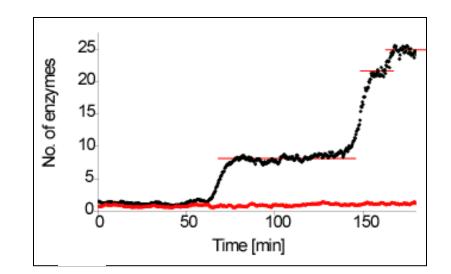
Randomly made yet ordered: CD4 T cell receptor and functional repertoires

Nir Friedman Department of Immunology Weizmann Institute of Science KITP Miniprogram: Quantitative Immunology - Experiments Meet Modeling. Dec 11th 2012.

Randomness in the immune system:

- Random generation of lymphocyte receptors (gene rearrangement)
- Stochasticity in gene expression



Cai, Friedman, Xie, Nature 2006

Randomness in the immune system:

- Random generation of lymphocyte receptors (gene rearrangement)
- Stochasticity in gene expression

Potential advantages for randomness:

- Recognition of a very large set of antigens (unknown, fast evolving)
- Optimal performance in an unpredictable and changing environment
- Harder to evade?

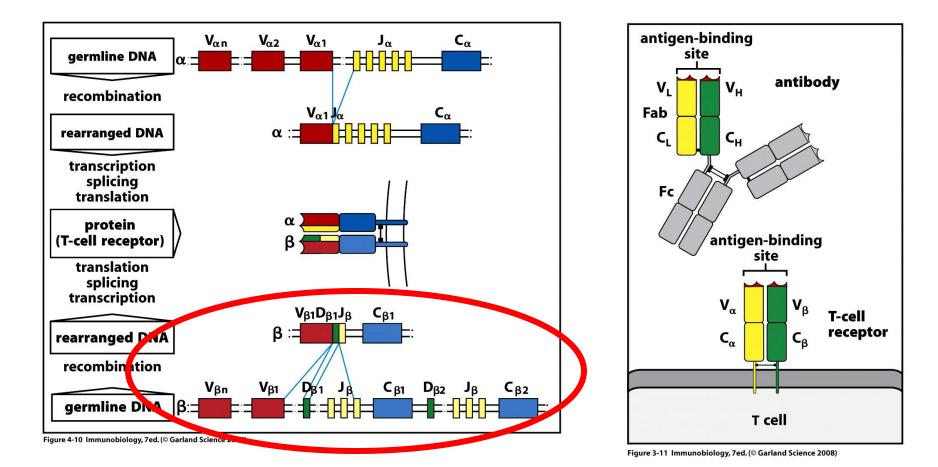
Mapping TCR repertoires by high-throughput sequencing

Analysis of the structure of the TCR β naïve repertoire

Making of the T cell receptor:

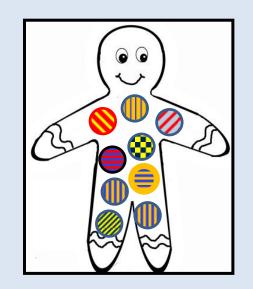
V-D-J recombination, a biased random process

- T cell receptors and antibodies are made through random DNA rearrangements
- Crucial for recognition of diverse, unknown antigens



Estimated number of possible receptors (TCR $\alpha\beta$, mouse): ~ 10¹⁵

Number of T cells: mouse: ~ 10⁸; human: ~ 10¹¹ << Repertoire size



The TCR repertoire is dynamically changing throughout life

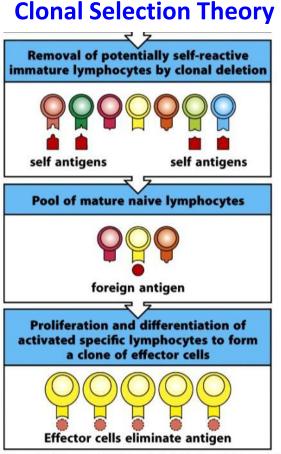


Figure 1-11 Immunobiology, 7ed. (© Garland Science 2008)

The TCR repertoire represents the state of the adaptive immune system and its history

New HTS technologies enable comprehensive repertoire characterization:

- Responses to pathogens
- Vaccinations
- Autoimmunity
- Cancer
- Aging

Mapping TCR repertoires by high-throughput sequencing

Analysis of the structure of the TCR β naïve repertoire

Are there general organizing principles ?

