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Nucleon-Nucleon Weak Interaction

~1 fm • NN repulsive core -> 1 fm range for the strong force.

• QCD has vector quark-gluon couplings that 
conserve parity (PC).

weak 

• Weak interaction has a much smaller range (~1/100 fm).

• Weak interaction violates parity (PNC).
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Use parity violation to isolate the 
weak force contribution to the NN 
interaction.
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Hadronic Weak Interaction

➢ The weak interaction among quarks is a fundamental part of the Standard Model, but 
the hadronic weak interaction (HWI) between nucleons remains one of the most poorly-
understood areas.

➢ It has proven difficult both experimentally and theoretically to test the fundamental 
nucleon-nucleon weak interaction. The problem is the non-perturbative nature of QCD at 
low energies.

➢ Heavy nuclei have large parity non-conserving (PNC) asymmetries, but the dynamics 
are complicated and the interpretation depends on nuclear models. One must investigate 
PNC effects in light nuclei.

More recently...

➢ Much recent theoretical activity in pionless EFT and large Nc.

➢ One can carry out measurements and calculations in few body systems (npdg, n-3He, 
p-4He, and n-4He).

➢ Advances in experimental techniques and facilities make possible measurement of 
small asymmetries in few-body systems.



n + 4He Spin Rotation: 
Theoretical Expectations

➢ DDH “reasonable range”

➢ EFT calculation 
⇤PNC(n̄,4 He) = (0.85�nn

s � 0.43�np
s + 0.95�t � 1.89⇥t) rad/m

Zhu et al., Nucl. Phys. A  748, 435 (2005)

Desplanques, Donoghue, and Holstein, Ann., Phys.  124, 449 (1980)

➢ Dmitriev et al. calculation 

Dmitriev et al., Phys. Lett.  125, 1 (1983)

�PNC = �(0.97f� + 0.22h0
⇤ � 0.22h1

⇤ + 0.32h0
⇥ � 0.11h1

⇥) rad/m
= (0.1± 1.5)� 10�6 rad/m

➢ Nuclear PNC phenomenology �PNC(n̄,4 He) = (6± 2)� 10�7rad/m
Desplanques, Phys. Rep.  297, 1 (1998)

Existing calculations:

�PNC(n̄,4 He) ⇥ 1� 10�6rad/m



➢ System is simple enough that P-odd spin rotation can be related to weak NN 
amplitudes. GFMC is possible (Carlson, Wiringa, Nollett, Schiavilla, Pieper,...)  

➢ Pionless EFT (Grießhammer, Schindler, Springer, Vanasse…Phillips, Samart, Schat….)

New Theoretical Directions

➢ No dependence on the isotensor component, making it distinct from other observables.  
➢ Dependence only on LO LEC (Λ0) with a relatively large expectation, makes it 
accessible to spin rotation with several sigma significance.



Why n- 4He Spin Rotation?

➢ Linear combination of NN weak amplitudes in n-4He spin rotation is roughly orthogonal 
to existing constraints from past measurements with protons (p-4He) and anapole 
moments. Addition of n-4He gives stronger constraints.

➢ n-4He and n-3He both measure approximately the same linear combination of weak 
amplitudes, providing a strong check. However, there is no dependence on the isotensor 
component in n-4He, an important distinction between the two experiments.

➢ n-4He dependence on only the LO LEC has a relatively large expectation valve, within 
experimental spitting distance.

➢ An experiment on NG-C at NIST is feasible in the range of 1-2 x 10-7, which could a 
measurement several sigma from prediction. This would be a quantitative test of the SM 
involving the quark-quark weak interaction in nucleons.

➢ This experimental development has yielded an extremely sensitive neutron polarimeter. 
Forward scattering amplitude of neutron in matter is sensitive to all neutron-matter 
interactions. 



Why n- 4He Spin Rotation?

➢ Linear combination of NN weak amplitudes in n-4He spin rotation is roughly orthogonal 
to existing constraints from past measurements with protons (p-4He) and anapole 
moments. Addition of n-4He gives stronger constraints.

