THE FORMATION OF THE FIRST STARS

with Jonathan Tan

THE FIRST STARS WERE MASSIVE $(m_* >> 1 \text{ M}_{sun})$

Primordial gas composed of H and He: can't cool below ~ 200 K

 \Rightarrow Jeans mass (gravitational energy > thermal energy) ~ 500 M_{sun}

No evidence for fragmentation in numerical simulations (Abel, Bryan & Norman 2002)

Stellar mass determines nucleosynthetic yield and whether black hole forms

MASSIVE STARS, BOTH THEN AND NOW:

- Create most of the heavy elements
- Energize the interstellar medium of galaxies
 - -UV emission heats HI (photoelectric effect)
 - -Ionizing luminosity creates H II
 - -Stellar winds and supernovae create hot gas
- Regulate star formation
- Create black holes
- Govern the evolution of galaxies

OUTLINE: FORMATION OF THE FIRST STARS

- * Initial conditions
- * Results of numerical simulations
- * Analytic model: isentropic collapse, including rotation
- * Evolution of protostellar radius and luminosity
- * Mass of the first stars set by protostellar feedback:
 - FUV radiation destroys H₂
 - Ly α radiation pressure leads to blow-out at poles
 - Photoionization creates H II region, stops accretion of ionized gas
 - Disk photoevaporation finally stops accretion

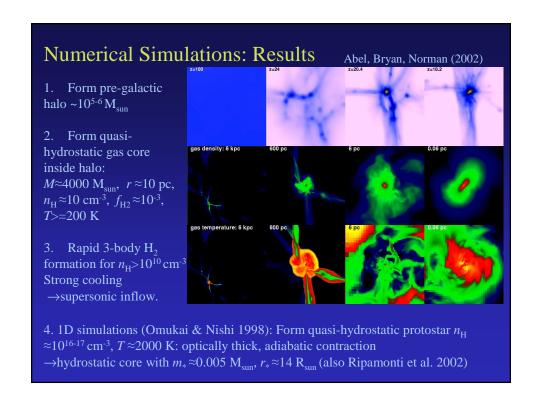
HOW FORMATION OF THE FIRST STARS DIFFERS FROM STAR FORMATION NOW:

No metals

⇒ Gas can't cool below ~ 200 K

No dust, so that radiation pressure less important

Radiatively driven stellar winds weak or absent


No magnetic fields (probably)

⇒ Protostellar outflows weak or absent

"Simple" initial conditions determined by cosmology

No feedback from previous generations of stars

Overview of Structure Formation 1. Recombination $z \approx 1200$, start of "dark ages" 2. Thermal equilibrium matter-CMB until $z \approx 160$. $M_{\rm Jeans} \approx 10^5 \, {\rm M}_{\rm sun} \propto (T^3/\rho)^{1/2}$: independent of z e.g., globular clusters (?) 3. Thermal decoupling, $T \propto (1+z)^2$, $M_{\text{Jeans}} \propto (1+z)^{3/2}$ 4. "First Light" $T \simeq 10^4 K$; $M_{Jeans} \simeq 10^{9-10}$ M_{\odot} 5. Reionization, e.g. galaxies log Temperature (K) log M, (h-1 Mo) CMB -2 (1+z) (1+z) Madau (2002)

ZENO'S PARADOX (ALMOST) IN COMPUTATIONS OF STAR FORMATION

Time step $\Delta t \propto 1/(G\rho)^{1/2}$

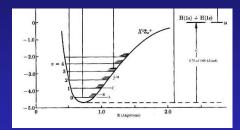
Truelove et al. (1998) calculations of star formation now:

Density increase of $10^9 \Rightarrow \Delta t$ decrease of $10^{4.5}$

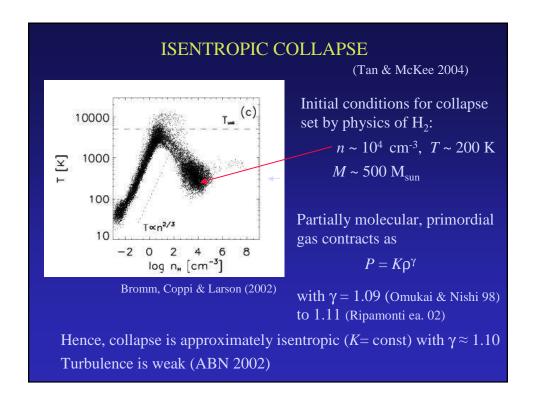
ABN (2002) calculations of primordial star formation:

