Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints

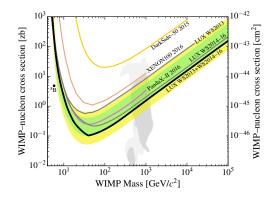
Constraints on Primordial Black Holes as Dark Matter

KITP Seminar

Timothy Brandt University of California, Santa Barbara

25 February 2020

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
●00	0	000	00	000	

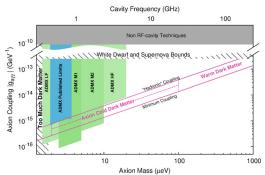


Bullet Cluster, X-ray, optical, and lensing composite

< □ > < □ > < □ > < □ > < □ > = Ξ

0●0 0 000 00 000 000 000000	Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
	000					

WIMP Dark Matter?


LUX collaboration, Akerib et al. PRL, 118, 1303 (2017)

・ロト ・聞ト ・ヨト ・ヨト

э

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
000					

Axion Dark Matter?

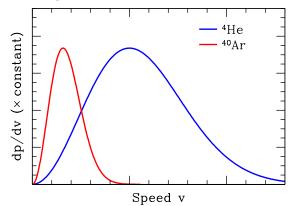
ADMX, Rosenberg, PNAS, 112, 40 (2014)

ADMX Achieved and Projected Sensitivity

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
000					

Is dark matter primordial black holes?

- ✓ Black holes exist
- \checkmark Scenario makes testable predictions
 - Black hole mergers
 - Microlensing
 - CMB distortions
 - Dynamical heating

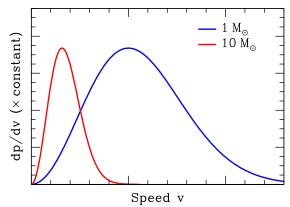

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
000					

Is dark matter primordial black holes?

- ✓ Black holes exist
- \checkmark Scenario makes testable predictions
 - Black hole mergers
 - Microlensing
 - CMB distortions
 - Dynamical heating

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
	•				

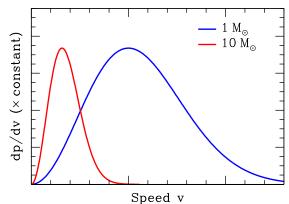
Equipartition: gas in a box



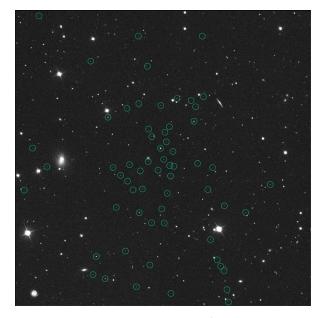
・ロト ・聞ト ・ヨト ・ヨト

æ

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
	•				


Equipartition: **stars** in a box

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで


Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
	•				

Equipartition: **stars** in a box

If both MACHOs $\gtrsim 1 M_{\odot}$ and stars are present, the equilibrium distribution of the stars will be puffier than that of the MACHOs.

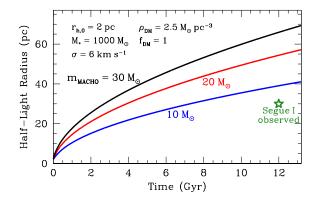
Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
		•00			

Segue 1: Marla Geha

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
		000			

How transient is Segue 1?

Inject energy from a uniform MACHO background Implicit equation for half-light radius r_h :

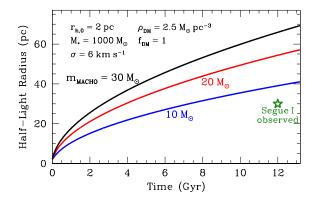

$$\frac{dr_{h}}{dt} = \frac{4\sqrt{2}\pi G f_{\text{DM}} m_{\text{MACHO}}}{\sigma} \ln \Lambda \left(\alpha \frac{M_{*}}{\rho r_{h}^{2}} + 2\beta r_{h} \right)^{-1}$$

Constraining for massive MACHOs in galaxies with low velocity-dispersions

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
		00•			

Example: measured properties of Segue I

• Conservatively assume stars started out in a compact cluster



◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
		000			

Example: measured properties of Segue I

• Conservatively assume stars started out in a compact cluster

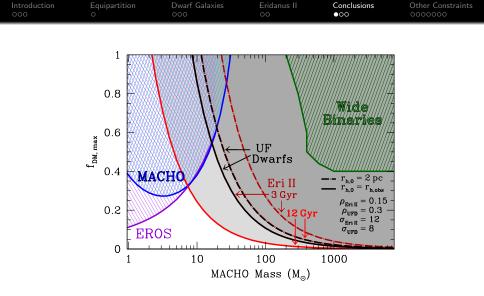
MACHO dark matter $\gtrsim\!\!10\,M_{\odot}$ doesn't work

ntroduction Equipartition Dwarf Galaxies Eridanus II Conclusions Other Constraints

