
Misha Gorshteyn - JGU Mainz
Workshop on Hadronic Parity Non-Conservation


KITP Santa Barbara, California, March 15-16 2018

HPNC Opportunities at Mainz



OUTLINE


P2 @ MESA: low-energy PVES with unprecedented precision


Threshold semi inclusive 𝜋+ production with polarized e-beam


Long-range PV effects from HPNC


PNC in Yb and Dy isotopes


Summary & Outlook



MESA = Mainz Energy-recovering 
Superconducting Accelerator Dominik Becker et al.: The P2 Experiment 11

10 m 

100 keV  Mott 
polarimeter 

P2 beam 
extraction 

Source & spin  
manipulation system  
„MELBA“ 

P2 return-arc followed  
by straight line for  
beam-diagnostics  
and -stabilization  

 

5 MeV   Mott 
polarimeter 

Hydro-Møller 
polarimeter 

Kryomodules  
„MEEK 1,2“ 

Preaccelerator 
„MAMBO“ 

MAGIX- 
Experiment 

P2-detector P2 beamdump 

Fig. 10. View of the MESA accelerator. Areas of specific importance for P2 are indicated. Electron optical components are
labelled in black colour, beam and spin control in red and polarimeters in green.

the second Wien filter. The last polarimeter in the sys-
tem, the Hydro-Møller, requires longitudinal polarisation
which coincides with the experimental requirements. More
details concerning polarimetry can be found in Sect. 3.2.
Most of the components of MELBA, including the two
Wien filters, are either ready for commissioning or already
in operation in di↵erent test set-ups.

After three passages through the cryomodules the beam
is extracted via a magnetic chicane towards the P2 beam-
line. It should be noted that this part of MESA (together
with two of the recirculation arcs) is located in the P2
experimental hall. Handling the radiation levels coming
from the target seems feasible since only relatively robust
accelerator components are installed in this region. More
demanding, but also feasible, is the task to shield all beam-
line components from the magnetic fringe field of the P2
solenoid, which has a large aperture.

After extraction, the beam is directed away from he
P2 experiment into the MAGIX hall. The main idea is to
obtain a long straight line in front of the experiment for
beam diagnostic and stabilization purposes - see Sect. 3.3
for details. The final 180� bend in front of the experiment
can be used to create a large longitudinal dispersion which
is needed for energy stabilization. The straight line will
also contain the Hydro-Møller polarimeter that occupies
⇡ 2.5 m of beam line by its cryostat. The cryostat can
be installed in a rectangular opening (5 m width, 0.8 m
height) in the wall between the MAGIX and the P2 hall,
see Fig. 10.

3.1 Polarized source

Though a source has recently been put into operation that
is capable to achieve the anticipated maximum beam cur-
rents of MESA of 10 mA [36], such a device is not manda-
tory and maybe not even advisable for P2, since it incor-
porates increased technological risks. On the other hand,
the source developed for MAMI [37] represents a su�cient
basis for the P2 experiment. This source has been oper-
ated for decades at the MAMI accelerator [38] and has
produced beams with nearly 90% of polarization and cur-
rents well above the level needed for P2. An important fac-
tor is the operational lifetime that can be expected. The
ability of the photocathode to convert light quanta into
electrons, the so-called quantum e�ciency, decays due to
radiation damage which in turn causes a finite operational
lifetime of the source. Operation of the MAMI source at
200 µA [39] has revealed a charge lifetime of 200 C - that
is 200 Coulombs of charge can be produced while the ini-
tial quantum e�ciency drops to 1/e, i.e. to about 37%,
of its initial value. This can be handled even with the
existing laser system of the polarized source at MAMI
which is able to deliver 300mW. A moderate quantum
e�ciency of 0.5 % (corresponding to a photo-sensitivity
of 3mA/Watt at the operational wavelength of 778 nm)
is assumed for the GaAs/GaAsP superlattice photocath-
ode that has to be employed to achieve polarizations sur-
passing 85%. Then, after one lifetime, less than 200 mW
of laser power on the cathode will be necessary. At this
power level some improvement of heat transfer from the
photocathode is needed in order to limit a temperature
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2 Determining the Weak Mixing Angle from
Parity Violating Electron Scattering

In this chapter, the experimental method for measuring
the proton’s weak charge QW(p) is presented and the
achievable precision in the determination of the electroweak
mixing angle sin2 ✓W is discussed.

2.1 Experimental method

For the P2 experiment, MESA will provide a beam of lon-
gitudinally polarized electrons. The beam energy will be

Ebeam = 155MeV (1)

and the beam current is scheduled to be

Ibeam = 150µA. (2)

The helicity of the beam electrons will be switched with
a frequency f ⇠ 1 kHz. The beam electrons impinge on
an unpolarized `H2-target with a length of L = 600mm
oriented along the beam direction. The electrons, which
are scattered elastically o↵ the protons, are detected in an
azimuthally symmetric Cherenkov detector. Figure 3 il-
lustrates the measurement principle. Since the luminosity
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polarized 
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Fig. 3. Experimental method to be used in the P2 experiment:
A longitudinally polarized beam of electrons is impinged on a
long proton target. For each helicity state of the beam electrons
the elastically scattered electrons are detected.

L of the P2 experiment is projected to be

L = Ibeam/e · ⇢part · L = 2.38 ⇥ 1039 cm�2s�1, (3)

where e is the elementary charge and ⇢part is the proton
density in `H2, the total rate of the electrons scattered
elastically o↵ protons which needs to be detected is in the
order of 0.1 THz. This makes an integrating measurement
of the event rates necessary.

2.1.1 Parity-violating asymmetry in elastic electron-proton

scattering

The main observable in the P2 experiment is the parity-
violating asymmetry APV in elastic electron-proton scat-
tering. It is an asymmetry in the cross section which may

be defined by

APV
⌘

d�+
ep � d��

ep

d�+
ep + d��

ep
. (4)

In this equation, d�±
ep is the di↵erential cross section for

the elastic scattering of electrons with helicity ±1/2 o↵
unpolarized protons.

e e ee

N NNN

Fig. 4. Feynman diagrams showing the exchange of a virtual
photon and Z-boson in the process of electron-nucleon scatter-
ing.