➢ n-4He and n-3He both measure approximately the same linear combination of weak 
amplitudes, providing a strong check. However, there is no dependence on the isotensor 
component in n-4He, an important distinction between the two experiments.

➢ n-4He dependence on only the LO LEC has a relatively large expectation valve, within 
experimental spitting distance.

➢ An experiment on NG-C at NIST is feasible in the range of 1-2 x 10-7, which could a 
measurement several sigma from prediction. This would be a quantitative test of the theory 
and a definitive observation of PNC in spin rotation.

➢ This experimental development has yielded an extremely sensitive neutron polarimeter. 
Forward scattering amplitude of neutron in matter is sensitive to all neutron-matter 
interactions. 



PNC Observable in the n + 4He System

➢ Cold neutrons (average wavelength 0.5 nm) traversing helium can be 
described by wave propagation in a medium with index of diffraction n, 
analogous to light.

➢ Express forward scattering in terms of parity-conserving (PC) and parity-
violating (PNC) parts

➢ As the neutron propagates along the z-axis, it accumulates a phase  

➢ In the helicity basis, the accumulated phase of the two states are 
different

n = 1 +
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⇥
⇥f(0)

f(0) = fPC + fPNC(⇥� · ⇥k)
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⇤
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fPC + fPNC(⇧⇤ · ⇧k)

⇥⌅

⇤± = ⇤PC ± ⇤PNC ⇤PNC = 2�⇥zfPNC



Measurement Principle

➢ It’s a very small angle measurement O(10-7) rad.

➢ Target is placed between a crossed (supermirror) 
polarizer-analyzer pair (analyzing power PA).

➢ Output field is rotated every second, and 
neutrons are counted in a 3He ion chamber.

sin� =
1

PA

N+ �N�
N+ + N�

Two critical issues:

➢ Beam fluctuations exist at O(1%).

➢ Difficult to shield below 100 µG. Rotation angle from 
this field is about 3 orders of magnetic greater than ϕPCN.



Measurement Principle

B. Heckel, NBS SP 711, 90 (1986)
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Spin Rotation Apparatus (Polarimeter)

supermirror 

polarizer 

room-temperature 

magnetic shields 

input coil 

input guides 

motion-control 

system 

supermirror 

polarization 

analyzer 

3He ionization 

chamber 

output guide 

output 

coil 

cryogenic 

magnetic shield 

cryostat 

pi-coil 

liquid helium targets 

+y 

+x 

+z 

Measure the horizontal component of a vertically polarized neutron beam.



NSR-2 Apparatus on NG-6 Beamline at NIST

NIST Center for Neutron Research - 20 MW research reactor
Gaithersburg, MD campus



NSR-2 Apparatus on NG-6 Beamline at NIST



DAQ Control Sequence
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Analysis

• D signifies a part of the detector (W for the west side 
and E for the east side).

• T is the target state, T0 or T1.

• P is the π-coil state P0, P1, or P2 (P1 is the off state).

➢ Define an asymmetry:

➢ Define the rotation angles. For example:

AT
P (D) =

N+(D,T, P )�N�(D,T, P )
N+(D,T, P ) + N�(D,T, P )

PNCAngle =
�
AT0

P0(W )�AT1
P0(W ) + AT0

P2(W )�AT1
P2(W )

⇥
/4

SpinAngle =
�
AT0

P0(W ) + AT1
P0(W ) + AT0

P2(W ) + AT1
P2(W )

⇥
/4



Common Mode Noise 



Results: π-coil Off

�PC = (�1.2± 10.0)⇥ 10�7rad/m



Results: π-coil On



Results: Run-by-Run

Run Date     



Systematics and Result

W.M. Snow et al., PRC 83, 022501(R) (2011)

d�PNC

dz
= [+1.7± 9.1(stat)± 1.4(sys)]� 10�7 rad/m
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NSR-2 Result

➢ No observation of PNC rotation, but the result limits 
the range of theoretical/phenomenological predictions.
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Toward an improved NSR-3 measurement

➢ Counting statistics 

➢ Low duty factor

Expect x40 more polarized neutron 
flux through apparatus from 
1) NIST NCNR expansion and NG-C
2) Increasing apparatus acceptance

1) Reduce heat load
2) Reduce fill/drain times

Statistical Improvement

➢ Reduce B field in target 
region

➢ Improve PA

1) Goal of 10 µG using additional 
passive shielding and active trimming.

