

Controlling the lymphocyte - empirical rules for a calculus of signal integration

Phil Hodgkin
KITP Santa Barbera, 2012

Walter+ElizaHall

Institute of Medical Research

Movies from WEHI-TV - see Fighting infection by Clonal Selection - http://www.youtube.com/ watch?v=HUSDvSknIg!

Etsuko Uno \& Drew Berry WEHI-TV

1957: Clonal Selection Theory

Burnet introduces the notions of clonal selection, deletional tolerance, expanded clones for memory - for the first time. Also boldly predicts a randomization of the genetic mechanism for coding antibody - all in only 2 pages!

Macfarlane Burnet

1965

"The principles of immunity are now known

Immunology is now just working out details"

Macfarlane Burnet

1965

"The principles of immunity are now known

Immunology is now just working out details"

The details were hard!

B cells play a key role in the humoral immune response

Antibody-producers
-Neutralisation
-Opsonisation
-Activation of complement
-Induction of phagocytosis

B cells play a key role in the humoral immune response

Antibody-producers
-Neutralisation
-Opsonisation
Differentiate by

isotype
switching

B cells play a key role in the humoral immune response

Antibody-producers
-Neutralisation
-Opsonisation
Differentiate by

B cells play a key role in the humoral immune response

Antibody-producers
-Neutralisation
-Opsonisation
-Activation of complement
-Induction of phagocytosis
Differentiate by

becoming antibody secreting cells (ASC)

- Solve the logic puzzle - which signals and in what combinations lead to which outcomes?

Generation of diversity as a Cellular journey: A logic problem activation [Ag, IL-4, IFN- γ, TGF- β, TLR4, TLR 9, CD40]

Complex problem

Typically cytokines have varied effects on proliferation, survival and differentiation

When exposed to combinations of different signals - how do cells calculate an outcome?
(search for principles of a 'Cellular Calculus' - governing signal 'integration' and cell 'differentiation') -
[note - strategy FIRST ORDER (no other interactions) first]

Cell Division number as a hidden variable in differentiation outcomes

Division tracking with Carboxyfluorescein succinimidyl ester (CFSE) :Lyons and Parish

Division tracking with Carboxyfluorescein succinimidyl ester (CFSE) :Lyons and Parish

Division tracking with Carboxyfluorescein succinimidyl ester (CFSE) :Lyons and Parish

This method allows proliferation, survival \& differentiation of I000s of cells to be monitored

B cells stimulated in vitro

Purified mouse spleen resting B cells + CD40Ligand and Interleukin 4
-Division is asynchronous
-The peaks are limited to the autofluorescence by formula
((Start FL -AF)/2^div number) ${ }^{\text {A }}$ AF

B cells stimulated in vitro

All B cells start as $\lg M+$ and switch to lgGI due to IL-4

When do they switch?
(Work of J Hasbold)

Switch from \lg M to $\lg G \mid$ comes after 3 divisions

CFSE

Switch from $\lg M$ to $\lg G \mid$ comes after 3 divisions

CFSE

No $\lg \mathrm{I}$ cells appears before 3 divisions

Isotype switching is 'Division-linked'

Not time-linked

Isotype switching is 'Division-linked'

Not time-linked

All Isotypes show Division-linked switching

CFSE

IFN- γ induces IgG2a expression, but down-regulates $\lg E$

B cell rules:

Progression through division changes probability of switching

Cytokines/signals change relation with division
Rules can be found for combinations of signals indicating cross talk or independence
2. Division linked-differentiation separate from regulation of -

Proliferation and survival

Model differentiation - combine

Models of CFSE proliferation patterns: insights into regulation of growth

- Separation of differentiation/proliferation
- 4-parameter model of proliferation
- (Amanda Gett: Excel models) 2000
- 6-parameter model of proliferation and survival - (Elissa Deenick: Excel and Cellular Calculator) 2002
- | 3-parameter model: Cyton model - (Edwin Hawkins, Carel van Gend: java and matlab) 2007
- Multi-parameter Cyton model: Branching process formulation (Vijay Subramanian, Ken Duffy) 2008

Proliferation empirical law -

Lognormal variation in time to first division

Human B cells

Variables - Mean time to divide, variance and area
This is major source of division heterogeneity

All examples - mouse T and B - human T and B - all stimuli - one model fits all!