APV is due to the interference between the exchange of
a virtual photon and a Z-boson in the scattering process,
both of which are illustrated in Fig. 4. The di↵erential
cross section of the scattering process can be written

✓
d�±

ep

d⌦

◆
=

✓
↵em

4mpQ2

Ef

Ei

◆2 ��M±
ep

��2, (5)

where ↵em is the electromagnetic coupling, mp is the pro-
ton mass, and

Q2
⇡ 4EiEf sin

2 (✓f/2) (6)

is the negative square of the 4-momentum transfer be-
tween electron and proton. Here, the electron mass can be
neglected. Ei is the electron’s initial state energy, Ef the
energy of the scattered electron and ✓f the scattering angle
with respect to the beam direction. M

±
ep is the transition

matrix element, at leading order given by the Feynman
diagrams shown in Fig. 4.

The resulting parity-violating helicity asymmetry is
written as

APV =
�GFQ2

4⇡↵em

p
2

⇥
QW(p) � F (Ei, Q

2)
⇤
, (7)

where GF is the Fermi coupling constant. Here, the weak
charge of the proton, QW(p), is defined as the limit of the
asymmetry at zero-momentum transfer, normalized such
that Eq. (7) holds, i.e., F (Ei, Q2 = 0) = 0. At non-zero
momentum transfer, the hadronic structure of the proton
has to be taken into account, parametrized by the Q2- and
energy-dependent function F (Ei, Q2). The function F is
often written as F (Ei, Q2) = Q2B(Q2) and the energy-
dependence not shown explicitly.

Based on a flavour decomposition of the matrix ele-
ments of the electromagnetic and weak neutral currents,
the form factor contribution F (Q2) is usually written as
a sum of three terms

F (Ei, Q
2) ⌘ FEM(Ei, Q

2)+FA(Ei, Q
2)+F S(Ei, Q

2), (8)
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where

FEM(Ei, Q
2) ⌘
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2
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is given by the proton’s electric and magnetic form factors
Gp,�

E and Gp,�
M as well as the neutron’s electric and mag-

netic form factors Gn,�
E and Gn,�

M . FA(Ei, Q2) depends on

the proton’s axial form factor Gp,Z
A and is denoted as

FA(Q2) ⌘

�
1 � 4 sin2 ✓W
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(10)
F S(Q2) depends on the nucleon’s strange electric and mag-
netic form factors Gs

E and Gs
M as well as the isospin-

breaking form factors Gu,d
E and Gu,d

M :
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(11)

In these expressions we have used the abbreviations

✏ ⌘


1 + 2(1 + ⌧) tan2

✓
✓f
2

◆��1

(12)

and

⌧ ⌘
Q2

4m2
p

. (13)

According to Eq. (7), APV is proportional to Q2. In
Fig. 5 we show the dependence of APV on ✓f for Ei =
155 MeV, which equals the beam energy to be used in
the P2 experiment. The picture also shows the separate
contributions

AQW ⌘
�GFQ2

4⇡↵em

p
2

· QW(p),

AEM
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GFQ2

4⇡↵em

p
2

· FEM,
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4⇡↵em

p
2

· FA,

AS
⌘

GFQ2

4⇡↵em

p
2

· F S

(14)

to APV. One can see that at low Q2, APV is dominated
by AQW , while the hadronic contributions are small. A
measurement of APV at low Q2 is therefore sensitive to
the weak charge of the proton, QW(p).

2.1.2 The proton’s weak charge and the electroweak mixing

angle

Neglecting radiative corrections, the tree-level expression
for the proton’s weak charge in (7) is

QW(p) = 1 � 4 sin2 ✓W, (15)

/degfθ 
10 20 30 40 50 60 70 80 90

 A
/p

pb
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 = 155.00 MeViE
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Fig. 5. Dependence of APV on ✓f for Ei = 155MeV. Plotted
are the absolute values of the asymmetry and the contributions
by the proton’s weak charge and the nucleon form factors to
A

PV. For low values of Q
2, A

PV is dominated by the weak
charge contribution A

QW . At the central scattering angle of
the P2 experiment, APV(✓f = 35�) = �67.34 ppb.

where ✓W is the electroweak mixing angle or Weinberg-
angle. In the following we will often use the abbreviation
sW = sin ✓W. Since sin2 ✓W ⇡ 0.23, QW(p) is small in
the SM. From (15), using Gaussian error propagation, it
follows that

� sin2 ✓W
sin2 ✓W

=
1 � 4 sin2 ✓W

4 sin2 ✓W
·
�QW(p)

QW(p)
⇡ 0.09 ·

�QW(p)

QW(p)
.

(16)
Therefore, a precise measurement of QW(p) will result in
an approximately 10 times more precise determination of
the electroweak mixing angle. The weak charge of the pro-
ton is therefore highly sensitive to the electroweak mixing
angle.

Even small corrections to sin2 ✓W may modify QW(p)
significantly. A wide range of beyond-SM e↵ects can lead
to such corrections. They need to be disentangled from SM
radiative corrections. Higher-order corrections to APV will
be discussed later in Sect. 6.

2.2 Achievable precision in the determination of the
weak mixing angle

In order to predict the achievable precision in the deter-
mination of sin2 ✓W, error propagation calculations based
on the Monte Carlo method have been carried out. The
goal of these calculations was to determine the achiev-
able uncertainty �s2W as a function of the beam energy
Ebeam, the central electron scattering angle ✓̄f and the
acceptance of the azimuthally symmetric detector in ✓f,
denoted �✓f ⌘ [✓̄f � �✓f/2, ✓̄f + �✓f/2]. In the following, the
method used to calculate �s2W will be discussed and re-
sults of the calculations will be presented. Based on these
results, the beam energy and detector acceptance to be
used in the P2 experiment are chosen.

Parity-violating asymmetry at low Q2

Proton’s weak charge ~ WMA

Correction term ~ known

C-12 weak charge ~ WMA
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Fig. 72. The average relative shift of the momentum transfer
due to photon radiation.

to the measured helicity asymmetry APV receives correc-
tions since extra radiated photons lead to a shift of the
observed momentum transfer relative to the true one. Q2

can not be determined from the electron scattering angle
alone, but the momentum of unobserved photons has to
be taken into account.

