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Summary

•
 

Anti-tumor immunity
•

 
In silico model-based inference

•
 

Examples 
–

 
Simple enzyme kinetics

–
 

Cell signaling 
–

 
Tumor immunology



Immunoescape recognized as an emerging 
hallmark of cancer 

Hanahan

 

and Weinberg Cell (2011)

Sustaining
proliferative

signaling

Evading growth 
suppressors

Enabling
replicative
immortality

Resisting
cell death

Inducing 
angiogenesis

Activating 
invasion & metastasis
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The right cytokine response shapes cell- 
mediated anti-tumor immunity

Natural
Killer Cell

Cytotoxic

 

T
Lymphocyte

T Helper 
Cell

IFNγ

IL-12
Activates 
NK cells

Promotes 
effector

 

differentiation

Promotes 
Th1 differentiation

Antibody-dependent
Cell-mediated 
Cytotoxicity

Cell-mediated 
Cytotoxicity

Mutagen

Key Cell Types

Do tumor cells alter immune fitness 
landscape by interfering with 
endogenous Interleukin-12?

Kulkarni

 

et al. Integrative Biology 2012.

•

 

Local delivery of IL-12 enhances 
anti-tumor immunity (Kerkar

 

et al. 
Cancer Res 2010)

•

 

Cancer is an evolutionary process 
(Klinke submitted 2012)
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Biological problem poses constraints on plan of attack

Tumor
Cell

Immune
Cell

Klinke

 

Mol Cancer (2010) 9:242.

•

 

Create minimal experimental system where 
immune cells exhibit well-characterized response 

•

 

Dynamical system spans minutes to days 
•

 

Multiscale

 

–

 

need to deconvolute

 

cell fate 
from signaling events. 

•

 

Slaving –

 

response of system governed by 
slow events

•

 

Rich prior knowledge regarding causal 
relationships –

 

competing hypotheses
•

 

Kinetic importance of nodes/edges is unclear
•

 

Evaluate competing causal hypotheses using 
available data
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The scientific method is a structured activity 
used to improve understanding of systems

Prior knowledge Formulate 
hypothesis 

(model)

Model 
is invalid

Design & run
experiments to
test hypothesis

Model 
is not invalid

What time points?
What model system?
What to measure?

Rule-based modeling
(e.g., BioNetGen)

Data/model interoperability 
(e.g., SBML DataRail)

High content assays
(e.g., multiplex single-cell assays)

Omics

 

technology 
(e.g., High-throughput 

mass spectrometry)

Existing
data

Interpret 
data in light of 

model
Inference



Inference is the logical reasoning about our 
understanding of a system using observations

•
 

Our understanding of the system can be expressed 
in terms of a model (M) 

•
 

Logic can be extended using probability
•

 
Probability is conditioned
–

 
P(Y|M) : observing an event (Y) is 
conditioned on a cause (M)

Cause (M): Happy Unhappy

Event (Y):



Logical reasoning in the context of cell 
signaling primarily involves inductive inference

•
 

Increase understanding of system by reasoning 
backwards from uncertain observations to a cause: 
P(M|Y)

Universe

Observable events (Y)

U
no

bs
er

va
bl

e 
ca

us
es

 (M
)

But how do we relate P(M|Y) to P(Y|M)?

Moving Smiling Stinks

Unhappy

Happy

Passing gas



Conditional probability is the same irrespective of 
whether one conditions on observation or cause
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Empirical Bayesian approach is a contemporary 
alterative for model-based inference

•

 

Mathematical models are an expression of our belief in how information flows 
within cells.

•

 

The level of confidence in our beliefs must account for the uncertainity

 
associated with the parameters and the data used in calibrating the model. 

∫∫ Θ⋅Θ⋅Θ= dYdYPYMPMYPMYP
posterior

)(),|(),|ˆ()|ˆ(
43421

4342143421
priorlikelihood

MPMYPYPMYP )|(),|()(),|( Θ⋅Θ=⋅ΘBayes

 

Theorem:

•

 

High performance computing is used to compute these integrals.

Klinke BMC Bioinformatics 2009, 10:371.