1) Procure new supermirror polarizers 
with better reflectivity characteristics.
2) Characterize east-west beams
3) More frequent PA measurements

Systematic Improvement

d�PNC

dz
⇥ 2� 10�7 rad/m Goal:



Statistics - more neutrons

NG-C: High-flux cold beam for fundamental
           neutron physics experiments at NIST.

   • Ballistic guide; 11 cm x 11 cm at output
   • Curved guide (no line-of-sight to reactor)
   • Thermal capture fluence rate ≈ 8x109/cm2/s

Supermirror guides: 
   • 10 cm x 10 cm input and 

output guides
   • m = 2, better match with 

NG-C phase space



Magnetic field - Improve shielding

Improve passive and active shielding

• Degaussing capability
• Internal magnetometry
• Trim coils
• Active cancelation field

Magnetic Field Mapping, 3 shields 
 

•  Scan done with end caps off on one end and no de-gaussing 

•  Still a gradient of  order 5�G/cm 
•  Correct with de-gaussing shields/endcaps 

Endcaps for innermost shield

Three mu-metal shields
(one inside vacuum canister, two outside)

Demonstrate B-field suppression to < 10μG in the 
target region, x10 improvement over NSR-2



Polarization Product PA

Supermirror polarizer/analyzer pair: 
   • Two new 10 cm x 10 cm polarizers
   • m = 2.5; polarization ≈ 90%
   • Better uniformity 

Input and Output Coils
   • Accommodate larger guides 
   • Improved uniformity and 

efficiency of the spin transport 



Duty Factor - Improve Cryogenics

120 NSR-II “Reactor On” days

Changing 
target state

Refilling LHe,
Maintenance
Administration

Apparatus inoperable

Analyzed data

Discarded – targets 
improperly filled

Calibration & 
Systematics 
measurement

cold head 
motor

He reliquefier

LHe line in

He gas return

test cryostat
Heater control

LHe level monitor
pressure monitor

Cryomech pulse-tube reliquefier

• Tested for 3 months of 
continuous operation

• Observed liquefaction rate from 
warm gas of 12L/day

• Automated operation capable of 
handling ~550 mW heat load

Setup in the Apparatus 
 

•Improved cryogenic design for reduced 
heat load, simpler assembly/disassembly, 
and more robust operation
•He re-liquefier removes necessity of LHe 
fills
•R&D on new LHe pump to reduce target 
change time



Duty Factor - Improve Cryogenics

Titanium bellows pump design:


tested for ~600,000 cycles  in liquid nitrogen




Other improvements

4-Chamber LHe Target

He-3 Ion Chamber

Shielding



NSRf5 Apparatus at LANSCE FP12



Why NSRf5 Apparatus at LANSCE FP12?



NSRf5 Apparatus at LANSCE FP12

Submitted to PLB



Summary

➢ The NSR-2 collaboration completed an experiment limiting spin 
rotation in LHe at the level of 9x10-7 rad/m. The experiment was 
statistics limited.

➢ Significant recent theoretical work. Prediction a relatively large size 
for the neutron spin rotation of ≈ 7x10-7 rad/m without sensitivity to the 
isotensor component of the NN weak interaction.
 
➢ A substantially improved apparatus was used to make significantly 
improvement in limits on spin-dependent fifth forces using a room 
temperature target.

➢ The NSR-3 collaboration has an apparatus nearing readiness for 
an n-4He spin rotation measurement at the level 1x10-7 rad/m. 

The critical path items are the LHe pump, LHe target, and radiation 
shielding.

➢ The goal is to be ready for beam in 2019.
n 
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If we listen very carefully…

Thanks for contributions from L. Barron-Palos, C. Haddock, M. Sarsour, M. Snow. 

…the neutrons have a lot to tell us.