The tracking detectors described in Sect. 5.5 will allow
one to determine the momentum of the scattered electron,
i.e., its energy Ef and the electron scattering angle ✓f .
From this information one can determine Q2 = �(k�k0)2

(corresponding to Eq. (6)), where k and k0 are the mo-
mentum 4-vectors of the initial and final electron. In the
presence of bremsstrahlung, a photon with 4-momentum
k� emitted from the electron will shift Q2 to the true mo-
mentum transfer Q2

true = �(k � k0
� k�)2. This true Q2

value has to be used in the equation relating the measured
asymmetry with the proton’s weak charge, Eq. (7).

In Fig. 72 we show the average relative shift of Q2

due to photon radiation including one-photon bremsstrah-
lung. The Q2 shift depends strongly on the beam energy
and the scattering angle, as well as on a possible cuto↵ of
the energy of photons radiated into the final state. Pre-
liminary results of a calculation including two-photon ra-
diation show that order O(↵2) corrections are much less
important. This can be understood since we deal with a
kinematic e↵ect: the relation between scattering angle and
momentum transfer is not unique anymore in the presence
of an additional photon. A second photon does not add
considerably more freedom, but only adds corrections of
order O(↵2) to the cross section. Eventually, bremsstrah-
lung e↵ects will be included in the detector simulation.

6.3 Theory summary

The current SM prediction for the parity-violating asym-
metry in elastic ep scattering, summarized in this section,
includes the complete set of NLO corrections. At this or-
der, no further theoretical uncertainties will a↵ect the in-
terpretation of a high-precision measurement of APV in

terms of sin2 ✓W beyond the level of 10�4. In particular,
uncertainties from the hadronic structure entering the �Z-
box graph at the low energy and small Q2 values relevant
for the P2 experiment are well under control.

A conclusive test of the SM and analyses of the antic-
ipated experimental result at P2 in terms of New Physics
can be obtained by comparing with other high-precision
determinations of the weak mixing angle from LEP, SLC,
and future measurements at the LHC. This will require the
inclusion of two-loop electroweak corrections and work on
the corresponding NNLO calculations is underway.

7 Further physics programme

7.1 Measurements with Carbon-12

High precision measurements of the weak charges of di↵er-
ent particles and nuclei o↵er complementary sensitivities
to physics beyond the Standard Model in the form of new
tree level and quantum loop correction parameters. For
example, one may consider ratios of polarization asymme-
tries in which the polarization uncertainty mostly cancels.

Here we summarize the results of first feasibility stud-
ies of a measurement of the weak charge of the 12C nucleus
with the P2 setup. As a spin-zero nucleus, 12C can be de-
scribed by a single form factor and is thus theoretically
easy to handle [8]. Moreover, its QED cross section is 36
times larger than that of the proton, and its weak charge
is 78 times as large, which significantly reduces beam time
requirements. The SM prediction for the helicity asymme-
try at leading order can be written as in Eq. (7) with

QW(12C) = �24 sin2 ✓W . (87)

At low momentum transfer Q2
⌧ M2

Z weak charges
can be parametrized with respect to the so-called oblique
parameters, such as the S, T and U parameters intro-
duced by Peskin and Takeuchi [107,108]. However, S, T
and U are already very precisely determined from Z-pole
observables, whereas weak charges are able to constrain
some of the higher-order oblique parameters. For exam-
ple, the X parameter [109] describes the di↵erence of new
physics contributions to the �Z mixing at the Z pole
and at low energies, and cannot be determined by Z-pole
physics alone. Likewise, in the absence of mass mixing, Z-
pole observables are virtually blind to extra heavy gauge
bosons Z 0 as new amplitudes are suppressed relative to
the Z resonance. By contrast, at low energies Z 0 ampli-
tudes are merely suppressed by the square of the ratio of
the Z and Z 0 masses. One has [13]

QW(12C) = �5.510[1 � 0.003T + 0.016S � 0.033X � �],

QW(p) = +0.0707[1 + 0.15T � 0.21S + 0.43X + 4.3�],

QW(e) = �0.0435[1 + 0.25T � 0.34S + 0.7X + 7�],

QW(133Cs) = �73.24[1 + 0.011S � 0.023X � 0.9�]
(88)

for the weak charges of 12C, the proton, the electron and
133Cs, and � = M2

Z/M2
Z�

was used where Z� is the extra Z
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where

FEM(Ei, Q
2) ⌘

✏Gp,�
E Gn,�

E + ⌧Gp,�
M Gn,�

M

✏(Gp,�
E )

2
+ ⌧(Gp,�

M )
2 (9)

is given by the proton’s electric and magnetic form factors
Gp,�

E and Gp,�
M as well as the neutron’s electric and mag-

netic form factors Gn,�
E and Gn,�

M . FA(Ei, Q2) depends on

the proton’s axial form factor Gp,Z
A and is denoted as

FA(Q2) ⌘

�
1 � 4 sin2 ✓W

�p
1 � ✏2

p
⌧(1 � ⌧)Gp,�

M Gp,Z
A

✏(Gp,�
E )

2
+ ⌧(Gp,�

M )
2 .

(10)
F S(Q2) depends on the nucleon’s strange electric and mag-
netic form factors Gs

E and Gs
M as well as the isospin-

breaking form factors Gu,d
E and Gu,d

M :

F S(Ei, Q
2) ⌘

✏Gp,�
E Gs

E + ⌧Gp,�
M Gs

M

✏(Gp,�
E )

2
+ ⌧(Gp,�

M )
2

+
✏Gp,�

E Gu,d
E + ⌧Gp,�

M Gu,d
M

✏(Gp,�
E )

2
+ ⌧(Gp,�

M )
2 .

