At the one-loop level, the partial integration leads to successive corrections to the scattering amplitudes g̃i as
function of ℓ and for a given temperature T . These come from the logarithmically singular loops of particle-particle
(Cooper) and particle-hole (Peierls) scattering channels. Both contributions generate momentum dependence for the
couplings, which is retained for the b direction only. This leads to the flow equations of Fig. 3 [36, 35], which are
written in the schematic form

∂ℓg̃i=1,2(k′b1, kb2, kb1) =
3
∑

n,n′=1

{

ϵn,n
′

C,i ⟨g̃n · g̃n′ · ∂ℓLC⟩kb + ϵ
n,n′
P,i
〈

g̃n · g̃n′ · ∂ℓL′P
〉

kb

}

,

∂ℓg̃3(k′b1, kb2, kb1) =
2
∑

n=1
ϵ3,nP,3 ⟨g̃3 · g̃n · ∂ℓLP⟩kb , (6)
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its maximum impact in the temperature domain T < ωD ,
namely where retardation effects on virtual electron-hole pair
scattering processes become small, hence the isotope effect on
SDW.

The increase of TSDW with ωD is illustrated in Fig. 6(a) for
|g̃ph| = 0.1 and different values of t ′⊥ in the SDW part of the
phase diagram. At relatively small t ′⊥ that is, well into the SDW
sector, TSDW undergoes a monotonic but weak increase over
all the frequency range of phonons, a consequence of ladder
and vertex corrections to the antiferromagnetic exchange that
grow in importance by increasing ωD . It is worth noticing
that in the adiabatic limit, TSDW|ωD→0 is found to be slightly
larger than the TSDW|gph=0 obtained in the absence of Ph-M
interaction [see Fig. 2(a)]. This indicates that static phonons
still have a positive influence on the exchange interaction
(25) and the strength of SDW correlations. This adiabatic
effect finds a certain echo in the strong coupling—Hubbard
interaction—case where dynamical mean-field theory cal-
culations do predict an enhancement of antiferromagnetic
exchange between localized spins by zero-frequency phonons
[45]. Here the static enhancement essentially results from the
mixing of Ph-M interaction to the nonretarded Coulomb terms
gi in the RG flow; the enhancement vanishes by taking gi → 0
in Eqs. (10), (12), and (13), a result found in the limit of pure
electron-phonon coupling [37].

When t ′⊥ increases and approaches the critical domain
where the drop in TSDW becomes, according to Fig. 2(a),
essentially vertical, the isotope effect becomes huge as traced
in Fig. 6(a). Close to t ′∗⊥ , the reinforcement of SDW correlations
by an even small increase in ωD gives rise a large increase of
TSDW. This is not the consequence of nesting improvement
but rather the result of stronger nesting deviations needed to
counteract the reinforcement of SDW instability by Ph-M
interactions. For t ′⊥ slightly above t ′∗⊥ , Fig. 6(a) features
the interesting possibility of a SC-d-to-SDW transition as a
function of ωD .

The positive isotope effect carries over into the SC-d
side of the phase diagram where Tc is found to increase

FIG. 6. (Color online) Isotope effect at |g̃ph| = 0.1 for (a) TSDW

at different antinesting t ′
⊥ < t ′∗

⊥ and (b) Tc of the SC-d channel
for different t ′

⊥ > t ′∗
⊥ . Insert: Variation of the isotope exponent as

a function of phonon-mediated coupling amplitude at t ′∗
⊥ .

with ωD at different t ′⊥, as shown in Fig. 6(b). This is
directly associated with the ωD-dependent reinforcement of
spin correlations in the normal state as already pointed out
in Fig. 1(d), which strengthens the pairing interaction in the
SC-d channel. Although the isotope effect is slightly larger in
amplitude near the critical t ′∗⊥ , it remains of comparable size
at an arbitrary value of antinesting with a power law Tc ∼ ωα

D

that takes place at an intermediate frequency with an exponent
α ≃ 0.24(≡ d ln Tc/d ln ωD), a value virtually independent of
t ′⊥ [see Fig. 6(b)] and |g̃ph|, as shown in the insert of Fig. 6(b).
At high phonon frequency where the ratio ωD/Tc becomes
very large, retardation effects become negligible and Tc tends
to level off with frequency. This saturation probably reflects the
limitation of using a finite number of Matsubara frequencies
in the mean-field approximation of the loop convolution over
frequency.

