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A quick introduction to quantum Monte Carlo methods

For VMC/GFMC methods, we do not expand the wave function in basis states,
so we don’t have to reduce the complicated interaction into a tractable basis

These are two methods that operate on random samples of the wave function
in the particle-configuration space R = {r1, r2, ..., rA}

The lack of a basis lets us build in strong short-range particle-particle correlations
that are difficult in a basis (also avoid spurious center-of-mass motion)

The price is that we don’t just diagonalize H once and get lots of eigenvalues

Each nuclear state is a rather separate effort with a separate calculation

Actually it’s two separate calculations, as successive approximations



Variational Monte Carlo

Variational Monte Carlo (VMC) is based on a sophisticated guess wave function
reflecting pairwise interactions of nucleons:

|ΨT 〉 =

S ∏
i<j

(1 + Uij +
∑
k 6=i,j

Uijk)

 ∏
i<j

fc(rij)

 |ΦA(JMTT3)〉

We evaluate ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

, and set adjustable parameters by hand to

minimize ET

ΨT originated in calculations of cold nuclear matter (strongly correlated Fermi
gas)

VMC does very well in the s-shell, where |ΦA(JMTT3)〉 is just a Slater determinant
in spin/isospin (↑↓ np)

In the lower p-shell (5 ≤ A < 12) it misses by more than 1 MeV/particle (out
of 30–100 MeV total binding)



Green’s function Monte Carlo

The second method is Green’s function Monte Carlo (diffusion Monte Carlo in
quantum chemistry, also close to LQCD)

By Monte Carlo integration over a Green’s function, we guess Ψ(0) & compute

Ψ(τ) = exp [−Hτ ] Ψ(0)

Any Ψ(0) is a superposition of energy eigenstates, with amplitudes αi and
energies Ei:

Ψ(0) = α0Ψ0 +
∑
αiΨi .

Then we have

Ψ(τ) = e−E0τ × [α0Ψ0 +
∑
αie
−(Ei−E0)τΨi],

and we can see that

Ψ0 ∝ lim
τ→∞Ψ(τ)

We use VMC to get Ψ(0) that has only Ψ0 plus high-energy garbage;
GFMC makes that into the ground state



Prometheus unbound

Those methods have been employed with great success in bound states up to
A = 12

They deal well with hard-core potentials (i.e. AV18) but can handle any potential
where nonlocal terms are perturbative

They’ve mainly been used so far with an implicit square-integrability boundary
condition

That limits you to either bound states or narrow unbound states

Relatively little has been done with explicit scattering boundary conditions



Some past QMC calculations of phase shifts

Carlson, Pandharipande, Wiringa (1984)
4He resonances in t+ p channel, VMC, nodal boundary condition

Carlson, Schmidt, Kalos (1987)
nα p-wave scattering (1

2
−

, 3
2
−

), VMC, nodal boundary condition

Carlson (1990s)
Early efforts at 5He GFMC?

Nollett, Pieper, Wiringa, Carlson, Hale (2007)
nα scattering 1

2
+

, 1
2
−

, 3
2
−

, GFMC, log derivative boundary condition

Lynn et al. (2016 & 2017)
nα p-wave scattering, GFMC, log derivative(?) boundary condition



Radiative captures, VMC bound states, phenomenological initial states

For these, VMC was used for the bound states

Unbound cluster-cluster correlations came from a phenomenological “optical”
potential

Arriaga, Pandharipande, Schiavilla (1991)
2H(d, γ)4He

Nollett, Wiringa, Schiavilla (2001a)
2H(α, γ)6Li

Nollett (2001)
3H(α, γ)7Li and 3He(α, γ)7Be

Probably fair to call these cases of mixed success



Quantum Monte Carlo: the nodal boundary condition

Quantum Monte Carlo methods are (more or less) variational: they produce the
lowest energy level satisfying the imposed constraints

Application to scattering so far sets up an eigenvalue problem with the ground
state as the desired state

Most applications (nuclear, atomic, solid state) have been “particle in a box:”
wave function constrained to zero at a surface r12 = R0 (cluster separation)

Find energy of

Ψ→
1

kr12
{Φc1Φc2YL}J [cos δJLFL(kr12) + sin δJLGL(kr12)] ,

evaluated only at r12 < R0

Then tan δJL = −FL(kR0)/GL(kR0)



Improving on the nodal boundary condition

But then different energies are evaluated at different box volumes: lose some
ability to compute differences (e.g. stored walks)

At low energies, the box must be enormous, & calculation is mostly noninteracting
clusters

An R-matrix boundary condition avoids these drawbacks

For single-channel scattering, specify a channel radius R0 & a logarithmic
derivative γ:

n̂ · ∇rΨ = γΨ , at r = R0.

Then fixR0 at some “small” value (beyond nuclear radius and nucleon exchanges)

Vary the chosen γ to get states of different E, match asymptotics to find δ(E)



Implementation of boundary conditions

Either type of boundary condition can be built into the VMC wave function – we
used the “single-particle” correlations in 5He

Just need to make sure that none of the pair correlations have long enough
range to mess up γ (nodal condition is easy)

point

0

GFMC walk
Image

r=R

In GFMC, we use Joe’s method of images

Integral over all space is mapped onto integral inside
box using image points with computable locations

Contributions from image points are multiplied by
[1 + γn̂ · (RI −R)] (or other extrapolation)

Their contributions are added to the propagation of
points near the boundary

We assumed configurations with one particle & R0 from c.m. of other 4 are
entirely in the αn channel (must clip the α a bit)