(11)

In these expressions we have used the abbreviations

✏ ⌘


1 + 2(1 + ⌧) tan2

✓
✓f
2

◆��1

(12)

and

⌧ ⌘
Q2

4m2
p

. (13)

According to Eq. (7), APV is proportional to Q2. In
Fig. 5 we show the dependence of APV on ✓f for Ei =
155 MeV, which equals the beam energy to be used in
the P2 experiment. The picture also shows the separate
contributions

AQW ⌘
�GFQ2

4⇡↵em

p
2

· QW(p),

AEM
⌘

GFQ2

4⇡↵em

p
2

· FEM,

AA
⌘

GFQ2

4⇡↵em

p
2

· FA,

AS
⌘

GFQ2

4⇡↵em

p
2

· F S

(14)

to APV. One can see that at low Q2, APV is dominated
by AQW , while the hadronic contributions are small. A
measurement of APV at low Q2 is therefore sensitive to
the weak charge of the proton, QW(p).

2.1.2 The proton’s weak charge and the electroweak mixing

angle

Neglecting radiative corrections, the tree-level expression
for the proton’s weak charge in (7) is

QW(p) = 1 � 4 sin2 ✓W, (15)

/degfθ 
10 20 30 40 50 60 70 80 90

 A
/p

pb

1

10

210

310

 = 155.00 MeViE

PVA
WQ

A

EMA

AA

SA

Fig. 5. Dependence of APV on ✓f for Ei = 155MeV. Plotted
are the absolute values of the asymmetry and the contributions
by the proton’s weak charge and the nucleon form factors to
A

PV. For low values of Q
2, A

PV is dominated by the weak
charge contribution A

QW . At the central scattering angle of
the P2 experiment, APV(✓f = 35�) = �67.34 ppb.

where ✓W is the electroweak mixing angle or Weinberg-
angle. In the following we will often use the abbreviation
sW = sin ✓W. Since sin2 ✓W ⇡ 0.23, QW(p) is small in
the SM. From (15), using Gaussian error propagation, it
follows that

� sin2 ✓W
sin2 ✓W

=
1 � 4 sin2 ✓W

4 sin2 ✓W
·
�QW(p)

QW(p)
⇡ 0.09 ·

�QW(p)

QW(p)
.

(16)
Therefore, a precise measurement of QW(p) will result in
an approximately 10 times more precise determination of
the electroweak mixing angle. The weak charge of the pro-
ton is therefore highly sensitive to the electroweak mixing
angle.

Even small corrections to sin2 ✓W may modify QW(p)
significantly. A wide range of beyond-SM e↵ects can lead
to such corrections. They need to be disentangled from SM
radiative corrections. Higher-order corrections to APV will
be discussed later in Sect. 6.

2.2 Achievable precision in the determination of the
weak mixing angle

In order to predict the achievable precision in the deter-
mination of sin2 ✓W, error propagation calculations based
on the Monte Carlo method have been carried out. The
goal of these calculations was to determine the achiev-
able uncertainty �s2W as a function of the beam energy
Ebeam, the central electron scattering angle ✓̄f and the
acceptance of the azimuthally symmetric detector in ✓f,
denoted �✓f ⌘ [✓̄f � �✓f/2, ✓̄f + �✓f/2]. In the following, the
method used to calculate �s2W will be discussed and re-
sults of the calculations will be presented. Based on these
results, the beam energy and detector acceptance to be
used in the P2 experiment are chosen.

Enhanced sensitivity to WMA

No gain in precision but much easier to measure experimentally
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Fig. 24. CAD drawing of the experimental setup which has been implemented in the Geant4 simulation using CADMesh.

through matter with a computer. The simulation of the
physics processes involved is based on Monte Carlo meth-
ods, where the di↵erential cross sections are interpreted as
probability density distributions, which are used to sample
the relevant kinematic variables of the particles.

The purpose of the experiment’s simulation is to en-
sure the feasibility of the QW(p) measurement with the
foreseen apparatus. In this section, the main aspects of
the Geant4 application will be discussed and results pre-
sented.

5.1.1 Geometry definition

The application employs an interface to Computer-Aided
Design (CAD) software for defining the geometrical ob-
jects the experimental apparatus is comprised of. CAD
software is a widely used designing and analyzing tool
in engineering science. The simulation of the P2 exper-
iment uses CADMesh [65] to import geometrical objects
created with CAD software into Geant4. For this purpose,
the surfaces of the objects under consideration are first
parametrized by applying a tessellation procedure and
then converted into a Geant4-native geometrical object.
The big advantage of this procedure is that engineering
studies can be performed using CAD applications and
the resulting geometrical shapes may be directly imported
into Geant4. Furthermore, implementing new and altering
existing parts of the apparatus using realistic, complex ge-
ometrical shapes is possible with a minimum of program-

ming e↵ort this way. The downside of using CADMesh as
compared to Geant4’s standard method of defining geom-
etry directly in the source code is that the runtime of the
application is slightly increased due to the higher num-
ber of surfaces resulting from the tessellation procedure.
However, the prolongation of runtime is a minor e↵ect and
easily outweighted by the benefits of the CAD interface,
especially when using multiple CPU cores in parallel to
perform the simulation.

Figure 24 shows a CAD drawing of the experimental
setup, which has been implemented in the simulation using
CADMesh. The beam electrons enter the scattering cham-
ber’s vacuum through the final part of the beamline and
interact with the `H2 target. Both target and scattering
chamber are contained within a superconducting solenoid
that generates a magnetic field of Bz ⇡ 0.6 T along the
beam axis. The beam electrons, which have been scattered
o↵ protons in the target, pass a Kevlar window which sep-
arates the vacuum of the scattering chamber from the he-
lium filled chamber that contains the tracking detectors.
The tracking detectors will be used to reconstruct the Q2

of the detected electrons and are described in section 5.5.
After passing the tracking system, the electrons are de-
tected in a Cherenkov ring detector for the measurement
of the parity-violating asymmetry.

P2 Setup
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compared with existing and forthcoming measurements.

momentum transfer will complement other high-precision
determinations, like those of the LEP and SLC experi-
ments at the Z pole. The P2 experiment may thus help
to resolve di↵erences between previous measurements, or
find interesting new e↵ects.