2. Bond-order wave versus superconductivity

In the BOW regime above |g̃c
ph|, the isotope effect on

TBOW has the opposite sign. At low t ′⊥, for instance, Fig. 7(a)
shows that TBOW decreases monotonically with ωD and the
reduction becomes increasingly large with t ′⊥ which also
softens the lattice distortion through nesting alteration. A
reduction of TBOW with ωD is a consequence of the growth of
nonadiabaticity of the phonon field, a well-known factor to be
at play in the reduction of the Peierls distortion gap in purely
electron-phonon models in one dimension [63,66,68]. From
a diagrammatic point of view, nonadiabaticity is a quantum
effect again tied to the unlocking of Ph-M interaction to
open diagrams and thus to quantum interference between
electron-hole and Cooper pairing at the one-loop level. In
contrast to the SC–d/SDW mixing, however, the interference
is, in the present, case destructive: Cooper and Peierls
diagrammatic contributions have opposite sign and this reduce
the temperature scale of BOW ordering [66]. The onset of a
quantum to classical crossover for the BOW state is perceptible
at ωD/2T 0

BOW|ωD→0 ∼ 1, as is found to occur in the pure
electron-phonon limit [37,63].

FIG. 7. (Color online) Isotope effect at |g̃ph| > |g̃c
ph| for (a) TBOW

at different antinesting t ′
⊥ < t ′∗

⊥ and on (b) Tc in the SC-f and SC-d
channels for different t ′

⊥ > t ′∗
⊥ . The straight lines correspond to the

power-law dependence Tc ∼ ωα
D , where α ≃ 0.25.
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Crossover to the Peierls lattice distorted state
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FIG. 4: Spin-density-wave/Bond-order-wave and d-wave su-
perconducting critical temperatures versus the strength of
phonon-mediated interaction |g̃ph| at !D/t? = 0.4.

where ~Sk̄,q̄P
= 1

2 
⇤
+,↵(k̄ + q̄P )~�↵� �,�(k̄) + c.c is the

Fourier-Matsubara component of the SDW spin density.
Thus in weak coupling, the combination 1

2 (g2 + g3) co-
incides with a momentum and frequency dependent an-
tiferromagnetic exchange interaction.The same exchange
term governs the enhancement of the vertex part zSDW

for the SDW susceptibility [See Eq. (21)]. Its growth
as a function of ⇤(`) results from the multiple exchange
scattering in virtual electron-hole pairs carried by ladder
and vertex corrections in the flow equations (15-16). As
to the backscattering term, g1, its role is indirect. This
coupling carries a large longitudinal momentum trans-
fer corresponding to a repulsive short-range contribution
along the chains. Thus a positive g1 tends on the contrary
to reduce exchange scattering and then SDW correlations
by dampening the amplitude of both g2 and g3.

Therefore the combined influence of a g1 reduction and
a g3 increase by Ph-M interactions in (10) and (13) will
boost g2 and in turn g3 and antiferromagnetic exchange.
As mentioned earlier, however, this additional and posi-
tive input of Ph-M interaction reaches its maximum im-
pact in the temperature domain T < !D, namely where
retardation e↵ects on virtual electron-hole pair scatter-
ing processes become small, hence the isotope e↵ect on
SDW.

The increase of TSDW with !D is illustrated in Fig. 5-a
for |g̃ph| = 0.3? and di↵erent values of t0? in the SDW sec-
tor of the phase diagram. At relatively small t0? well into
the SDW sector, the TSDW undergoes a weak monotonic
increase over all the frequency range of phonons. Ladder
and vertex corrections to the antiferromagnetic exchange
grow in importance by increasing !D. It is worth notic-
ing that in the adiabatic limit, TSDW|!D!0 is found to be
slightly larger than the TSDW|gph=0 obtained in the ab-
sence of Ph-M interaction (crosses on Fig. 5-a). This indi-
cates that static phonons still have a positive influence on
the exchange interaction (25) and the strength of SDW

FIG. 5: Isotope e↵ect for (a) TSDW for di↵erent t0? < t0⇤?
and on (b) Tc in the SCd channel for di↵erent anti nesting
parameters t0? > t0⇤?.

