PNC Polarized Neutron Spin Rotation in Liquid Helium

for the NSR Collaboration

J. Nico, NIST Hadronic Parity Nonconservation Workshop KITP, UC - Santa Barbara March 15-16, 2018

Nucleon-Nucleon Weak Interaction

- NN repulsive core -> 1 fm range for the strong force.
- QCD has vector quark-gluon couplings that conserve parity (PC).

- Weak interaction has a much smaller range (~1/100 fm).
- Weak interaction violates parity (PNC).

Use parity violation to isolate the weak force contribution to the NN interaction.

$$\left(\frac{e^2}{M_W^2}\right) / \left(\frac{g^2}{M_\pi^2}\right) \sim 10^{-6}$$

Hadronic Weak Interaction

- > The weak interaction among quarks is a fundamental part of the Standard Model, but the hadronic weak interaction (HWI) between nucleons remains one of the most poorly-understood areas.
- ➤ It has proven difficult both experimentally and theoretically to test the fundamental nucleon-nucleon weak interaction. The problem is the non-perturbative nature of QCD at low energies.
- ➤ Heavy nuclei have large parity non-conserving (PNC) asymmetries, but the dynamics are complicated and the interpretation depends on nuclear models. One must investigate PNC effects in light nuclei.

More recently...

- ➤ Much recent theoretical activity in pionless EFT and large N_{c.}
- ➤ One can carry out measurements and calculations in few body systems (npdg, n-³He, p-⁴He, and n-⁴He).
- ➤ Advances in experimental techniques and facilities make possible measurement of small asymmetries in few-body systems.

n + ⁴He Spin Rotation: Theoretical Expectations

Existing calculations:

> DDH "reasonable range"

$$\phi_{PNC}(\bar{n}, {}^4\text{He}) \sim 1 \times 10^{-6} \text{rad/m}$$

Desplanques, Donoghue, and Holstein, Ann., Phys. 124, 449 (1980)

> Dmitriev et al. calculation

$$\phi_{PNC} = -(0.97 f_{\pi} + 0.22 h_{\omega}^{0} - 0.22 h_{\omega}^{1} + 0.32 h_{\rho}^{0} - 0.11 h_{\rho}^{1}) \operatorname{rad/m}$$

$$= (0.1 \pm 1.5) \times 10^{-6} \operatorname{rad/m}$$
Dmitriev et al., Phys. Lett. 125, 1 (1983)

> Nuclear PNC phenomenology

$$\phi_{PNC}(\bar{n},^4 \text{He}) = (6 \pm 2) \times 10^{-7} \text{rad/m}$$
Desplanques, *Phys. Rep.* **297**, 1 (1998)

> EFT calculation

$$\phi_{PNC}(\bar{n}, {}^{4}\text{He}) = (0.85\lambda_s^{nn} - 0.43\lambda_s^{np} + 0.95\lambda_t - 1.89\rho_t) \text{ rad/m}$$

Zhu et al., Nucl. Phys. A 748, 435 (2005)

New Theoretical Directions

- > System is simple enough that P-odd spin rotation can be related to weak NN amplitudes. GFMC is possible (Carlson, Wiringa, Nollett, Schiavilla, Pieper,...)
- > Pionless EFT (Grießhammer, Schindler, Springer, Vanasse...Phillips, Samart, Schat....)