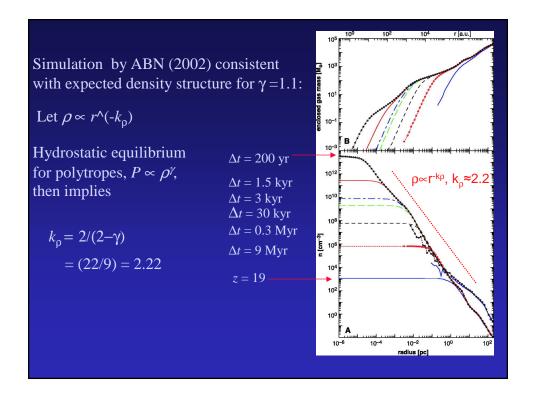
Density increase of $10^{17} \Rightarrow \Delta t$ decrease of $10^{8.5}$

In both cases, calculation stopped before formation of protostar.


Currently impossible to numerically follow the hydrodynamics of core collapse past the point of protostar formation

⇒ need analytic approach


The initial conditions for primordial star formation


Trace H₂ formation:

$$H + e^{-} \rightarrow H^{-} + \gamma$$

 $H + H^{-} \rightarrow H_2 + e^{-}$

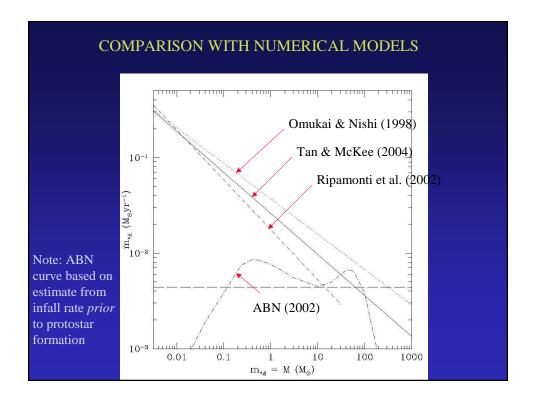
$$T_{\rm min} \sim 200 \text{ K}, \quad n_{\rm crit} \sim 10^4 \text{ cm}^{-3}$$

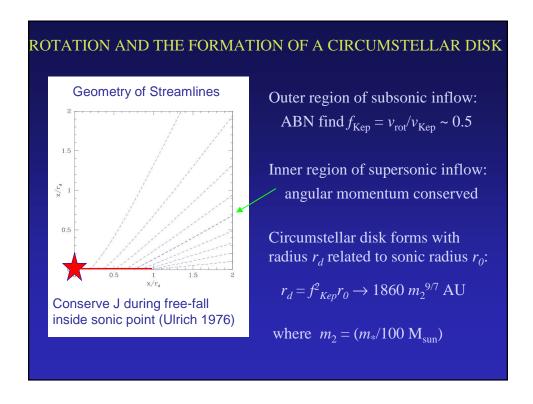
 $M_{\rm BE} \sim 500 \text{ M}_{\rm sun} \quad c_s \sim 1.2 \text{ km/s}$

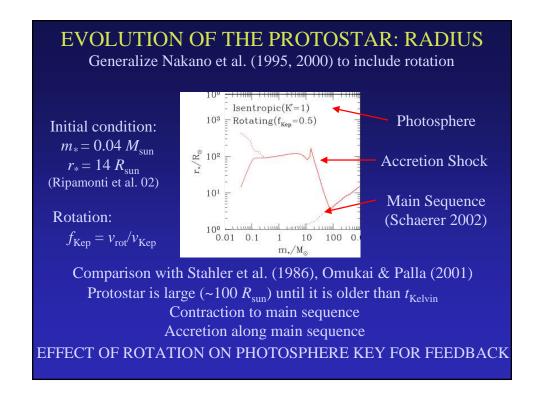
COLLAPSE OF ISENTROPIC SPHERE $(P = K\rho^{\gamma})$