correlations, a result that contrasts with the prediction
of mean-field theory? . The e↵ect found in weak coupling
develop from the coupling of zero frequency phonon ex-
change to electronic interaction processes that are spread
over all the frequency range. The e↵ect finds a certain
echo in the strong coupling – Hubbard interaction – limit
where dynamical mean field theory calculations do pre-
dict an enhancement of antiferromagnetic exchange be-
tween localized spins by zero frequency phonons28.
Now when t0? increases and approaches the critical do-

main where the drop in TSDW becomes essentially vertical
the isotope e↵ect becomes huge. Close to t0⇤?, the rein-
forcement of SDW correlations by an even small increase
in !D gives rise to a slight shift in t0?, enough then to
induce a large increase of TSDW. This is not the con-
sequence of nesting improvement, but rather the result
of stronger nesting deviations needed to counteract the
reinforcement of SDW instability by Ph-M interactions.

D. Normal state

Now that the increase of the influence of electron-
phonon interactions on the temperature scales for order-
ing has been examined, one can turn our attention on
the influence of Ph-M interaction on the correlations of
the normal phase ...

As it will be shown below, the enhancement evolves
towards a Curie-Weiss temperature dependence of the
form (see also Fig.??),

�SDW =
C

T +⇥
. (26)

The Curie-Weiss form describes the non singular growth
of SDW spin correlations in the metallic state preceding
superconductivity, as a result of constructive interference
between Cooper pairing and SDW. As shown in previous

SDW

BOWSC-d

g1

g1

g1 g1

BOW-Peierls distortion

H. Bakrim and C. Bourbonnais, PRB 90, 125119(2014)



Normal state: spin fluctuations above Tc  

!⌫(q) ⇠ !D| sin q/2|

�⇡ ⇡

0 ! q [�2kF ]

H0
p +Hep =

X

q,⌫

!q,⌫

⇣
b†q,⌫bq,⌫ +

1

2

⌘
+ (LN?)

� 1
2

X

p,�,⌫

X

k,q

g⌫(k, q)c
†
p,k+q,�c�p,k,�(b

†
q,⌫ + b�q,⌫)

L T Hep = g2 g3 " #

T�1
1 ⇠ T

T +⇥
t t+ �t Tc ⇠ !↵

D ↵ ' 0.25 = 1/4 BCS

@`gi=1,2(k̄
0
?1, k̄?2, k̄?1) =

X

Pn,n0

h
✏n,n

0

C,i

⌦
hgn � gn0i! � @`LC

↵
k?

+ ✏n,n
0

P,i

⌦
hgn � gn0i � @`L0

P

↵
k?

i
,

@`g3(k̄
0
?1, k̄?2, k̄?1) =

2X

n=1

✏3,nP,3

⌦
hg3 � gni! � @`LP ik? ,

I(2kF )/T

�SDW ⇠ 1

T +⇥

1

H. BAKRIM AND C. BOURBONNAIS PHYSICAL REVIEW B 90, 125119 (2014)

Above t ′∗⊥ , but for small ωD , we still observe an inverse
isotope effect for the Tc of triplet, SC-f superconductivity, as
shown in Fig. 7(b). This confirms the role of BOW fluctuations
in the existence of SC-f ordering at repulsive coupling. This
is further supported when ωD increases and crosses the critical
value at which SC-d reappears in Fig. 5. Then the isotope effect
becomes once again positive as a consequence of the growth of
antiferromagnetic exchange and spin fluctuations that govern
the d-wave Cooper pairing. In the SC-d regime, one can extract
at intermediate frequencies a power-law dependence Tc ∼ ωα

D

for the isotope effect with a value of α ≃ 0.25 similar to the
one found below |g̃c

ph| [Fig. 6(b)].

D. Normal state

Now that the positive influence of electron-phonon in-
teractions on the temperature scales for ordering has been
examined, one can turn our attention on the influence of a
weak Ph-M interaction on spin correlations of the normal
phase above Tc. This is done for the SDW–SC-d sequence of
instabilities. In Fig. 8(a), we show the temperature dependence
of the inverse SDW susceptibility at small |g̃ph| and various
strengths of antinesting. At sufficiently high t ′⊥ > t ′∗⊥ , χ−1

SDW
decays essentially linearly from the high-temperature region
and extrapolates towards a critical point at a finite TSDW.
However, as the temperature is lowered at T < t ′⊥, nesting
deviations becomes coherent and the susceptibility undergoes
a change of regime and ceases to be critical. Nevertheless,
according to Fig. 8(a), χ−1

SDW keeps decreasing and extrapolates
to a nonzero intercept at T = 0 and a finite slope at the end
point Tc.