Extensions of the SM lead to modified predictions for
various observables, visible only in high-precision mea-
surements. For example, models with dark photons predict
a small shift of the running weak mixing angle at low mass
scales, i.e., a change of sin2 ✓W visible at P2, but not at the
Z-pole measurements. Other models, like supersymmetry,
lead to characteristic deviations for di↵erent observables
and only a combined analysis can reveal the type of new
physics. A convenient way to compare the reach of dif-
ferent observables to the mass scale, ⇤, of new physics
is based on a description with e↵ective 4-fermion opera-
tors. Following the convention that the relevant coupling
constant is normalized by g2 = 4⇡, one can estimate the
reach by ⇤2 = 8⇡

p
2/(GF�QW) where GF is the Fermi

constant and �QW the precision for the measurement of
the weak charge. At P2, the measurement of the weak
charge of the proton is expected to reach mass scales close
to 50 TeV [15]. Other targets, like 12C may increase this
limit even further.

Our understanding of the electroweak interactions will
improve considerably by the forthcoming high-precision
experiments. If completed, these experiments will allow us
to combine a precision measurement of the weak charge,
as it has been accomplished by the QWeak collaboration
at JLab and as it is aimed for with a factor 3 improved ac-
curacy by the future P2 experiment presented here, with
a precision determination of the weak charge of the elec-
tron, as it is aimed for by the MOLLER experiment at
JLab, and with a precision measurement of the ratio of
u- and d-quark weak charges. We will then have a handle
to distinguish extensions of the SM, which contribute in
di↵erent ways to these experiments.

The Mainz MESA electron accelerator with the P2 ex-
perimental facility for parity-violation experiments opens
a door to a rich parity-violation measurement program
including di↵erent targets and kinematics. This is partly
described in the Sect. 7. This research program has its
roots in discussions at a workshop at MIT, organised by
MIT, JLab, and Mainz in 2013. For more information,
see [16].

The second experimental facility at MESA is MAGIX.
It will be equipped with two magnetic spectrometers and
a hydrogen cluster jet target. MAGIX has a rich program
in nucleon and nuclear physics, including measurements
of the proton radius, the electromagnetic form factors of
the nucleon, measurements of nuclear cross sections rele-
vant for open questions in astrophysics, and dark photon
searches in scattering and in a beam dump experiment.
Also the MAGIX research program was discussed at the
aforementioned MIT workshop.

This manuscript is organized as follows: In Section 2
we describe how – and how accurate – we can extract the
weak mixing angle from the measurement of the parity-
violating cross section asymmetry. In Section 3 we describe
the new MESA accelerator which will be installed in a
new accelerator hall from 2020 on. This Section also de-
scribes the polarimetry at MESA as well as the control
of helicity-correlated and uncorrelated beam fluctuations.
For the measurement proposed here, a liquid hydrogen
target with the lowest possible level of density fluctua-
tions (10 ppm in 4ms) from boiling in the volume of the
`H2 or from other sources will represent one of the center-
pieces. The design approach, the method to calculate the
density fluctuations beforehand and the experience from
the design of the `H2 target at the former QWeak ex-
periment are described in Sect. 4. The P2 spectrometer,
consisting of the `H2 target, the large solenoid magnet, the
results of the full Geant4 simulations of the spectrometer,
the integrating Cherenkov detectors, the high-resolution
ADC system for the read-out as well as the tracking de-
tector is presented in Sect. 5. The new level of experi-
mental accuracy required in the past, and still requires,
corresponding theory e↵orts in order to get e↵ects from
QED corrections, box graph and hadronic uncertainties
and other electroweak radiative corrections under control.
The relevant recent theory work is described in Sect. 6.
The P2 experimental facility for parity-violating electron
scattering allows for a rich measurement program, like an
additional backward-angle measurement to further reduce
the uncertainty from the axial form factor and the con-
tribution from strangeness to the magnetic form factor.
Both are not sizeable quantities, but still have large er-
ror bars. Another example is an additional measurement
with a 12C target. This allows for an even more sensitive
search for beyond Standard Model physics. A very sensi-
tive measurement of the neutron skin thickness in lead is
possible with the P2 spectrometer as well. This exciting
further physics program at the P2 experimental facility is
described in Sect. 7. The manuscript presented here closes
with a summary.

1-loop radiative corrections: running WMADominik Becker et al.: The P2 Experiment 49

tree-level is related to the weak mixing angle, QW(p) =
1 � 4 sin2 ✓W .

The parity-violating asymmetry measures the di↵er-
ence between the cross sections for electrons with opposite
helicities,

APV =
|M

+
ep|

2
� |M

�
ep|

2

|M
+
ep|

2 + |M
�
ep|

2
, (74)

and for Q2
⌧ m2

Z it is a small quantity which arises from
the interference of virtual � and Z exchange. Evaluating
this asymmetry using Eq. (73) for very low Q2 and intro-
ducing the Fermi constant

GF =
⇡↵em

p
2m2

W sin2 ✓W
, (75)

we obtain

APV(Q2
! 0) = �

GFQ2

4⇡
p

2↵em

QW(p). (76)

The direct proportionality between the PV asymmetry
and the proton’s weak charge constitutes the basis of the
P2 experiment.

To match the precision of the experimental measure-
ment of APV, one has to go beyond the tree-level ap-
proximation and include radiative corrections described
by Feynman diagrams with loops. They generically scale
as ↵em/⇡ = O(10�3), but may be enhanced by logarithms
or large numerical factors, as, e.g., in the case of the WW
box. Moreover, box diagrams are in general functions of
two kinematical variables, Ei and Q2, which requires ad-
ditional caution when relating the PV asymmetry to the
proton’s weak charge.

We follow Refs. [91,92] to define the weak charge as

Q1-loop
W (p) = lim

Ei!0
lim

Q2!0

APV

A0
(77)

with A0 = �GFQ2/(4
p

2⇡↵em).
The measurement of the PV asymmetry in PVES real-

ized at finite energy Ei and finite momentum transfer Q2

can be cast in the following form that generalizes Eq. (7)
to include one-loop e↵ects,

APV = A0

h
Q1-loop

W (p) � F (Ei, Q
2)

+�⇤(Ei, Q
2) � �⇤(0, 0)

⇤
, (78)

where, for the sake of completeness, we keep the kine-
matically suppressed term F (Ei, Q2) introduced earlier in
Eq. (7).