Gal

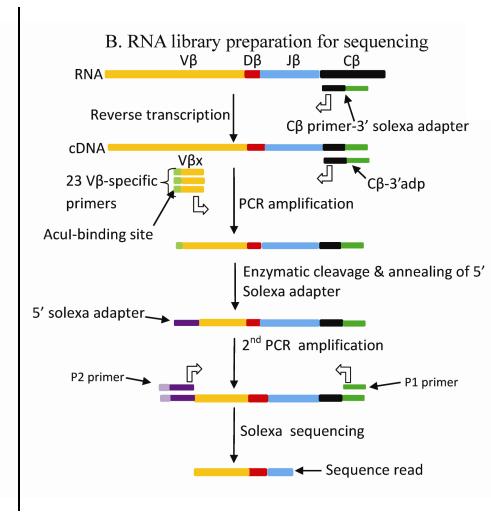
Eric

Shifrut

Asaf Madi

A protocol for quantitative multiplexed high throughput sequencing of the TCR β repertoire

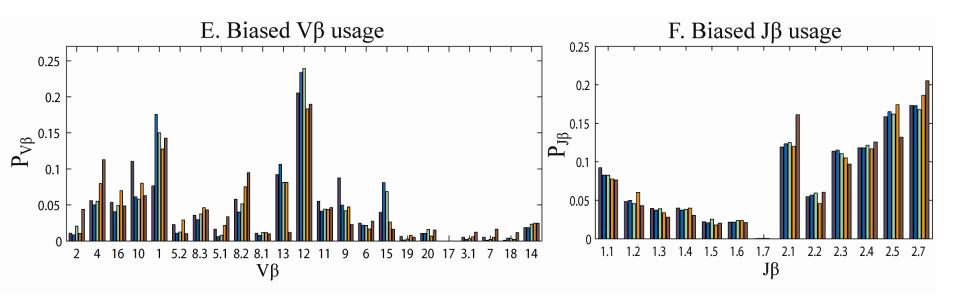
- Illumina sequencing
- Compensating PCR biases: Control plasmids library
- Challenges: resolving sequencing errors from real biological variance: Clustering, strict thresholds.



High throughput sequencing (TCR-seq) reveals common biases in the TCR repertoire

The TCR β repertoire has a well defined structure, which is

similar among individual mice

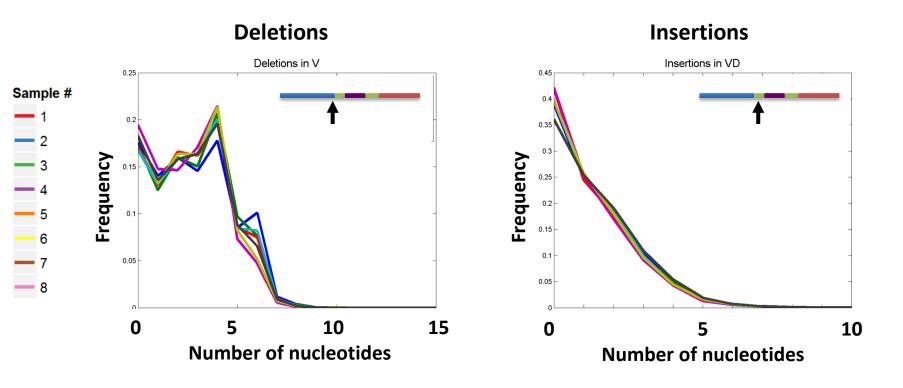


Ndifon, Gal, et. al., PNAS, 2012

High throughput sequencing (TCR-seq) reveals common biases in the TCR repertoire

The TCR β repertoire has a well defined structure, which is

similar among individual mice



Eric Shifrut, unpublished

Conclusions I:

The naive TCR β repertoire:

- a. Is highly biased
- b. Has very similar properties among individual mice

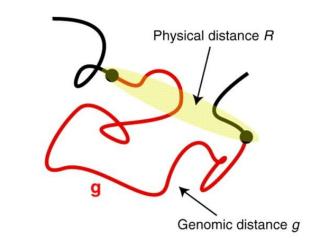
genetically identical, including MHC, young, clean environment,...

c. While randomly made, it has a well defined structure

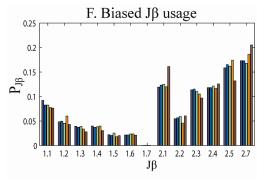
Similarity suggests common underlying principles Mechanistic explanations for biases ?

