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Scalar fields in de Sitter space

- Assume standard cosmology (inflation, reheating, hot
Big Bang as usual)

- Assume there is a scalar field with the Lagrangian

1 1
L= 56’“)(%)( — §m2x2

- Assume the field is not the inflaton but a spectator field



Scalar fields in de Sitter space

- If the field was light (m<H), it acquired fluctuations during
inflation



Scalar fields in de Sitter space
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Scalar fields in de Sitter space

- Using the stochastic approach* it can be shown that the
distribution of field values is**

87

P(x) = Nexp <—@V(X)>

- Typical displacement: <x2 ~—

*) Starobinsky & Yokoyama (9407016), **) Relaxation time-scale: NV ~ ]—[2/7712
see also Markkanen, Rajantie, Stopyra, TT (1904.11917)



Evolution after inflation

- At the end of inflation, there was a non-zero condensate
of the scalar field

- The field had the energy density

1

P (z) = §m2x§nd(fﬂ)

Note that this is a position-dependent quantity



Evolution after inflation

- At the end of inflation, there was a non-zero condensate
of the scalar field

- The field had the energy density

|
P (x) = §m2x§nd($)

This is a generic initial condition for non-

thermal DM models with scalar fields




Evolution after inflation

- Soon, the field started to oscillate about its minimum with

py(a) o< a”?

- If the field did not decay, the present abundance is
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Evolution after inflation

- Soon, the field started to oscillate about its minimum with

py(a) o< a”?

The simplest possible dark matter model

QXh2 17 —1 Xend ’ m
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Evolution after inflation

- If the field did decay into stable particles, their present
abundance is

Quh? - o\ 38 ond 32,
— 1.2 1 /4 HOSC - = ( w )
0.12 X 107 (Hose) | 15 My GeV

- Other sources (such as freeze-in) can contribute to the
final DM abundance, too
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Dark matter perturbations

- It was noted that the DM energy density is a position-
dependent quantity

1

p(a) = Smxg (@)

Do the perturbations overlap with those in radiation?

(Are the DM perturbations adiabatic or isocurvature?)



Dark matter isocurvature

- Isocurvature between CDM and radiation is

- This quantity describes how much the CDM perturbations
differ from those in radiation



DM isocurvature vs. observations

- Non-observation of DM isocurvature places stringent
constraints on this type of scenarios
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DM isocurvature spectrum

- The CMB constraints require

Ps(ky) S 0.04P:(ky)

- The spectator field generates a spectrum
L Niso—1
P5<k*> — Aiso <_)
k.

AiSO — 4(77'180 — 1)6_2N(k*)(niso_1) Nigo — 1 = gﬁ



The simplest DM model vs. observations

- The constraints can be evaded
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The simplest DM model vs. observations

- The constraints can be evaded

ABxqpiF = * T F FF T T T F T T W —T—T——

See more in PRL 123 (2019) 061302

arXiv: 1905.01214
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Implications




Testability

- Dark matter isocurvature affects the curvature perturbation

1
C:Cinf_l_gs



Testability

- Dark matter isocurvature affects the curvature perturbation
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Testability

- Dark matter isocurvature affects the curvature perturbation
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Matter power spectrum

PRELIMINARY
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Matter power spectrum

- PRELIMINARY

Work in progress w/ J. Silk,

M. Kamionkowski et al.
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Conclusions

- Inflation provides
generic initial conditions
for scalar fields

- Such scalars can
constitute all DM

- The scenario can be
tested with observations
of the large scale

_ structure
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