This nonsingular growth of spin correlations in the metallic
state, which persist down to Tc, can be well described by a
Curie-Weiss form (continuous lines in Fig. 8),

χSDW = C

T + $
, (26)

extending up to the temperature TCW for the onset of the
Curie-Weiss regime, which is about 10 times Tc in temperature

FIG. 8. The temperature dependence of the normal phase inverse
SDW susceptibility at different antinesting (a) and electron-phonon
interaction strengths (b). The straight lines correspond to the Curie-
Weiss fit [Eq. (26)].

at the frequency used in the figure {TCW decreases when ωD

is lowered [see Fig. 1(d)]} . Here the Curie-Weiss scale $
stands as a characteristic energy for SDW fluctuations, which
is defined as positive when t ′⊥ > t ′∗⊥ . The Curie-Weiss behavior
has been already found in the purely electronic case [31,32].
It results from the positive feedback of SC-d pairing on
SDW correlations, a consequence of constructive interference
between these channels of correlations. The presence of Ph-M
interactions clearly reinforces this behavior. As shown in
Fig. 8(b), cranking up |g̃ph| leads to the decrease of the
Curie-Weiss scale $ and an increase of the constant C. This
is consistent with an increase of the SDW correlation length
ξ ∼ (T + $)−1/2, in tune with the increase of Tc discussed
above. The softening of $ in Fig. 8 carries on until t ′⊥ reaches
t ′∗⊥ where $ → 0. There the system would then become
quantum critical with χSDW ∼ 1/T and TSDW → 0, if not for
the presence of superconductivity at a finite Tc that prevents
the SDW quantum critical point from being reached. Below
t ′∗⊥ , $ < 0 and the system enters the SDW sector with a finite
TSDW(≡ −$) > Tc.

At the approach of t ′∗⊥ , $ is well fitted by the quantum
scaling form

$ ≈ A(t ′⊥ − t ′∗⊥ )η, (27)

with an exponent η ≃ 1, consistently with the product η = νz
of the correlation length (ν = 1/2) and the dynamical (z = 2)
exponents for SDW at the one-loop level. The linear profile
of $ near t ′∗⊥ is illustrated in Fig. 2(a). From the Fig. 2(a) and
Fig. 8(b), the coefficient A decreases relatively quickly with
|g̃ph|.

V. DISCUSSION AND CONCLUSION

In this work we used a weak-coupling RG approach to
examine the influence of the tight-binding electron-phonon
interaction on the interplay between magnetism and su-
perconductivity in quasi-one-dimensional correlated electron
systems. When the phonon-mediated interaction remains weak
and subordinate to the direct Coulomb terms of the electron
gas, the RG flow of scattering amplitudes is found to be
distorted for particular longitudinal electron momentum and
momentum transfers. This reinforces the antiferromagnetic
exchange mechanism between itinerant spins and yields an
increase of the temperature scale of SDW ordering. By intro-
ducing enough nesting deviations into the electron kinetics,
SDW ordering is inhibited, but magnetic reinforcement by the
electron-phonon interaction persists and shifts by interference
in the superconducting channel. d-Wave Cooper pairing and
Tc then become enhanced compared to the purely electronic
situation. These properties were found to be affected by retar-
dation effects linked to the exchange of low-energy acoustic
phonons that modulate the strength of virtual electron-hole
scattering entering into the antiferromagnetic exchange term
of the electron gas. This gives rise to a positive isotope effect
on the SDW ordering temperature, which carries over beyond
the critical antinesting t ′∗⊥ where d-wave superconductivity is
found.