Yahil 1983; McLaughlin & Pudritz 1997

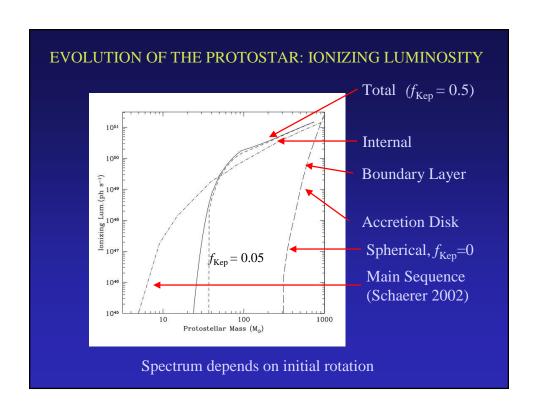
Basis of Turbulent Core model for contemporary massive star formation (McKee & Tan 2002, 2003)


Allow for subsonic inflow (Hunter 1977)


Result:


$$\dot{m}_* = 0.0036 \, m_2^{-3/7} \, \text{M}_{\text{sun}} \, \text{yr}^{-1}$$
: accretion rate

$$t_* = 3 \times 10^4 \, m_2^{10/7}$$
 yr: star formation time


where $m_2 = m_*/100 \text{ M}_{\text{sun}}$

FEEDBACK PROCESSES: WHEN DOES ACCRETION END?

Tan & McKee in prep.

FUV radiation: destruction of the H₂ coolant

Lyman α radiation pressure: blowout at poles for $m_* \sim 20\text{--}30 \text{ M}_{\text{sun}}$

Formation of H II region stops accretion of ionized gas for $m_* \sim 100 \text{ M}_{\text{sun}}$

Disk photoevaporation: Max $m_* \sim 300 \text{ M}_{\text{sun}}$

FUV RADIATION DESTROYS THE H_2 COOLANT BUT DOES NOT STOP ACCRETION

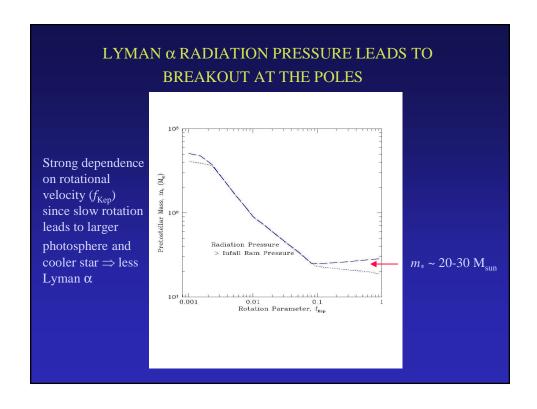
FUV radiation in the range 11 eV < hv < 13.6 eV photodissociates H₂

With no low-temperature coolant, the adiabatic index rises from $\gamma = 1.1$ to $\gamma = 5/3$

Gravitationally bound gas can still accrete (Fatuzzo, Adams & Myers 04):

For supersonic inflow, $\rho \propto r^{3/2} \Rightarrow T \propto r^1$ Escape velocity $v_{\rm esc}^2 \propto r^1$ also \Rightarrow adiabatic gas can accrete

FUV radiation prevents star formation in the rest of the protogalaxy (ABN 2002)


LYMAN- α RADIATION PRESSURE LEADS TO BREAKOUT AT THE POLES

Dominant opacity of primordial gas for $h\nu$ < 13.6 eV: Lyman lines Lyman- α photons diffuse in both space and frequency (Adams 1972) Radiation pressure:

Beam with flux F: $P_{\text{rad}} = F/c$

Isotropic Ly- α photons: $P_{\text{rad}} = 37(N_{\text{H},20}^{1/3}/\Delta v_{\text{D},6}^{1/2})(F_{\text{Ly-}\alpha}/c)$

Radiation pressure reverses inflow when $P_{\rm rad} > 2\rho v_{\rm ff}^2$

PHOTOIONIZATION FEEDBACK: EXPANSION OF HII REGION

PERFECT SPHERICAL SYMMETRY (Omukai & Inutsuka 02)

Star ionizes significant volume of accretion flow for

$$m_* > 300 \ \dot{m}_{-3} \ \mathrm{M}_{\mathrm{sun}} > \sim 300 \ \mathrm{M}_{\mathrm{sun}}$$

Accretion flow stopped when HII region expands beyond r_o :

$$c_s^2 = Gm_*/r_g \implies r_g = 650 (m_*/100 \text{ M}_{sun}) \text{ AU}$$

Continuum radiation pressure increases density in HII region:

Leads to $r(HII) \ll r_{g}$

Allows accretion to continue to much higher mass

Omukai & Inutsuka concluded that HII regions do not limit primordial stars to masses $< 1000 M_{sun}$

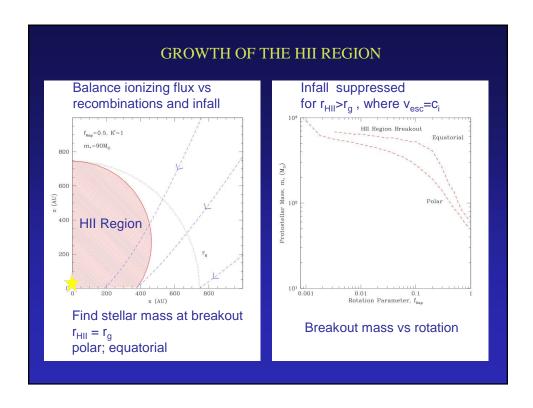
PHOTOIONIZATION FEEDBACK: EFFECT OF ROTATION

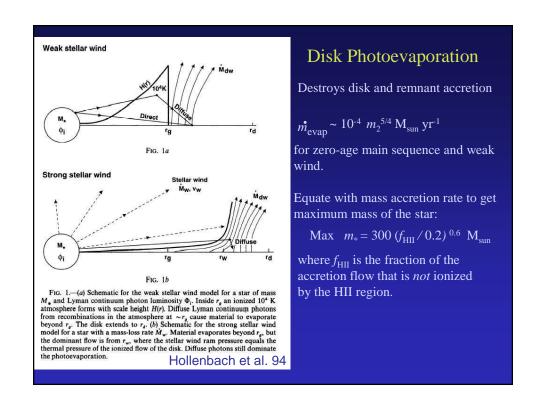
Rotation leads to formation of accretion disk with radius

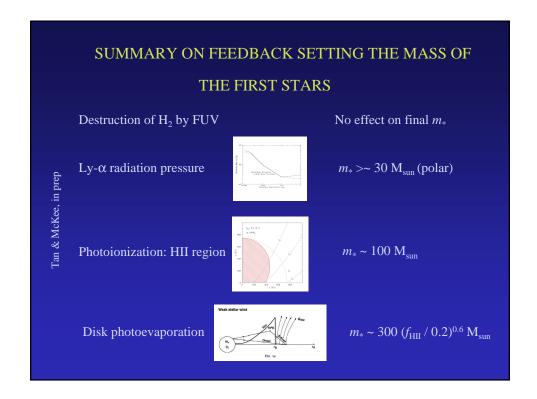
$$r_d = f_{\text{Kep}}^2 r_0 \rightarrow 1860 \ m_2^{9/7} \ (f_{\text{Kep}}/0.5)^2 \ \text{AU}$$

Density of accreting gas inside r_d reduced by $\sim (r/r_d)$

(Ulrich 1976)


H II region expands from < 1 AU in spherical case to > 200 AU


Condition for $r(H II) > r_g = Gm_*/c_s^2$ so that accretion stops:


At poles: $m_2 > 90 \ K'^{9/7} (0.5/f_{\text{Kep}}) \ M_{\text{sun}}$

Near disk: $m_2 > 140 \ K'^{9/7} (0.5/f_{Kep}) \ M_{sun}$

where K' = 1 is standard value of P/ρ^{γ}

CONCLUSIONS: THE FORMATION OF THE FIRST STARS

- Convergent initial conditions set by H₂ cooling
- Analytic model based on isentropic collapse gives formation time $t_* \sim 3 \times 10^4 \, m_2^{10/7} \, \text{yr}$
- Accretion rate + semi-analytic model for protostellar evolution ⇒ reaches main sequence for $m_* \sim 30 \text{ M}_{\text{sun}}$
- Analytic treatment allows inclusion of effects of rotation (and disk formation) on complex feedback effects
- Feedback processes do not set in until $m_* > 30 \text{ M}_{\text{sun}} \Rightarrow$ minimum mass of first stars likely to exceed this
- Preliminary results suggest feedback limits the mass of the first stars to $\sim 100-300~{\rm M}_{\rm sun}$
- IMF of first stars set by distribution of entropy (K) and rotation (f_{Kep})
- This mass range can be tested by observations of very old stars and of the intergalactic medium at high redshift