Α

A biophysical model can explain bias in J usage

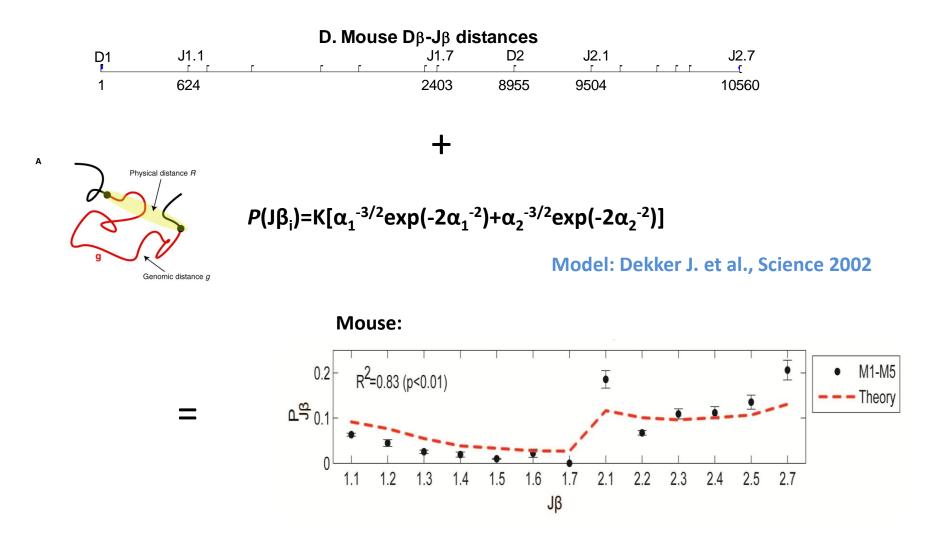


Recombination frequency depends on the physical distance between the segments, which in turn depends on their genomic distance and chromatin conformation



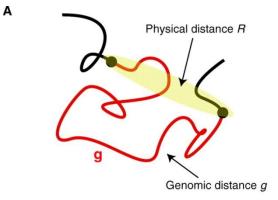
Tark-Dame M et al. J Cell Sci 2011;124:839-845

A biophysical model can explain bias in J usage



Ndifon, Gal, et. al., PNAS, 2012

A biophysical model can explain bias in J usage



Recombination frequency depends on the physical distance between the segments, which in turn depends on their genomic distance and chromatin conformation

Tark-Dame M et al. J Cell Sci 2011;124:839-845

 $\frac{J-D1}{P(J_i)=K[\alpha_1^{-3/2}exp(-2\alpha_1^{-2})+\alpha_2^{-3/2}exp(-2\alpha_2^{-2})]}$

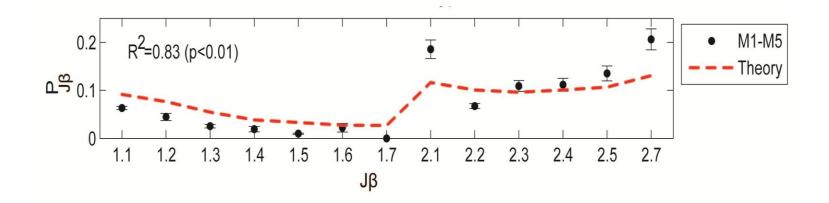
 $\alpha_j = (d_j/b)(1-d_j/c)$

 $d_{i,j}$ is the genomic distance between $J\beta_i$ and $D\beta_j$, K is a normalization constant.

b and **c** are free parameters: chromatin flexibility and curvature, respectively.

Dekker J. et al., Science 2002

A biophysical model can explain bias in J usage



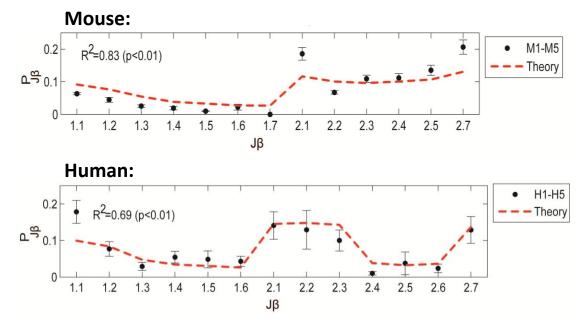
Model fit predicts a highly flexible chromatin during D-J rearrangement Persistence length ~20nm (in accordance with existing data on recruitment of chromatin modifiers).