First time out with GFMC: parity-conserving n 4He

We chose 5He as the first system to try this out

4He is compact and symmetric (J = 0+), no excitations or thresholds for 20
MeV above ground state

We still learned a lot

Low-energy scattering is tougher than energy levels because we need small
energy differences from a threshold, not absolute energy

A lot of details needed attention to make it work & give δ(E) that I believed



Large radius was needed to avoid exchange effects

The box radius R must be located beyond any interaction & exchange between
4He & scattering neutron

As R increases, less of the box volume is “interesting” & the maximum energy
we can compute gets smaller

R = 7 fm is not large enough

R = 9 fm is large enough

But then highest single-node s-wave state in box is ∼ 4.5 MeV



Poles & scattering lengths

s-wave turns out similarly for all interactions

Scattering lengths all consistent with 2.4 fm,
compared with 2.46 fm measured

3/2− (MeV) 1/2− (MeV)
Argonne v18 1.19− 0.77i 1.7− 2.2i
AV18+UIX 1.39− 0.75i 2.4− 2.5i
AV18+IL2 0.83− 0.35i 2.3− 2.6i
Experiment 0.798− 0.324i 2.07− 2.79i 0 1 2 3 4 50

30

60

90

120

150

180

Ec.m. (MeV)

δ L
J (

de
gr

ee
s)

1
2

+

1
2

-

AV18
AV18+UIX
AV18+IL2
R-Matrix

3
2

-

0 1 2 3 4 50

1

2

3

4

5

6

7

Ec.m. (MeV)

σ
LJ

 (b
)

1
2

+

1
2

-

3
2

-

R-Matrix

Pole location

Phase shifts show the role of NNN potential
in spin-orbit splitting

Steve Pieper also fitted pole locations just
like you would do with experimental data



Some first attempts at 3 + 1 scattering

5He was expected to be “easy” because there’s only one open channel, 4He is
compact, scattering channel similar to VMC structure

4H and 4Li should be only slightly more difficult (easier?)

A = 4 would also allow a check against HH & AGS calculations

Bob Wiringa & I started on scattering in 3H + n and 3He + p a few years ago
but got diverted

Breakup threshold is relatively high, no underlying bound states

Channel mixing is modest except in 1− channel

I have a PhD student starting on this now, with the main goal of learning to do
coupled channels in J = 1−

A quick tour of what we found, all VMC and AV18 alone unless otherwise
noted...
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This one was easy to set up for GFMC
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Spin rotation in n 4He

There was a start on n+ 4He spin rotation in ∼ 2010

Ana Arriaga & Rocco Schiavilla did a bunch of work on operators

Probably you could just take the lowest-energy s- & p-wave states from my 5He
paper & compute a matrix element

1

ρ

dφ

dz
=

16π

vrel
Im
[
(−)

〈
2P1/2, Jz

∣∣∣vPV
∣∣∣ 2S1/2, Jz

〉(+)
]

I spent some time trying to get states as close to threshold as I could

The real problem to be solved is to normalize the wave function∣∣∣ 2s+1LJ , Jz
〉(±)

−→ Aφα
[
YML ⊗ χ

]
JJz

×e±iδJL [cos δJLFL(kr) + sin δJLGL(kr)]



Normalizing the wave function

Single-channel phase shifts just need wave functions normalized to unity over
the box volume

Then phase shifts come from 〈H〉 & the log-derivative boundary condition

Now we need waves normalized to incoming & outgoing unit-flux waves:∣∣∣ 2s+1LJ , Jz
〉(±)

−→ Aφα
[
YML ⊗ χ

]
JJz

×e±iδJL [cos δJLFL(kr) + sin δJLGL(kr)]

This comes down to specifying the wave function amplitude at the box surface

Some possibilities:

1. Read density from Monte Carlo samples in a thin shell (noisy)
2. Compute as Lippmann-Schwinger integral over interior (needs machinery)
2.5 Just build vPV into Lippmann-Schwinger & use ratio somehow?
3. Build into GFMC boundary condition somehow?



Current status

Thin-shell norm depended more than I liked on how I defined shell & averaging

I was working on Lippmann-Schwinger integral for bound-state ANCs at the
time & planned to fold that in

There followed a few years when I focused on problems unlikely to hit snags

Now I’m more interested in building up QMC scattering/reaction methods than
applying what I already have, especially with limited labor force

Some collaboration rebuilding would also be needed: I need a vPV

I suspect that the eventual calculation will contain a lot of cancellation:

Antisymmetry requires a node in the projection of s-wave states into the αn

channel



What about p 4He?

Close to threshold, this is the same as n 4He – just an isospin rotation away

I have preliminary phase shifts for P-conserving p 4He somewhere

The existing PV measurement is at Ē = 45 MeV lab (36 MeV c.m.) – WHY??

I can’t do that as the ground state in a box

It may need more > 5 box states in a minimal-size box

I’d also be happier below the breakup threshold (20 MeV c.m.)

At ∼ 5 MeV, I could do it just as easily as n spin rotation

Would Rutherford make that impossible experimentally?
Provide useful interference/amplification?



Thinking outside the box

I could also abandon exact solution & use accurate 4He in more exact version
of old calculations

Roser & Simonius p 4He can be viewed as DWBA with a very crude version of
the VMC 4He (looks to me like it has exchange, BTW)

So that’s something I could do more or less immediately with variational 4He
(given time & maybe a sharp student)

It would look a lot like the radiative captures I did as a student

Same comment maybe applies to n spin rotation

But should I want to do that? Enough of an improvement to be worthwhile?
Bad for my brand?