S. Gardner, W.C. Haxton, B.R. Holstein, arXiv:1704.02617v1 (2017)

Observable	Exp. Status	LO Expectation	LO LEC Dependence
$A_{\rm p}(\vec{\rm n}+^3{\rm He}^3{\rm H+p})$	ongoing	-1.8×10^{-8}	$-\Lambda_0^+ + 0.227\Lambda_2^{^1S_0 - ^3P_0}$
$A_{\gamma}(\vec{\mathbf{n}} + \mathbf{d} \to \mathbf{t} + \gamma)$	$8 \times 10^{-6} \text{ (see text) [58]}$	7.3×10^{-7}	$\Lambda_0^+ + 0.44\Lambda_2^{1S_0 - 3P_0}$
$P_{\gamma}(\mathbf{n} + \mathbf{p} \to \mathbf{d} + \gamma)$	$(1.8 \pm 1.8) \times 10^{-7} [57]$	1.4×10^{-7}	$\Lambda_0^+ + 1.27\Lambda_2^{^1S_0 - ^3P_0}$
$\left. \frac{d\phi^{\mathrm{n}}}{dz} \right _{\mathrm{parahydrogen}}$	none	$9.4 \times 10^{-7} \text{ rad/m}$	$\Lambda_0^+ + 2.7\Lambda_2^{1S_0 - 3P_0}$
$\frac{d\phi^{\mathrm{n}}}{dz}\big _{^{4}\mathrm{He}}$	$(1.7 \pm 9.1 \pm 1.4) \times 10^{-7}$ [56]	$6.8 \times 10^{-7} \; \mathrm{rad/m}$	Λ_0^+
$A_L(\vec{\mathbf{p}} + \mathbf{d})$	$(-3.5 \pm 8.5) \times 10^{-8} $ [43]	-4.6×10^{-8}	$-\Lambda_0^+$

- > No dependence on the isotensor component, making it distinct from other observables.
- \gt Dependence only on LO LEC (Λ_0) with a relatively large expectation, makes it accessible to spin rotation with several sigma significance.

Why \overline{n}- 4He Spin Rotation?

- ➤ Linear combination of NN weak amplitudes in n-4He spin rotation is roughly orthogonal to existing constraints from past measurements with protons (p-4He) and anapole moments. Addition of n-4He gives stronger constraints.
- ➤ n-⁴He and n-³He both measure approximately the same linear combination of weak amplitudes, providing a strong check. However, there is no dependence on the isotensor component in n-⁴He, an important distinction between the two experiments.

Why \overline{n}- 4He Spin Rotation?

- ➤ Linear combination of NN weak amplitudes in n-4He spin rotation is roughly orthogonal to existing constraints from past measurements with protons (p-4He) and anapole moments. Addition of n-4He gives stronger constraints.
- ➤ n-⁴He and n-³He both measure approximately the same linear combination of weak amplitudes, providing a strong check. However, there is no dependence on the isotensor component in n-⁴He, an important distinction between the two experiments.
- ➤ n-4He dependence on only the LO LEC has a relatively large expectation valve, within experimental spitting distance.
- > An experiment on NG-C at NIST is feasible in the range of 1-2 x 10⁻⁷, which could a measurement several sigma from prediction. This would be a quantitative test of the theory and a definitive observation of PNC in spin rotation.
- ➤ This experimental development has yielded an extremely sensitive neutron polarimeter. Forward scattering amplitude of neutron in matter is sensitive to all neutron-matter interactions.

PNC Observable in the \overline{n} + ⁴He System

 \succ Cold neutrons (average wavelength 0.5 nm) traversing helium can be described by wave propagation in a medium with index of diffraction n, analogous to light.

 $n = 1 + \left(\frac{2\pi}{k^2}\right)\rho f(0)$

> Express forward scattering in terms of parity-conserving (PC) and parity-violating (PNC) parts

$$f(0) = f_{PC} + f_{PNC}(\vec{\sigma} \cdot \vec{k})$$

> As the neutron propagates along the z-axis, it accumulates a phase

$$\phi = kz \left[1 + \frac{2\pi\rho}{k^2} \left(f_{PC} + f_{PNC} (\vec{\sigma} \cdot \vec{k}) \right) \right]$$

➤ In the helicity basis, the accumulated phase of the two states are different

$$\phi_{\pm} = \phi_{PC} \pm \phi_{PNC} \qquad \phi_{PNC} = 2\pi \rho z f_{PNC}$$

Measurement Principle

- ➤ It's a <u>very</u> small angle measurement O(10⁻⁷) rad.
- Target is placed between a crossed (supermirror) polarizer-analyzer pair (analyzing power *PA*).
- > Output field is rotated every second, and neutrons are counted in a ³He ion chamber.

$$sin\phi = \frac{1}{PA} \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

Two critical issues:

- \rightarrow Beam fluctuations exist at O(1%).
- > Difficult to shield below 100 μ G. Rotation angle from this field is about 3 orders of magnetic greater than ϕ_{PCN} .