The one-loop SM result for QW (p) has been formulated
in Ref. [93] in the MS scheme, and Eq. (15) is replaced by

Q1-loop
W (p) = (⇢nc+�e)

⇣
1 � 4 sin2 ✓̂W (µ) + �0

e

⌘
+�⇤(0, 0)

(79)
where ✓̂W (µ) is the weak mixing angle defined in the MS
scheme at scale µ, where µ ' 0 for the P2 experiment.
In this equation, the Veltman parameter ⇢nc is a univer-
sal correction which renormalizes the ratio of the neutral

f f

f f

W W

Fig. 69. Feynman graphs of universal and non-universal elec-
troweak corrections which lead to an energy scale dependence
of sin ✓W,e↵.

and charged current strengths at low energies. �e and �0
e

are small, non-universal corrections at the electron vertex.
The term �⇤ in Eq. (79) represents the contributions to
QW(p) from box graphs and is the subject of the next
subsection.

The scale dependence of the MS weak mixing angle
has been studied in Ref. [94] (see also [95] for a recent up-
date). The value of sin2 ✓̂W (µ) at low momentum transfer
is related by

sin2 ✓̂W (0) = (mZ) · sin2 ✓̂W (mZ), (80)

to its value at the Z pole (with (mZ) = 1.0317 for the
present values of the SM parameters).

In the MS scheme the scale dependence of the weak
mixing angle is determined by the renormalization group
evolution of the SM coupling constants. Other definitions
of a scale-dependent e↵ective weak mixing angle exist in
the literature, see for example [96]. They are based on a
redefinition of sin ✓W which absorbs universal and partly
non-universal one-loop corrections into an e↵ective weak
mixing angle sin ✓W,e↵. Figure 69 shows some typical Feyn-
man diagrams contributing to the scale dependence of the
e↵ective weak mixing angle.

6.1 Box graph and hadronic uncertainties

The one-loop result of Eqs. (78, 79) singles out the two-
boson exchange contributions,

�⇤ ⌘ ⇤WW + ⇤ZZ + ⇤�Z + ⇤�� , (81)

representative Feynman diagrams of which are displayed
in Fig. 70. For each box graph, only the real part con-
tributes and ⇤ab is understood as the real part of the
corresponding diagram here and in the following. The box
graphs are specific and have to be added as separate con-
tributions since they depend on both the 4-momentum

Fig. 70. Electroweak box corrections to parity-violating ep
scattering. Shown are, from left to right, WW -, ZZ-, �Z-
and ��-exchange diagrams, respectively. Contributions with
crossed boson lines are not displayed. The grey blob at the
lower part of each diagram denotes inclusive hadronic interme-
diate states.
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1 Introduction and physics motivation

In the Standard Model of Elementary Particle Physics
(SM) the weak interaction is the only force that violates
parity. Over the past 30 years, the measurement of parity
violation in weak interactions has been a well established
experimental technique in atomic as well as particle and
nuclear physics. The violation of parity had been postu-
lated by the theoreticians Lee & Yang in 1956 [1]. It was
proven to be an experimental fact in nuclear physics in
1957 in the course of the Wu experiment [2] by a care-
ful analysis of the beta-decay of 60Co. In addition Gar-
win, Lederman and Weinrich had shown that the µ-decay
violates parity [3]. As first pointed out by Zeldovich in
1959 [4], the existence of a neutral partner of the charged
weak interaction responsible for �-decay, should lead to
observable parity violation in atomic physics and in elec-
tron scattering. These ideas preceded the development of
the electroweak theory, and were confirmed experimen-
tally by Prescott in electron scattering at SLAC [5] and
in cesium atoms by Bouchiat [6]. In the rest of this article
we concentrate on parity violation in electron scattering.

Since then, many parity-violating electron scattering
experiments have been performed, all summarized in Fig. 1.
Prescott’s experiment was followed by an experiment of
the Mainz group of Otten and Heil [7] and another one at
MIT-Bates on a 12C target [8]. Their experimental tech-
niques were pioneering and are used still today. They were
also ground-breaking in establishing parity-violation and
making the first measurements of SM parameters from
electron scattering (see the green points in Fig. 1 labeled
“Pioneering”).

It was first pointed out by Kaplan and Manohar in
1988 [9] that one can get access to a possible contribu-
tion of strange quarks to the electromagnetic form factors
of the nucleon by measuring its weak electric and mag-
netic form factors in parity-violating electron scattering.
This triggered a whole series of parity-violation electron
scattering experiments at the MIT-Bates accelerator, at
the MAMI accelerator in Mainz as well as at JLab’s CE-
BAF in Newport News (see [10–14] for review articles,
blue points in Fig. 1 labeled “Strange Quark Studies”).
An accurate measurement of the neutron distribution in
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Fig. 1. Overview over past and future electron scattering
experiments. From the very early measurements at SLAC,
at Bates and in Mainz up to today, parity-violating electron
scattering has become a well established technique to explore
hadron physics, nuclear physics and particle physics, depend-
ing on kinematics and target. The point labelled MESA-P2
is the P2 experiment at the MESA accelerator employing a
`H2-Target. The point labeled MESA-12C denotes the P2 ex-
perimental facility with a 12C target.

heavier nuclei and especially the so called “neutron skin”
can be obtained from parity-violating electron scattering
on heavy nuclei like lead. The associated parity-violation
experiments are labeled “Neutron Radius” in Fig. 1. In
recent years, proposals have been worked out, to measure
the weak charge of the proton, the electron or the ra-
tio of quark charges. Those are labeled “Standard Model
Tests” in Fig. 1. The parity-violating electron scattering
experiments at the new Mainz MESA accelerator, are the
subject of this manuscript.