Our results also revealed that such an increase for Tc

is preceded by the strengthening of spin fluctuations in the
normal phase. This is manifest in a more pronounced Curie-
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FIG. 2: Phase diagrams of the repulsive quasi-1D electron
gas model as a function of the anti nesting parameter t0? and
|g̃ph| for (a), the SDW/SCd and (b), the BOW/SCd sequences
of instabilities at !D/t? = 0.4. The dashed lines show the
variation of the Curie-Weiss scale ⇥ of �SDW [Eq. (26)] as a
function of t0? in the superconducting

pairing.
As stressed above, the Fig. 2-a confirms that the Ph-M

coupling, albeit small, reinforces both TSDW and Tc for
all t0?, including the critical value t0⇤? at which supercon-
ductivity emerges. We also note from Fig. 2-a that this
reinforcement reduces the sharpness of its critical drop
at the approach of t0⇤?, an e↵ect that carries over in the
superconducting sector where the reduction of Tc with
t0? turns to be less rapid.

By increasing further the strength of Ph-M coupling
for the same !D, the Fig. 2-b shows that the SDW-SCd
sequence of instabilities as a function of t0? is only main-
tained up to a critical, |g̃cph|(⇡ 0.52 for the parameters
used), above which SDW is no longer stable and replaced
by the onset of a non magnetic BOW state at TBOW.
The typical variation of relevant susceptibilities in the
BOW sector of the phase diagram are given in Fig. 3-a.
The BOW instability that takes place from the metallic
state corresponds to a correlated Peierls lattice distor-
tion. The quantum or classical character of the BOW
state ... Peierls states37,38.

Another remarkable feature of the phase diagram of
Fig. 2-b above |g̃cph| is that BOW instability is still fol-
lowed by SCd superconductivity at t0? � t0⇤?. However,
Tc becomes a decreasing function of |g̃ph| in the BOW
sector. As shown in Fig. 4, it behaves so after having
reached its maximum at the boundary |g̃cph| where SDW

FIG. 3: Temperature variation of the SDW, BOW and SCd
susceptibilities for |gph| above the threshold |g̃cph| for the oc-
currence of BOW instability at (a) t0? < t0⇤?, and (b) in SCd
sector at t0? > t0⇤?. Here !D/t? = 0.4.

and BOW are found to be essentially degenerate and at
their maximum strength (see Fig. 2-b). Actually despite
the presence of a Peierls lattice distorted state, the es-
sential role played by spin fluctuations in the emergence
of SCd at t0? � t0⇤? remains. This is confirmed in Fig. 3-b
where the amplitude of �SDW is larger than �BOW over
a large temperature interval at the approach of Tc in the
normal state.
The decay of Tc in the BOW sector at |g̃ph| > |g̃cph|

carries on until the Ph-M interaction is no longer small
compared to the direct Coulomb term. There is indeed
a second critical value |g̃ssph| on the Ph-M coupling axis
where the SCd superconductivity becomes in its turn
unstable to the formation of s-wave superconductivity
(SS) characterized by intrachain Cooper pairing. This is
the region where the electron-phonon interaction domi-
nates and conventional superconductivity, albeit boosted
by BOW fluctuations, emerges. The BOW-SS sequence
of instabilities of the quasi-1D electron gas at dominant
electron-phonon interaction falls into the opposite limit
region discussed in Ref.21.

C. Isotope e↵ects

In the preceding paragraphs we signalled on several oc-
casions the positive influence of raising !D on the SDW
and SCd instabilities. This result obtained by varying
the molecular mass M at fixed elastic constant  [gph
kept constant according to Eq. (11)], corresponds to a
positive isotopic e↵ect. It can be understood as a modi-
fication by retardation of the e↵ective antiferromagnetic
exchange between itinerant spins. Actually, the g2 and
g3 scattering amplitudes in the action (9), contribute an
exchange term of the form
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Fig. 1: (Colour on-line) Phase diagram of the quasi-1D electron-
phonon model in the (t′⊥,ωD)-plane. Here T0 is the CDW
ordering temperature of the adiabatic ωD→ 0 and perfect
nesting t′⊥→ 0 limit.