Measurement Principle

Spin Rotation Apparatus (Polarimeter)

Measure the horizontal component of a vertically polarized neutron beam.

NSR-2 Apparatus on NG-6 Beamline at NIST

NIST Center for Neutron Research - 20 MW research reactor Gaithersburg, MD campus

NSR-2 Apparatus on NG-6 Beamline at NIST

DAQ Control Sequence

Analysis

➤ Define an asymmetry:

$$A_P^T(D) = \frac{N^+(D, T, P) - N^-(D, T, P)}{N^+(D, T, P) + N^-(D, T, P)}$$

- D signifies a part of the detector (W for the west side and E for the east side).
- T is the target state, T0 or T1.
- P is the π -coil state P0, P1, or P2 (P1 is the off state).
- ➤ Define the rotation angles. For example:

Spin Angle =
$$\left(A_{P0}^{T0}(W) + A_{P0}^{T1}(W) + A_{P2}^{T0}(W) + A_{P2}^{T1}(W)\right) / 4$$

$$PNC Angle = (A_{P0}^{T0}(W) - A_{P0}^{T1}(W) + A_{P2}^{T0}(W) - A_{P2}^{T1}(W)) / 4$$

Common Mode Noise

Results: π-coil Off

Results: π-coil On

Results: Run-by-Run

Systematics and Result

Table 1: A list of sources for potential systematic effects and estimates for the uncertainties. The values for the uncertainties originate from either a calculation or are the result of a direct measurement that places an upper bound on the effect.

Source	Uncertainty (rad/m)	Method
liquid ⁴ He diamagnetism:	2×10^{-9}	calc.
liquid ⁴ He optical potential:	3×10^{-9}	calc.
neutron E spectrum shift:	8×10^{-9}	calc.
neutron refraction/reflection:	3×10^{-10}	calc.
nonforward scattering:	2×10^{-8}	calc.
polarimeter nonuniformity:	1×10^{-8}	meas.
B amplification:	$< 4 \times 10^{-8}$	meas.
B gradient amplification:	$< 3 \times 10^{-8}$	meas.
PA/target nonuniformity:	$< 6 \times 10^{-8}$	meas.
Total (from measurements)	1.4×10^{-7}	

$$\frac{d\phi_{PNC}}{dz} = [+1.7 \pm 9.1(stat) \pm 1.4(sys)] \times 10^{-7} \,\text{rad/m}$$

Neutron Spin Rotation (NSR-2) Collaboration

C.D. Bass¹, B.E. Crawford², J.M. Dawkins³, T.D. Findley³, K. Gan⁴, B.R. Heckel⁵, J.C. Horton³, C.R. Huffer³, D. Luo³, D.M. Markoff⁶, A.M. Micherdzinska⁷, H.P. Mumm¹, J.S. Nico¹, A.K. Opper⁴, E. Sharapov⁸, M.G. Sarsour³, W.M. Snow³, H.E. Swanson⁵, S.C. Walbridge³, V. Zhumabekova⁹

> National Institute of Standards and Technology (NIST) ¹ Gettysburg College ²

Indiana University / IUCF ³

The George Washington University 4

University of Washington 5

North Carolina Central University / TUNL ⁶

University of Winnipeg ⁷

Joint Institute for Nuclear Research, Dubna, Russia 8 Al-Farabi Kazakh National University 9

United States Department of Commerce National Institute of Standards and Technology

NSR-2 Result

> No observation of PNC rotation, but the result limits the range of theoretical/phenomenological predictions.