In the P2 experiment, parity-violation in elastic elec-
tron-proton scattering at low momentum transfer, Q2, will
provide experimental access to the proton’s weak charge
QW(p), the analog of the electric charge which determines
the strength of the neutral-current weak interaction. In
the SM, QW(p) is related to the electroweak mixing an-
gle, sin2 ✓W. The weak charge of the proton is particularly
interesting, compared to that of other nuclei, since it is
suppressed in the SM and therefore sensitive to hypothet-
ical new physics e↵ects. The SM also provides a firm pre-
diction for the energy-scale dependence of the running of
sin2 ✓W. This scale dependence, defined in the MS scheme,
is shown in Fig. 2 together with the anticipated sensitivity
of the measurement of the weak mixing angle at P2 com-
pared to other forthcoming determinations (blue points)
and existing measurements (red points).

A precise measurement of the weak charge provides,
therefore, a precision test of the SM and its predictions.
The envisaged measurement of the P2 experiment at low

PVES @ MESA: Impact

52 Dominik Becker et al.: The P2 Experiment

-0.72 -0.715 -0.71 -0.705

[2 geu - ged]AV

0.485

0.49

0.495

0.5

[g
eu

 +
 2

 g
ed

] A
V

P2 (1.7% H asymmetry)
P2 (0.3% C asymmetry)
2018 (all data)
2018 + P2 (H target)
2018 + P2 (H + C targets)
Standard Model prediction

Fig. 73. Quark-vector and electron-axial-vector couplings,
where the ordinate corresponds to the valence quark com-
bination of the neutron, and the abscissa to the charge
weighted sum of the up and down quarks entering the photon-
interference term in polarized deep-inelastic scattering (DIS).
The solid and dashed lines indicate the constraints of antici-
pated P2 measurements on hydrogen and carbon, respectively.
The blue contour shows the present constraints from atomic
parity violation in Cs and Tl, DIS (SLAC and JLab) and the
QWeak experiment. The cyan-colored contour adds the future
hydrogen measurement at P2 (assuming the central value re-
mains unchanged), while the red contour includes in addition
the possible P2 carbon measurement. The Standard Model pre-
diction is also shown.

boson predicted by SO(10) Grand Unified Theories (in the
absence of gauge kinetic mixing). The di↵erent pre-factors
in this parametrization show the complementarity of the
di↵erent weak charges to physics beyond the Standard
Model. Low-Q2 measurements also have unique sensitiv-
ity to certain beyond the Standard Model scenarios such
as those involving so-called dark Z bosons [110], which
are light (on the order of tens of MeV) and very weakly
coupled extra neutral gauge bosons which may mix with
the ordinary Z boson, and which may be parametrized by
taking X as a function of Q2.

One can also discuss the implications of weak charges
in a model-independent way. In the e↵ective field theory
picture, the Standard Model may be defined by the most
general Lagrangian consistent with gauge and Lorentz in-
variance built from the known particles up to dimension
four, while the weak charges probe specific (combinations
of) dimension six operators. In photon-interference ex-
periments only vector and axial-vector Lorentz structures
are important, and in the elastic regime the nucleus cou-
ples vector-like and parity-violation then forces the elec-
tron to enter axial-vector-like. Constraints on the quark-
vector and electron-axial-vector couplings are illustrated
in Fig. 73.

Fig. 74. Monte Carlo determination of the achievable precision
in sin2

✓W . Example graph for the simulated scattering angle
dependence of the relative precision of sin2

✓W at fixed beam
energy (150MeV) and detector acceptance angle (18�).

Fig. 75. Monte Carlo determination of the achievable preci-
sion in sin2

✓W . Best values of � sin2
✓W for a range of beam

energies and acceptance angles are shown.

7.1.1 Achievable precision

The achievable precision of sin2 ✓W was determined nu-
merically as described in section 2.2.1. The underlying
Eqs. (18) and (19) have been modified appropriately for
the case of scattering with a 12C target. The beam en-
ergy was varied in the range from 100 MeV to 300 MeV,
and we used a beam current of 150µA, a data taking time
of 2500 h, and for detector acceptance angles between 2�

and 20�. We assumed a beam polarization of 85 % with a
relative error of 0.3 %.

Figure 74 shows the achievable precision for a fixed
beam energy of 150 MeV and an acceptance angle of �✓f =
18� as a function of the average scattering angle ✓̄f. It
demonstrates that the total error in sin2 ✓W is dominated
by the contribution of the beam polarization uncertainty
(cyan) rather than by the statistical error (green).

Figure 75 summarizes the minimum values for the to-
tal error in sin2 ✓W for all simulated beam energies and
scattering angles. It shows that we can obtain a relative
error of 0.3% with high detector acceptance angles and
beam energies of 150 MeV. As the weak charge of the 12C

Experimental “hardness” Effective four-fermion operators

L = �GFp
2

X

q

[geqAV ē�
µ�5e q̄�µq + geqV Aē�

µe q̄�µ�5q]

10000 hours of data taking
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W on ✓̄f and Ebeam for �✓f = 20�.
In the region marked by the black curve, values of �s

2

W 
3.4⇥ 10�4 are achievable.

ing angle of ✓̄f = 35� and a detector acceptance �✓f = 20�.
Table 2 lists the results of an error propagation calcula-
tion for this choice of kinematic parameters along with the
error contributions stemming from the statistical uncer-
tainty of Aexp, the contribution of the beam polarization
as well as the contribution from helicity correlated beam
fluctuations. In order to extract the electroweak mixing
angle from the measured uncertainty, one has to take the
nucleon form factors and radiative corrections to the pro-
ton’s weak charge into account. The expected contribu-
tions to �s2W due to uncertainties of the form factors and
of ⇤�Z are also listed in Tab. 2.
The expected value of the parity-violating asymmetry is

hAexp
i = �39.94 ppb (37)

with an uncertainty of

�Aexp = 0.56 ppb (38)

in 1 ⇥ 104 h of measurement time. This corresponds to a
relative uncertainty of

�Aexp

hAexpi
= 1.40 %. (39)

The expected uncertainty for the weak mixing angle is

�s2W = 3.3 ⇥ 10�4 (40)

corresponding to a relative uncertainty of

�s2W
hs2Wi

= 0.14 % (41)

for s2W and

�QW(p)

QW(p)
= 1.83 % (42)

for the proton’s weak charge.