The biophysical model correctly predicts biases in human TCR repertoire

J β -D β genomic distances are different between species:

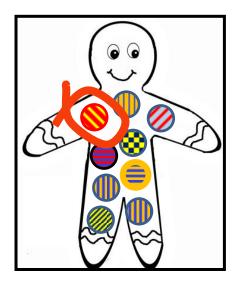
We use the model to calculate $J\beta$ frequencies in human

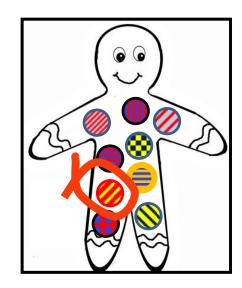
using fitting parameters obtained with mouse data:



Human TCR-seq data from: Robins et al., Blood 2009, Freeman et al., Genome Res. 2009

Shared ("public") clones were found between individuals that suffer from a similar pathology (viral infection, autoimmune disease, cancer, etc.), and share an HLA allele





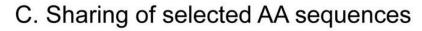
Public TCR clones are frequently observed: Viruses, cancer, autoimmunity

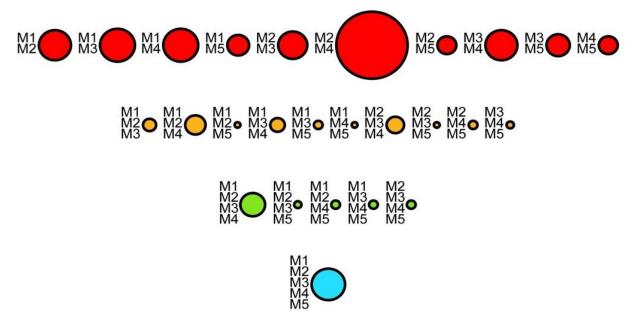
Disease/pathogen	Bias class	Target antigen	MHC restriction	TRBVª	TRBJª
Humans					
Influenza A	IV	MP ₅₈₋₆₆	A*0201	19	2-7
Epstein–Barr virus	III	EBNA 3A339-347	B*0801	7-6	2-7
Epstein–Barr virus	III	EBNA 3B ₃₉₉₋₄₀₈	A*1101	29	2-2
Epstein–Barr virus	III and IV	BZLF154-64	B*3501	10-3	1-5
Epstein–Barr virus	III and IV	EBNA1 ₄₀₇₋₄₁₇	B*3501	9	2-2
Epstein–Barr virus	III and IV	BZLF152-64	B*3508	6-1	2-7
Epstein–Barr virus	IV	BRLF1 ₁₀₉₋₁₁₇	A*0201	19	Unknown
Epstein–Barr virus	III and IV	BMLF1 ₂₅₉₋₂₆₇	A*0201	20-1	1-2
Cytomegalovirus	III and IV	IE1 ₃₁₆₋₃₂₄	A*0201	5-1	1-3
Cytomegalovirus	III and IV	pp65 ₄₉₅₋₅₀₃	A*0201	12	1-2
Human T-cell leukemia virus type 1	III and IV	Tax ₁₁₋₁₉	A*0201	6-5	2-7
Hepatitis B virus	IV	Unknown	Unknown	5-6	2-1
Hepatitis C virus	IV	Unknown	Unknown	10	2-7
Human immunodeficiency virus	III and IV	Gag ₁₆₂₋₁₇₂	B*5701	19	1-2
Clostridium tetani	III and IV	Tetanus toxin	DRB1*0301	5-4	2-3
Herpes simplex virus	III	Virion protein 22 ₄₉₋₅₇	B*0702	10	2-1
Melanoma	III and IV	Melan-A ₂₆₋₃₅	A*0201	27	2-1

Miles, Douek, Price, Immun. Cell Biol. 2011;

Convergent recombination: Venturi, Price, Douek, Davenport, Nat. Rev. Immun. 2008

Bias affects sequence sharing





Bias affects sequence sharing: a statistical model

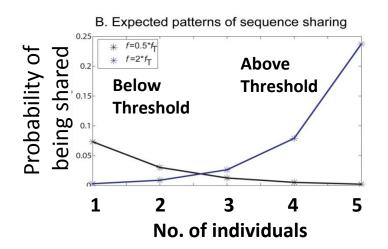
Assumptions:

- Each sequence has an a-priori probability of being made (f).
- Each individual has N sequences (T cell clones),

which are randomly drawn from all possible sequences.