dynamically governed by the Debye energy scale ωD,
which is much smaller than the Fermi energy and often
close to the energy scale of CDW order found in molecu-
lar conductors [8]. This introduces retardation in inter-
actions, which besides interchain hopping and nesting
alterations, modifies in a non-trivial way the interfering
many-body processes that are linked to density-wave and
Cooper pairings in every order of perturbation theory.
This difficulty has been well established in the past,
requiring to go beyond the habitual scheme of approx-
imations such as mean-field and RPA-like approaches
that are known to single out one pairing channel to the
detriment of the other [14–16]. In the one-dimensional
case, a weak-coupling solution to this problem has been
found in the framework of the RG method [17,18]. Recent
progress along these lines has shown that this approach
is well suited to simultaneously account for both pairing
processes in the determination of ground states in electron-
phonon systems at arbitrary phonon frequency.
In this paper the RG method is extended to a electron-

phonon model in the quasi-1D case and at finite temper-
ature. The temperature scales TCDW and Tc for the
instabilities of the metallic state against the formation of
CDW and SC orders are determined for arbitrary phonon
frequency ωD and nesting deviations parametrized by the
next-to-nearest-neighbor interchain hopping t′⊥. The main
results of the present work are outlined in the phase
diagram of fig. 1. For small t′⊥, TCDW weakens and under-
goes a quantum-classical crossover as ωD is raised and goes
beyond the adiabatic scale T0 for CDW ordering. When
nesting distortion attains some threshold t′⊥

∗, TCDW is crit-
ically reduced and at non-zero ωD, an SC instability takes
place in the s-wave channel only. In the adiabatic limit,
TCDW defines a quantum critical point at t′⊥

∗, from which
an anomalous power law increase of Tc with the phonon
frequency takes place. Along realistic pressure paths in
the (t′⊥,ωD)-plane, the model phase diagram follows the
leading features displayed by Per2[Au(mnt)2]. The impact

of the repulsive Coulomb interaction on the structure of
the phase diagram is explored alongside the predisposition
of electron-phonon driven CDW systems to show s-wave
superconductivity.

The model and the renormalization group equa-
tions. – We consider a non–half-filled two-dimensional
electron system consisting of N⊥ chains of length L with
the electron spectrum Ep(k) = vF (pk− kF )+ ε⊥(k⊥),
where ε⊥(k⊥) =−2t⊥cos k⊥− 2t′⊥cos 2k⊥. Here p=±
refers to right- and left-moving electrons along the stacks,
vF (kF ) to the parallel Fermi velocity (wave vector), and
t⊥ to the interchain hopping integral. In the quasi-1D
case, we have t⊥≪EF = vF kF , where EF =E0/2 is
the Fermi energy taken as half the band width. The
next-to-nearest-neighbor transverse hopping t′⊥, which
describes nesting deviations, is kept small compared to
t⊥. The following calculations are carried out for the
typical values EF = 15t⊥ = 3000K. In the framework of
the Su-Schrieffer-Heeger (SSH) model [19], the electrons
are linearly coupled to parallel acoustic phonons. These
modes being harmonic, this is equivalent in the Matsub-
ara formalism of the partition function to consider a
frequency-dependent electron-electron interaction. In the
g-ology picture, the bare interaction reads

gi(k̄1, k̄2; k̄3, k̄4) =
gphi

1+ (ωn1 −ωn4)2/ω2D
, (1)

which for a non–half-filled band splits as a backward
(i= 1) and forward (i= 2) scattering amplitude between
p=+ and − moving carriers; here the momentum-
frequency variables k̄= (k⊥,ωn) satisfy the conservation
rule k̄3+ k̄4 = k̄1+ k̄2. For the SSH model the bare initial
amplitude (normalized by πvF ) for the 2kF backscattering
part gph1 is non-zero (g

ph
1 =−0.20 in the following), while

gph2 = 0 for the forward scattering at vanishing momentum
transfer [16].
To obtain the characteristic temperature scales for

ordering in the presence of t′⊥, the RG must be carried
out at finite temperature. The RG transformation of the
coupling constants results from the successive integration
of electronic degrees of freedom in the outer energy shell
±E0(ℓ)dℓ/2 above and below the Fermi surface for all
Matsubara frequencies. Here E0(ℓ) =E0e−ℓ is the scaled
bandwidth at the step ℓ! 0 varying from zero to infinity at
finite T . In the momentum-frequency RG scheme adopted
here at finite temperature, each constant energy sheet
from the Fermi surface is divided into 12 patches, each
defining a particular k⊥ in momentum space, while a
discrete set of Nω = 14 fermion Matsubara frequencies
ωn (−7" n" 6) is retained along the frequency axis.
At finite temperature this represents a good compromise
between exacting computing time and reproducing the
results known for either the non-retarded case in quasi-
one dimension [12] or the electron-phonon problem in one
dimension [17].
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