Toward an improved NSR-3 measurement

Goal:
$$\frac{d\phi_{PNC}}{dz} \le 2 \times 10^{-7} \, \mathrm{rad/m}$$

Statistical Improvement

> Counting statistics

Expect x40 more polarized neutron flux through apparatus from

- 1) NIST NCNR expansion and NG-C
- 2) Increasing apparatus acceptance

> Low duty factor

- 1) Reduce heat load
- 2) Reduce fill/drain times

Systematic Improvement

Reduce B field in target region

1) Goal of 10 μ G using additional passive shielding and active trimming.

> Improve PA

- 1) Procure new supermirror polarizers with better reflectivity characteristics.
- 2) Characterize east-west beams
- 3) More frequent *PA* measurements

Statistics - more neutrons

NG-C: High-flux cold beam for fundamental neutron physics experiments at NIST.

- Ballistic guide; 11 cm x 11 cm at output
- Curved guide (no line-of-sight to reactor)
- Thermal capture fluence rate ≈ 8x10⁹/cm²/s

Supermirror guides:

- 10 cm x 10 cm input and output guides
- m = 2, better match with NG-C phase space

Magnetic field - Improve shielding

Three mu-metal shields (one inside vacuum canister, two outside)

Endcaps for innermost shield

Improve passive and active shielding

- Degaussing capability
- Internal magnetometry
- Trim coils
- Active cancelation field

Demonstrate B-field suppression to $< 10\mu G$ in the target region, x10 improvement over NSR-2

Polarization Product PA

Supermirror polarizer/analyzer pair:

- Two new 10 cm x 10 cm polarizers
- m = 2.5; polarization $\approx 90\%$
- Better uniformity

Input and Output Coils

- Accommodate larger guides
- Improved uniformity and efficiency of the spin transport

Duty Factor - Improve Cryogenics

120 NSR-II "Reactor On" days

Apparatus inoperable

Refilling LHe,
Maintenance
Administration

Changing target state

Calibration &
Systematics
measurement

Discarded – targets improperly filled

cold head motor

He reliquefier

LHe line in

He gas return

test cryostat
Heater control
LHe level monitor
pressure monitor

Cryomech pulse-tube reliquefier

- Tested for 3 months of continuous operation
- Observed liquefaction rate from warm gas of 12L/day
- Automated operation capable of handling ~550 mW heat load

- •Improved cryogenic design for reduced heat load, simpler assembly/disassembly, and more robust operation
- •He re-liquefier removes necessity of LHe fills
- •R&D on new LHe pump to reduce target change time

Duty Factor - Improve Cryogenics

Other improvements

He-3 Ion Chamber

NSRf5 Apparatus at LANSCE FP12

Why NSRf5 Apparatus at LANSCE FP12?

Generic interaction between fermions with a light spin-1 particle arising in a number of Beyond the Standard Model Theories from, e.g., spontaneous breaking of new symmetries.

16 independent rotationally invariant low-energy potentials.

for example...

$$V_{AA} \propto g_A^2 \; \vec{\sigma} \cdot (\vec{v} \times \hat{r}) \left(\frac{1}{\lambda} + \frac{1}{r}\right) \frac{e^{-r/\lambda}}{r}$$

B. Dobrescu and I. Mocioiu, J. High Energy Physics. 11, 005 (2006)

F. Piegsa and G. Pignol, PRL 108, 181801 (2012)

NSRf5 Apparatus at LANSCE FP12

A Search for Possible Long Range Spin Dependent Interactions of the Neutron From Exotic Vector Boson Exchange

C. Haddock^{a,*}, J. Amadio^b, E. Anderson^c, L. Barrón-Palos^d, B. Crawford^b, C. Crawford^c, D. Esposito^f, W. Fox^c, I. Francis^g, J. Fry^h, H. Gardinerⁱ, A. Holley^j, K. Korsak^c, J. Lieffers^k, S. Magers^b, M. Maldonado-Velázquez^d, D. Mayorov^l, J. S. Nico^m, T. Okudaira^a, C. Paudelⁿ, S. Santra^o, M. Sarsourⁿ, H. M. Shimizu^a, W. M. Snow^c, A. Sprow^c, K. Steffen^c, H. E. Swanson^p, F. Tovesson^l, J. Vanderwerp^c, P. A. Yergeau^b