∫∫ ΘΘ⋅Θ⋅Θ= dYdMPMYPMYPMYP
priorlikelihood
4342143421

)|(),|(),|ˆ()|ˆ(



P(Y|Θ, M) can be viewed from two different 
perspectives

Frequentist
 

viewpoint: 
Random observations, Y, 
but Θ and M are discrete 
fixed or “true” values: 
P(Y|ΘF, MF)
A priori identifiability / 
Maximum likelihood

Regress equations to data

Apply MCMC convergence 
to parameters

Bayesian viewpoint:
Y, Θ, and M exhibit 
uncertainty (randomness): 
P(Y|ΘR, MR)

Available data limit ability 
to determine parameter 
values (practical 
identifiability)
Can we distinguish among 
competing causal 
hypotheses given data?
Apply MCMC convergence 
to predictions
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Integration with respect to observed data 
(Y) is a sum

•

 

Y is a collection of different types of experimental data: Y={Y1

 

, Y2

 

, …

 

Yn

 

}

•

 

Each data set may also have multiple measures: Yj

 

= {y1

 

, y2

 

, …, ym

 

}

•

 

Likelihood is related to the normalized sum of squared error.

•

 

Integration with respect to parameters is difficult.

∏
=

Θ=Θ⋅⋅Θ⋅Θ=Θ
n

j
jn MYPMYPMYPMYPMYP

1
21 ),|(),|(),|(),|(),|( L

2

1

2

2

))|(ˆ(

)(
),|(

jm

m

k
ikk

j
ij

Myy

YMax
MYP

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
∝

∑
=

θ
θ

∫ ∏
Θ =

ΘΘ⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−⋅−
⋅Θ=

all

prior
ondistributi

proposal

n

j

m

ijj
T

ijj

j dMP
MYYMYY

YMax
MYPMYP

j

43421

)(

1

22

)|(
))|(ˆ())|(ˆ(

)(
),|ˆ()|ˆ(

θθ



15

An adaptive Markov chain Monte Carlo 
algorithm is used for integration

•

 

Monte Carlo integration: 
–

 

Numerical method used for integrating complex integrals using a random 
sample. Samples are weighted by probability.

∫ ⋅=
xall

dxxPxx )(

Randomly sample x -> 
calculate p(x)

•

 

Markov Chain Monte Carlo integration:
•

 

Better suited to high dimensional problems where high likelihood

 

regions 
are highly structured

•

 

Random samples are obtained using a random walk, including a new

 

step 
in walk is based upon likelihood. 

•

 

Proposal distribution reflects prior information as to parameter

 
(in)dependence

 

that can be conditioned on data (an Adaptive MCMC) 

Convergence: used to assess how many samples are needed to 
provide a good estimate of integrand

x
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A simple enzyme kinetics example using adaptive 
Markov chain Monte Carlo integration

Dynamical System: Known: 
ETot

 

-
 

Total enzyme 
concentration

Unknown: 
Rate constants {kf, kr, kcat} 
2 different initial substrate 
concentrations.

Measurement error:
10% RMS

CEE

CkkSEk
dt
dC

CkSEk
dt
dS

Tot

catrf

rf

+=

⋅+−⋅⋅=

⋅+⋅⋅−=

)(
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“Educated”
Dendritic

 

Cells
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Cytokines direct T helper cell polarization

Naïve 
CD4+ 
T Cells

T helper cells:
•

 

Recognize antigens
•

 

Presented in the right context
•

 

Produce cytokines that are influenced by 
autocrine

 

and paracrine

 

biochemical cues

IL-2

IL-4

IL-12
IFN-γ IFN-γ

IL-4
IL-5
IL-13

IL-23 IL-17
IL-21
IL-22

E
ffe

ct
or

C
D

4+
 T

 c
el

ls

TGFβ

 

IL-6

Th2

Th17

Th1
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Interleukin-12 promotes Th1 polarization

•
 

The IL12 signaling pathway is a 
member of JAK/STAT family of 
signaling networks
–

 
Signal strength regulated via 
positive and negative 
feedback

–
 

Role of feedback in normal 
physiology unknown (Murray J 
Immunol 2007)
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STAT4
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Target Genes
•Regulate growth/signaling

•Promote differentiation
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P P

STAT4
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Can model-based inference be used to evaluate competing hypotheses 
regarding how TH

 

1 cells interpret IL-12?  
Klinke et al. Sci Signaling 2012.
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We acquired a high content, quantitative cue-signal- 
response data set to test competing hypotheses

•

 

Flow cytometry-based high content observations
–

 

Cell density –

 

AccuCount

 

calibration beads
–

 

Cell viability –

 

Caspase

 

3 cleavage
–

 

Quantitative cellular signals (MFI → Copy number)
•

 

Phosphorylated

 

STAT4
•

 

IL12 receptor β2  and IL12 receptor β1
–

 

Biochemical cues / Cell Response –

 