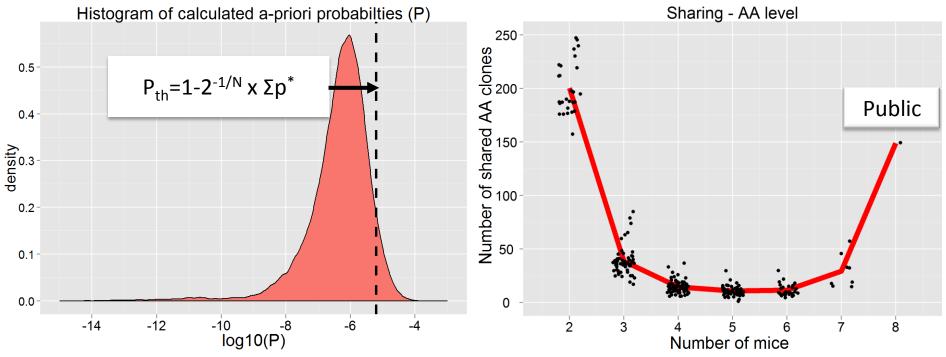
We find that there is a threshold frequency, f_T , above which clones have a higher chance of being public:

$$f_{T} = 1 - 2^{-1/N} \approx \ln 2/N$$

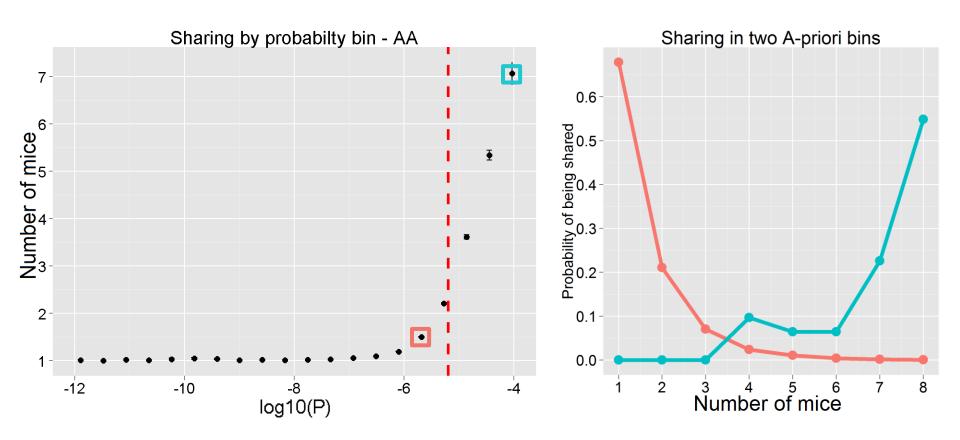


Estimating a-priori probability of clones to be generated

- Randomly sampled 10,000 clones from each mouse to reduce size bias
- TCR sharing is higher than expected by uniform distribution



Predicting clone publicity using the a-priori probability

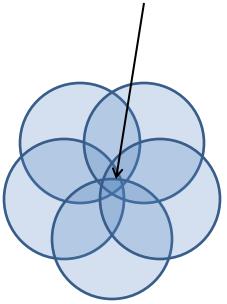


Conclusions II:

• Bias in primary repertoire allows for seemingly contradicting properties:

Huge diversity (against unknown pathogens) together with

a predictable public "core" set of TCRs (against frequent pathogens? Self?)



Immunological homunculus? (I. Cohen)

Thanks:

Shlomit Reich-Zeliger

Hilah Gal

Wilfred Ndifon

Asaf Madi

Yaron Antebi

Ira Zaretsky

Tamar Arieli

Eric Shifrut

Jacob Rimer Michal Polonsky Inbal Eizenberg Keren Levinstein Michal Mark

Collaborations:

<u>Ruth Arnon, Weizmann</u> Rina Aharoni

<u>Michal Schwartz, Weizmann</u> Kuti Baruch

Irun Cohen

Benjamin Chain, UCL

Dana Pe'er, Columbia

<u>Uri Alon, Weizmann</u> Avi Mayo Yuval Hart

Funding: ISF, HFSPO

Thank You

