In silico model-based inference: applications to anti-tumor immunity

1

David J. Klinke II Department of Chemical Engineering Department of Microbiology, Immunology & Cell Biology

Morgantown, WV 26506

- Anti-tumor immunity
- In silico model-based inference
- Examples
 - Simple enzyme kinetics
 - Cell signaling
 - Tumor immunology

Immunoescape recognized as an emerging hallmark of cancer

The right cytokine response shapes cellmediated anti-tumor immunity

Do tumor cells alter immune fitness landscape by interfering with endogenous Interleukin-12?

Kulkarni et al. Integrative Biology 2012.

Biological problem poses constraints on plan of attack

Klinke Mol Cancer (2010) 9:242.

- Create minimal experimental system where immune cells exhibit well-characterized response
- Dynamical system spans minutes to days
 - Multiscale need to deconvolute cell fate from signaling events.
 - Slaving response of system governed by slow events
- Rich prior knowledge regarding causal relationships competing hypotheses
- Kinetic importance of nodes/edges is unclear
- Evaluate competing causal hypotheses using available data

Summary

- Anti-tumor immunity
- In silico model-based inference
- Examples
 - Simple enzyme kinetics
 - Cell signaling
 - Tumor immunology

The scientific method is a structured activity used to improve understanding of systems

Inference is the logical reasoning about our understanding of a system using observations

- Our understanding of the system can be expressed in terms of a model (M)
- Logic can be extended using probability
- Probability is conditioned
 - P(Y|M) : observing an event (Y) is conditioned on a cause (M)

Logical reasoning in the context of cell signaling primarily involves inductive inference

 Increase understanding of system by reasoning backwards from uncertain observations to a cause: P(M|Y)

But how do we relate P(M|Y) to P(Y|M)?

Jnobservable causes (M)

Conditional probability is the same irrespective of whether one conditions on observation or cause

Empirical Bayesian approach is a contemporary alterative for model-based inference

- Mathematical models are an expression of our belief in how information flows within cells.
- The level of confidence in our beliefs must account for the uncertainity associated with the parameters and the data used in calibrating the model.

$$P(\hat{Y} \mid M) = \iint P(\hat{Y} \mid \Theta, M) \cdot \underbrace{P(\Theta \mid M, Y)}_{\text{posterior}} \cdot P(Y) d\Theta dY$$

Bayes Theorem: $P(\Theta | Y, M) \cdot P(Y) = \underbrace{P(Y | \Theta, M)}_{likelihood} \cdot \underbrace{P(\Theta | M)}_{prior}$

$$P(\hat{Y} \mid M) = \iint P(\hat{Y} \mid \Theta, M) \cdot \underbrace{P(Y \mid \Theta, M)}_{likelihood} \cdot \underbrace{P(\Theta \mid M)}_{prior} d\Theta dY$$

• High performance computing is used to compute these integrals.

P(Y|Θ, M) can be viewed from two different perspectives

Frequentist viewpoint:

- Random observations, Y, but Θ and M are discrete fixed or "true" values: P(Y|Θ_F, M_F)
- A priori identifiability / Maximum likelihood
- Regress equations to data
- Apply MCMC convergence to parameters

Bayesian viewpoint:

- Y, Θ, and M exhibit uncertainty (randomness): P(Y|Θ_R, M_R)
- Available data limit ability to determine parameter values (practical identifiability)
- Can we distinguish among competing causal hypotheses given data?
- Apply MCMC convergence to predictions

Integration with respect to observed data (Y) is a sum

• **Y** is a collection of different types of experimental data: $\mathbf{Y} = \{Y_1, Y_2, \dots, Y_n\}$

$$P(Y \mid \Theta, M) = P(Y_1 \mid \Theta, M) \cdot P(Y_2 \mid \Theta, M) \cdots P(Y_n \mid \Theta, M) = \prod_{j=1}^n P(Y_j \mid \Theta, M)$$

• Each data set may also have multiple measures: $Y_j = \{y_1, y_2, ..., y_m\}$

$$P(Y_j \mid \theta_i, M) \propto \left[\frac{Max(Y_j)^2}{\sum_{k=1}^m (y_k - \hat{y}_k(\theta_i \mid M))^2} \right]^{\frac{m_j}{2}}$$

• Likelihood is related to the normalized sum of squared error.

$$P(\hat{Y} \mid M) = \int_{all \Theta} P(\hat{Y} \mid \Theta, M) \cdot \prod_{j=1}^{n} \left[\frac{Max(Y_j)^2}{(Y_j - \hat{Y}_j(\theta_i \mid M))^T \cdot (Y_j - \hat{Y}_j(\theta_i \mid M))} \right]^{\frac{m_j}{2}} \cdot \underbrace{P(\Theta \mid M)}_{\substack{proposal \\ distribution \\ (prior)}} d\Theta$$

т.

• Integration with respect to parameters is difficult.

An adaptive Markov chain Monte Carlo algorithm is used for integration

- Monte Carlo integration:
 - Numerical method used for integrating complex integrals using a random sample. Samples are weighted by probability.