Cytometric

 

bead array
IL12p70  TNF-α

 

IL-10  IL-6  IFN-γ

 

MCP-1
•

 

924 data points –

 

7 time points, in triplicate

IL12-dependent
Th1 cell model

(2D6)

Cell Density
(direct vs paracrine) Interleukin-12

2x2 Factorial Design

12 14 18 24 36 42 hr

Cue-Signal-Response High Content Assay

Chase Chase or Pulse

0

Klinke et al. Sci Signaling 2012.
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Parameters are selectively informed by data 
and exhibit correlation 
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Posterior distribution suggests that 2D6 cells 
produce TNFα

 
via an autocrine feedback loop

•

 

Autocrine

 

feedback loop regulates TNFα

 
production in 2D6 cells. 

•

 

Pr(RP6>RP5|Y,M) > 96.7%
•

 

Experimentally validated prediction.

RP6

RP5

Klinke et al. Sci Signaling 2012.
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Dynamics of IL-12-induced cytokine production 
are influenced by deactivation and dilution

Cell growth

Phosphatase
action

•

 

Activated STAT4 saturates ifng but not il10 promoter.
•

 

Dilution contributes 30% to decay in pSTAT4 

Klinke et al. Sci Signaling 2012.
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Inhibiting cell proliferation stops decline in pSTAT4

•

 

Block cell proliferation using Mitomycin

 

C and stimulate with IL-12
•

 

Quantify cell density and pSTAT4 response
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Klinke et al. Sci Signaling 2012.
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Data are insufficient to discriminate between 
competing hypotheses to control IL12Rβ2 expression

Posterior distributions in the flux through competing pathways 
is inconclusive.

RP1

RP2

Klinke et al. Sci Signaling 2012.
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Data suggest a lurking mechanism for 
regulating IL-12 receptor β2
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•

 

Th1 cells do not typically respond to IFN-γ, while naïve CD4+ T cells do.
•

 

STAT1 activation in response to IFN-γ

 

is typically reported at 30’

 

post 
stimulation –

 

are dynamics important?
•

 

Stimulate 2D6 cells with IFN-γ

 

or IL-12, observe rapid time course for 
STAT1 and STAT4 activation.

IL-12
IFNγ
Control

•

 

STAT1 and STAT4 are differentially regulated in response to IL-12



Viability
Enhanced

Negative
Feedback?
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Cue-signal-response model is revised to 
reflect new biology

IL-12Rβ2 is regulated in naïve 
CD4+ T cells via an integral 

feedback control mechanism but 
shifts to a cell-autonomous 

mechanism in Th1 effector

 

cells.

The cytokine response of 
2D6 cells to IL-12 exhibits  
memory –

 

temporal 
component of plasticity in 
T helper cell fate.

TNFα

 

production is 
regulated via an autocrine

 
feedback loop –

 

an 
integral feedback control 
mechanism to regulate 
homeostatic proliferation?
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Do tumor cells bias the immunoselection landscape 
through paracrine regulation of Interleukin-12? 

IL-12 (Input)
TNF-α

IFN-γ

IL-10
(Output)

STAT4

STAT1

NF-κB

•

 

Create minimal system that recreates local immunosuppression
(i.e., a closed-loop system)

•

 

Use an immune cell model for which input-output relationships are well-

 
characterized (Klinke et al. Sci Signal 2012.)

o STAT4 is phosphorylated

 

irreversibly => encodes short-term memory that 
is limited by cell proliferation and reinforced by low endogenous IL-12

•

 

Employ less biased protein identification methods => 2D-GE/MALDI-TOF MS.

Kulkarni

 

et al. Integrative Biology 2012.
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B16 inhibits cellular response to IL-12 via multiple mechanisms 
including paracrine action of Wnt-inducible signaling protein-1 

Cytokine Sink
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B16 inhibits cellular response to IL-12 via multiple mechanisms 
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WISP-1 is expressed at the invasive front of 
human melanoma tumors
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Parting Thoughts 

The most exciting phrase to hear in science, the one that 
heralds the most discoveries, is not "Eureka!" (I found it!) 
but "That's funny..."  

–
 

Isaac Asimov

•
 

Lurking mechanisms exist in biological research.
–

 

IL-12 receptor activates both STAT1 and STAT4
–

 

Irreversibility of STAT4 phosphorylation
–

 

Tumors exert paracrine

 

action on immune cells through 
Wisp1

•
 

In silico model-based inference is a contemporary 
tool for hypothesis testing in dynamical systems.
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