^aNagoya University, Furocho, Chikusa Ward, Nagoya, Aichi Prefecture 464-0814, Japan ^bGettysburg College, 300 N Washington St, Gettysburg, PA 17325, USA ^cPhysics Department, Indiana University, Bloomington, Indiana 47408, USA. ^dInstituto de Fìsica, Universidad Nacional Autònoma de México, Apartado Postal 20-364, 01000, México ^eUniversity of Kentucky, Lexington, KY 40506, USA ^fUniversity of Dayton, 300 College Park, Dayton, OH 45469, USA 8612 S Mitchell St Bloomington, Indiana 47401, USA ^hUniversity of Virginia, Charlottesville, VA 22903, USA ⁱLouisiana State University, Baton Rouge, LA 70803, USA ^jTennessee Tech University, 1 William L Jones Dr, Cookeville, TN 38505, USA ^kEmbry-Riddle Aeronautical University, 600 S Clyde Morris Blvd, Daytona Beach, FL 32114, USA ¹Los Alamos National Lab, Los Alamos, NM 87545, USA ^mNational Institute of Standards and Technology, 100 Bureau Dr. Gaithersburg, MD 20899, USA ⁿGeorgia State University, 29 Peachtree Center Avenue, Atlanta, GA 30303, USA ^oBhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra 400085, India ^pUniversity of Washington, Seattle, WA 98105, USA

Submitted to PLB

Figure 3: g_A^2 as a function of interaction length λ_c from our experiment (dashed-blue) compared with constraints from a neutron measurement using Ramsey spectroscopy (a) [22] and from K-³He comagnetometry (b) [36]. The final g_A^2 limit includes both statistical and systematic uncertainties.

Summary

- ➤ The NSR-2 collaboration completed an experiment limiting spin rotation in LHe at the level of 9x10⁻⁷ rad/m. The experiment was statistics limited.
- > Significant recent theoretical work. Prediction a relatively large size for the neutron spin rotation of $\approx 7x10^{-7}$ rad/m without sensitivity to the isotensor component of the NN weak interaction.
- ➤ A substantially improved apparatus was used to make significantly improvement in limits on spin-dependent fifth forces using a room temperature target.
- ➤ The NSR-3 collaboration has an apparatus nearing readiness for an n-4He spin rotation measurement at the level 1x10-7 rad/m.

The critical path items are the LHe pump, LHe target, and radiation shielding.

> The goal is to be ready for beam in 2019.

NRS-3 Collaboration

E. Anderson¹, L. Barron-Palos², B.E. Crawford³, C. Crawford⁴, W. Fox¹, J. Fry¹, C. Haddock¹, B.R. Heckel⁵, A. T. Holley⁶, S.F. Hoogerheide⁷, K. Korsak¹, M. Maldonado-Velazquez², H.P. Mumm⁷, J.S. Nico⁷, S. Penn⁸, S. Santra⁹, M. Sarsour¹⁰, W.M. Snow¹, K. Steffen¹, H.E. Swanson⁵, J. Vanderwerp¹

Indiana University/CEEM ¹
Universidad Nacional Autonoma de Mexico ²
Gettysburg College ³
University of Kentucky ⁴
University of Washington ⁵
Tennessee Technological University⁶
National Institute of Standards and Technology⁷
Hobart and William Smith College⁸
Bhabha Atomic Research Center⁹
Georgia State University¹⁰

Support:

NSF Grant 1614545 NIST DOE Grant DE-SC0010443 PAPIIT-UNAM IN111913 and IG101016 BARC If we listen very carefully...

...the neutrons have a lot to tell us.

Thanks for contributions from L. Barron-Palos, C. Haddock, M. Sarsour, M. Snow.