Subsequent divisions and inheritance of times?

Hypothesis

*Filming

CpG stimulation

A single-cell pedigree analysis of alternative

 stochastic lymphocyte fatesE. D. Hawkins*, J. F. Markham ${ }^{\text {ND, L. P. McGuinness", and P. D. Hodgkin*. }}$

Ummunology Division. The Waher and Elias Hall instate of Medical Research 16 Royal Pacade. Vicsoria 3059. Australia and "National information and Communications Techsology Aublalia, and Department of Electikal Engivetring Univenity of Melbourse, IVABuilding 193, Victoria 3510, Auitrala
Commuricated by Guitav 2. Nonsal, Univenity of Melbourne, Victoria, Australia, hene 8,2005 frectived for review february 2,2005
In contrast to mest stimulated lymphocytes, B cells exposed to of lymphocyte responses, and to date there is no quantitative

Wednesday, December 19, 2012

Proliferation, cessation and death

Fast does not beget fast...

Growth, division, cessation and death

Founder effects on division 'destiny'

4 symmetric divisions

Key experimental observations -

1. Lognormal times to divide
2. Resetting of times after division - lack of inheritance

3- Division 'counting' can alter parameters
eg. division progression
4 - Independent regulation of division and death

A model of immune regulation as a consequence of randomized lymphocyte division and death times

E. D. Hawkins*†, M. L. Turner*†, M. R. Dowling*₹, C. van Gend*, and P. D. Hodgkin*5

${ }^{*}$ Immunology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia; 'Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; and 'School of Physical Sciences, University of Queensland, Queensland 4072, Australia
Communicated by Gustav J. Nossal, University of Melbourne, Victoria, Australia, January 6, 2007 (received for review September 19, 2006)

The magnitude of an adaptive immune response is controlled by the interplay of lymphocyte quiescence, proliferation, and apoptosis. How Ivmohocvtes intearate recentor-mediated sianals influencina

When first examined, cell loss seemed to follow an exponential decay function consistent with a constant probability of dying over time (Fig. 1A and refs. 7. 9. and 15). However. we noted deviations

Individual cell	Population in generation
Division	
controller	
Proportion	
Dividing	
Death	
controller	

Use to measure genetic effects

and 'Calculation of signal integration'

Fits T and B cells - allows sensitive regulation relies on the randomising features for control

The model can provide a quantitative description of in vivo cellular immune responses

Proliferation of LCMV-specific T cells post infection

Data provided by Dirk Homann, (Homann et al., Nature Medicine (2003))

Cyton Model

Exploits evidence for heritable stochastic processes governing division and death times

Individual cells exhibit extreme heterogeneity
Population highly predictable
External signals alter parameters of stochastic process

Differentiation

How do division, death, differentiation all interleave?
B cells - Switch antibody type, develop to ASC

Can we extend internal competition in cells to other fates?

Microscopy allows the study of individual cell fates over time

(Hawkins, E.D et al., PNAS 2009;
Duffy, K.R. et al., Science 2012)

- Blimp-1-GFP reporter
- IgG1-APC stain

Generation filming

Filmed for $60 \mathrm{~h}, 20 \mathrm{~min}$ between frames. 55 positions (2640 microwells) per chamber.
Axiovert 200M epifluorescence microscope, colibri illumination - brightfield, GFP (470 nm ex.) and APC (590 nm ex.) channels.