A low-mass, diffuse cluster in an ultra-faint dwarf

Eridanus II: Crnojević et al. (2016)

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
			00		


Eridani II's Cluster

- Half-light radius pprox 13 pc
- Luminosity \approx 2000 L $_{\odot}$
- $\rho_{DM}\approx 0.15\,M_\odot\,\text{pc}^{-3}$
- $\sigma \approx 12 \, \text{km} \, \text{s}^{-1}$
- Age uncertain (\sim 3–12 Gyr)

(日)、

 $\label{eq:rh} \begin{array}{l} r_h \text{ increases slowly until } \rho_{\text{MACHO}} \sim \rho_* \text{, then grows as } \sqrt{t} \\ r_h \approx 13\,\text{pc} \text{ is very transient for almost any assumptions} \end{array}$

Bottom line: Very hard to reconcile MACHO dark matter with compact ultra-faint dwarfs

・ロト ・聞ト ・ヨト ・ヨト

э

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
000	0	000	00	000	
				,	/

Caveats for Eridani II:

- Intermediate-mass black hole (several $1000\,M_\odot)\ref{Moments}$
- Chance alignment with galaxy center??
- Luck: initially compact cluster is now expanding
- \ldots but there are ~ 10 other compact ultra-faint dwarfs
 - \bullet Dynamical masses largely provided by single ${\sim}10^{4-5}\,M_{\odot}$ black holes?

Introduction 000	Equipartition 0		Conclusions 00●	Other Constraints

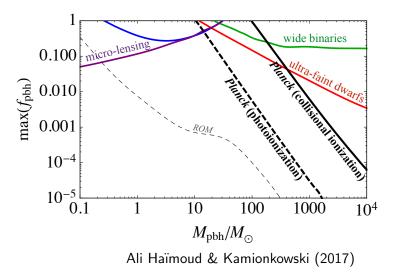
Recent work refines the picture

- \bullet Radius inflation $\sim t^{0.4}$ rather than $\sim t^{0.5}$ (Zhu+ 2018)
- Spectroscopic confirmation of Eri II cluster (Zoutendijk+ 2020)
- Faintest dwarfs remain incompatible with $\gtrsim\!\!10~M_{\odot}$ black holes as all of the dark matter (Stegmann+ 2020)

Basic conclusions remain:

 $\gtrsim\!\!10~M_{\odot}$ black holes are hard to reconcile with being all of the dark matter

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
					000000

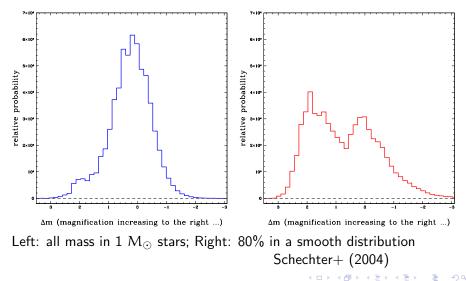

Is dark matter primordial black holes?

- ✓ Black holes exist
- \checkmark Scenario makes testable predictions
 - Black hole mergers LIGO
 - Microlensing Long history!
 - CMB distortions Ali Haïmoud+Kamionkowski 2017

• Dynamical heating

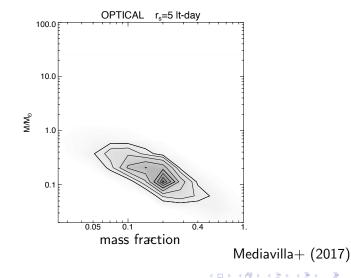
000 0		000000

CMB Distortions



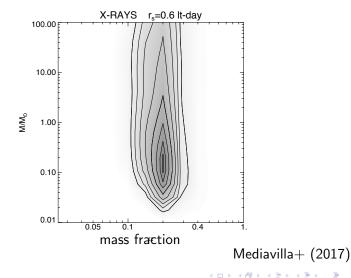
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Microlensing


Statistical brightness variations in multiply-imaged quasars

Introduction 000	Equipartition O	Dwarf Galaxies	Eridanus II 00	Conclusions	Other Constraints

Microlensing


Application to primordial black holes from 24 images:

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
000	0	000	00	000	0000000

Microlensing

Application to primordial black holes from 24 images:

Is dark matter primordial black holes?

- ✓ Black holes exist
- ✓ Scenario makes testable predictions
 - Black hole mergers Maybe?
 - Microlensing
 Not looking good
 - CMB distortions Questionable
 - Dynamical heating Not looking good

Caveat: There is still an ~asteroid-mass window between Hawking evaporation and microlensing constraints . . .

Introduction	Equipartition	Dwarf Galaxies	Eridanus II	Conclusions	Other Constraints
					000000

Thank you!