Convergence: used to assess how many samples are needed to provide a good estimate of integrand

- Markov Chain Monte Carlo integration:
 - Better suited to high dimensional problems where high likelihood regions are highly structured
 - Random samples are obtained using a random walk, including a new step in walk is based upon likelihood.
 - Proposal distribution reflects prior information as to parameter (in)dependence that can be conditioned on data (an Adaptive MCMC)

Summary

- Anti-tumor immunity
- In silico model-based inference
- Examples
 - Simple enzyme kinetics
 - Cell signaling
 - Tumor immunology

 $\xrightarrow{k_f}$

Substrate + Free Enzyme

Complex Complex Complex

Complex $\xrightarrow{k_r}$ Substrate + Free Enzyme

$$\xrightarrow{k_{cat}}$$
 Product + Free Enzyme

Dynamical System:

$$\frac{dS}{dt} = -k_f \cdot E \cdot S + k_r \cdot C$$
$$\frac{dC}{dt} = k_f \cdot E \cdot S - (k_r + k_{cat}) \cdot C$$
$$E_{Tot} = E + C$$

Known: E_{Tot} - Total enzyme concentration Unknown: Rate constants {kf, kr, kcat} 2 different initial substrate concentrations. Measurement error: 10% RMS

Proposal distribution exhibits diminishing adaptation

10^{-2.5} 10⁻¹ 10⁰

 $10^2 10^4 10^6 10^8$ $E_{Tot} = E + C$ $S_o = S + P$ k_{f} System

Summary

- Anti-tumor immunity
- In silico model-based inference
- Examples
 - Simple enzyme kinetics
 - Cell signaling
 - Tumor immunology

Cytokines direct T helper cell polarization

T helper cells:

- Recognize antigens
- Presented in the right context
- Produce cytokines that are influenced by autocrine and paracrine biochemical cues

Interleukin-12 promotes Th1 polarization

- The IL12 signaling pathway is a member of *JAK/STAT* family of signaling networks
 - Signal strength regulated via positive and negative feedback
 - Role of feedback in normal physiology unknown (Murray J Immunol 2007)

Can model-based inference be used to evaluate competing hypotheses regarding how T_H1 cells interpret IL-12? Klinke et al. *Sci Signaling* 2012.

We acquired a high content, quantitative cue-signalresponse data set to test competing hypotheses

- Flow cytometry-based high content observations
 - Cell density AccuCount calibration beads
 - Cell viability Caspase 3 cleavage
 - Quantitative cellular signals (MFI \rightarrow Copy number)
 - Phosphorylated STAT4
 - IL12 receptor $\beta 2$ and IL12 receptor $\beta 1$
 - Biochemical cues / Cell Response Cytometric bead array IL12p70 TNF-α IL-10 IL-6 IFN-γ MCP-1
 - 924 data points 7 time points, in triplicate

Klinke et al. Sci Signaling 2012.

25

Model encodes competing hypotheses and was calibrated to data

150

Parameters are selectively informed by data and exhibit correlation

Posterior distribution suggests that 2D6 cells produce TNFα via an autocrine feedback loop

- Autocrine feedback loop regulates TNFα production in 2D6 cells.
- Pr(RP6>RP5|Y,M) > 96.7%
- Experimentally validated prediction.

Dynamics of IL-12-induced cytokine production are influenced by deactivation and dilution

- Activated STAT4 saturates *ifng* but not *il10* promoter.
- Dilution contributes 30% to decay in pSTAT4

10-4.5

Rate Constant (sec⁻¹)

10-4

o'

10-5.5

10-5

10-3.5

Inhibiting cell proliferation stops decline in pSTAT4

- Block cell proliferation using Mitomycin C and stimulate with IL-12
- Quantify cell density and pSTAT4 response

Klinke et al. Sci Signaling 2012.

Data are insufficient to discriminate between competing hypotheses to control IL12Rβ2 expression

Posterior distributions in the flux through competing pathways is inconclusive.

Klinke et al. Sci Signaling 2012.

Data suggest a lurking mechanism for regulating IL-12 receptor β2

- Th1 cells do not typically respond to IFN- γ , while naïve CD4+ T cells do.
- STAT1 activation in response to IFN-γ is typically reported at 30' post stimulation are dynamics important?
- Stimulate 2D6 cells with IFN-γ or IL-12, observe rapid time course for STAT1 and STAT4 activation.

STAT1 and STAT4 are differentially regulated in response to IL-12

Cue-signal-response model is revised to reflect new biology

Summary

- Anti-tumor immunity
- In silico model-based inference
- Examples
 - Simple enzyme kinetics
 - Cell signaling
 - Tumor immunology

Do tumor cells bias the immunoselection landscape through paracrine regulation of Interleukin-12?

- Create minimal system that recreates local immunosuppression (i.e., a closed-loop system)
- Use an immune cell model for which input-output relationships are wellcharacterized (Klinke et al. *Sci Signal* 2012.)

- STAT4 is phosphorylated irreversibly => encodes short-term memory that is limited by cell proliferation and reinforced by low endogenous IL-12
- Employ less biased protein identification methods => 2D-GE/MALDI-TOF MS.

Kulkarni et al. Integrative Biology 2012.

B16 co-culture with 2D6 cells exhibits closed-loop behavior

WISP-1 is expressed at the invasive front of human melanoma tumors

Parting Thoughts

The most exciting phrase to hear in science, the one that heralds the most discoveries, is not "Eureka!" (I found it!) but "That's funny..."

– Isaac Asimov

- Lurking mechanisms exist in biological research.
 - IL-12 receptor activates both STAT1 and STAT4
 - Irreversibility of STAT4 phosphorylation
 - Tumors exert paracrine action on immune cells through Wisp1
- *In silico* model-based inference is a contemporary tool for hypothesis testing in dynamical systems.

Acknowledgments

West Virginia University
Kisheon Alexander
Christina Byrne-Hoffman
Ning Cheng
Emily Chambers
Jacob Kaiser
Yogesh Kulkarni, Ph.D.
Vivian Suarez
Yueting Wu
Barnett Lab
Mary Babb Randolph Cancer Center
Flow Cytometry Core – Kathleen Brundage

Northwestern University Deepti Gupta Stacey Finley

McMaster University Jonathan Bramson A.J. Robert McGray

R56AI076221 R15CA132124