Experiment - Observe 4 fates operating simultaneously Test for competition

Mark Dowling, John Markham, Hasbold,

Ross Holmberg, Jie Zhou, Cam Wellard, Ken Duffy
Conditions that induce division, death, switch to $\lg \mathrm{I}$ and development of ASC

Examine for statistical hallmarks of competition*

FACSAria cell sorter

Filmed for $60 \mathrm{~h}, 20 \mathrm{~min}$ between frames. 55 positions (2640 microwells) per chamber.
Axiovert 200M epifluorescence microscope, colibri illumination - brightfield, GFP (470 nm ex.) and APC (590 mm ex.) channels.

All Divisions - summary

Times - long tailed distributions
Different means/variances/frequencies

Average time

Frequency

Sibling correlations

Intercellular concordant fates

Intracellular correlations

Intracellular fates

Intercellular correlations non-concordants

Autonomous Intracellular Competition: Hallmarks of censorship

Duffy and Hodgkin, 2012 Trends in Cell Biology

Four way Cyton - Autonomous Intracellular Competition - Rules of censorship

Autonomous Intracellular Competition - Model parameters

Statistical model (Duffy, Wellard)
lognormal time to each event (m, s, f)
Independent with Censorship (death, div)

Generation 5

All generations

Fitted features

Time/Division
and

Proportion/division

Blue - measured Red - model

Intercellular

 concordant

Inter-cellular Correlations

Fitted features

Blue - measured Red - model

Passed test of getting back what you put in..

But can it explain the unexpected correlations?

Intra cellular correlations
intercellular correlations of different fates of sibs

Intercellular concordant

Generation

Intracellular
Intercellular non-concordant

Blue - measured Red - model

Intracellular
Intercellular non-concordant

Diff-Death

Death-Switch

Blue - measured
Red - model

- Hallmarks of competition for fates apparent

Asymmetric fates observed but conform to statistical likelihood

Activation-Induced B Cell Fates Are Selected by Intracellular Stochastic Competition

Ken R. Duffy, ${ }^{1}$ Cameron J. Wellard, ${ }^{2,3}$ John F. Markham, ${ }^{4}$ Jie H. S. Zhou, ${ }^{2,3}$ Ross Holmberg, ${ }^{2}$ Edwin D. Hawkins, ${ }^{5}$ Jhagvaral Hasbold, ${ }^{2,3}$ Mark R. Dowling, ${ }^{2,3 *}$ Philip D. Hodgkin ${ }^{2,3 *} \dagger$

20 JANUARY 2012 VOL 335 SCIENCE

Homing in on the source of cellular heterogeneity

Duffy and Hodgkin, 2012 Trends in Cell Biology

Homing in on the source of cellular heterogeneity

Duffy and Hodgkin, 2012 Trends in Cell Biology

Homing in on the source of cellular heterogeneity

Duffy and Hodgkin, 2012 Trends in Cell Biology

Computer flow cytometry!

Run simulator for thousands of cells
Record features at every time for all cells
'Plot as if real cells'

Computer flow cytometry!

Run simulator for thousands of cells
Record features at every time for all cells
'Plot as if real cells'

Conclusions

Complex features of lymphocyte control result from a form of modulated 'randomness' of times to different fates set in competition in each cell

By manipulating the frequencies and times to change, by signals and cell division, a robust system for allocating different cells to large number of different fates is created

Combinatorially for example - just 20 independent surface marker 'machines' - gives one million possible 'phenotypes'

Thanks to..

B cell proliferation/ diffn/death
*Mark Dowling
*Has Hasbold
*Edwin Hawkins
*Jie Zhou
Marian Turner
Nadine Taubenheim
Differentiation simulator
Image analysis/model development
*Cam Wellard
*Ken Duffy [Hamilton - Maynooth] Vijay Subramanian [Hamilton - Maynooth]

Institute of Medical Research

Systems
B cell Program WEHI
Dave Tarlinton
Lynn Corcoran
*Steve Nutt
Axel Kallies
*John Markham [NICTA]
*Mark Dowling
*Ed Hawkins Liam McGuinness Ross Holmberg **Jie Zhou

Daniel Day (Swin) Sarah Russell (PMac)

Funded by