Ebeam 155MeV

✓̄f 35�

�✓f 20�

hQ2iL=600mm, �✓f=20
� 6⇥ 10�3 (GeV/c)2

hAexpi �39.94 ppb

(�A
exp)Total 0.56 ppb (1.40%)

(�A
exp)Statistics 0.51 ppb (1.28%)

(�A
exp)Polarization 0.21 ppb (0.53%)

(�A
exp)Apparative 0.10 ppb (0.25%)

hs2Wi 0.231 16

(�s
2

W)Total 3.3⇥ 10�4 (0.14%)

(�s
2

W)Statistics 2.7⇥ 10�4 (0.12%)

(�s
2

W)Polarization 1.0⇥ 10�4 (0.04%)

(�s
2

W)Apparative 0.5⇥ 10�4 (0.02%)

(�s
2

W)⇤�Z
0.4⇥ 10�4 (0.02%)

(�s
2

W)nucl. FF 1.2⇥ 10�4 (0.05%)

hQ2iCherenkov 4.57⇥ 10�3 (GeV/c)2

hAexpiCherenkov �28.77 ppb

Table 2. Results of the error propagation calculation per-
formed for the design parameters of the P2 experiment.
hQ2iL=600mm, �✓f=20

� is the expected value of Q2 after aver-
aging over the target’s length L and the acceptance in the
electron scattering angle ✓f and has been calculated in anal-
ogy to Eq. (19). The values given in round brackets are the
relative errors with regard to the expected value. hQ2iCherenkov

and hAexpiCherenkov are the expected values obtained if elec-
trons scattered with ✓f < ✓̄f � �✓f/2 and hitting the Cherenkov
detector are taken into account (see Sect. 5.1 for details).

2.2.4 Scattering o↵ the target entry and exit windows

Beam electrons which scatter o↵ the windows of the target
cell are an additional source of uncertainty. This e↵ect is
briefly discussed here and will be included in the error
propagation calculation (see Sect. 2.2.3).

Omitting all other sources of background and beam
polarization, the measured asymmetry consists of two con-
tributions:

Aexp = (1 � f) · hAPV
i + f · hAAlu

i (43)

where AAlu is the parity-violating asymmetry in eAl scat-
tering and f is the dilution factor

f =
YeAl

Yep + YeAl
(44)

YeAl and Yep is the yield of scattering events o↵ aluminum
and of elastic scattering o↵ the proton, respectively. This
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Axial form factor of the proton. The axial form factor of
the proton Gp,Z

A can be determined from results of parity-
violation electron scattering experiments with `H2- and
`D2-targets, which have been carried out at backward
scattering angles at the same values of Q2. Appropriate
measurements have been done by the SAMPLE, G0 and
A4 Collaborations [29,23,25,30].

For the purpose of the error propagation calculations
presented in this section, Gp,Z

A has been parametrized as
suggested by Musolf et al. in Ref. [10]:

Gp,Z
A (Q2) = 0 ·

✓
1 +

Q2

2
1

◆�2

(35)

This parametrization is used together with the parameter
values given in [10] and listed in Tab. 23.

For the error propagation calculations presented in this
section it has been assumed that the global uncertainty
of the parametrization given by Eq. (35) can be reduced
by a factor of 10. This reduction can be achieved by a
backward-angle measurement of Gp,Z

A (see Sect. 7.3).
The requirement of reducing the uncertainties of Gs

E,

Gs
M and Gp,Z

A in order to achieve the envisaged precision in
the determination of sin2 ✓W renders the form factor mea-
surement within the scope of the P2 experiment manda-
tory.

Isospin breaking electromagnetic form factors. The para-
metrizations of the isospin-breaking form factors Gud

E and
Gud

M have been done using the dataset quoted in the bach-
elor thesis of P. Larin [31]. Larin has extracted data from
the predictions for the Q2-dependence of the form factors
given in [32]. In order to parametrize Gud

E and Gud
M , poly-

nomials of degree 4 have been used such that

Gud
E,M =

4X

i=0

E,M
i · Q2i. (36)

The fits of these functions to the data given in Ref. [31]
result in the parameter values collected in Tabs. 24 and
25.

2.2.3 Results of the error propagation calculations

An extensive scan in the mean values of Ebeam, ✓̄f and �✓f
has been performed using the input parameters discussed
in the preceding section in order to determine suitable
values of these variables to carry out the P2 experiment. In
this section, selected results are presented and discussed.

Figure 6 shows the dependence of �s2W on the cen-
tral electron scattering angle ✓̄f for Ebeam = 155MeV and
�✓f = 20�. For 17�  ✓̄f  55�, the total uncertainty is
dominated by the statistical uncertainty of the measured
asymmetry Aexp. For scattering angles ✓̄f � 40� the contri-
butions from Gs

E,M and Gp,Z
A become more significant, be-

cause the form factors’ contribution to the asymmetry in-
creases with Q2. The increase of the form factor contribu-
tions and the decrease of the statistical error and the con-
tribution stemming from Aapp with increasing ✓̄f lead to a
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Fig. 6. Dependence of �s
2

W on the central scattering angle
✓̄f for Ebeam = 155MeV and �✓f = 20�. The total uncertainty
�s

2

W of the electroweak mixing angle is shown in black and
other dominating error contributions in color.

minimum of �s2W at ✓̄f ⇡ 35�, where �s2W ⇡ 3.4 ⇥ 10�4.

Figure 7 shows the dependence of �s2W on ✓̄f for Ebeam =
155 MeV and di↵erent choices of �✓f. In general, a larger
value of �✓f leads to a larger N and therefore to a smaller
statistical uncertainty of Aexp. Since the statistical un-
certainty of Aexp is the dominant contribution to �s2W,
the achievable uncertainty in the electroweak mixing an-
gle decreases with rising �✓f. The larger the acceptance,
the smaller is the e↵ect of increasing �✓f on �s2W, be-
cause contributions by the nucleon form factors become
more significant at larger scattering angles. To keep the
nucleon form factors’ contributions reasonably small, we
have decided to use �✓f  20�.

Figure 8 shows the dependence of �s2W on Ebeam and
✓̄f for �✓f = 20�. Values of �s2W  3.4 ⇥ 10�4 can be
achieved in the region marked by a black curve.

To carry out the P2 experiment within the envisaged
measurement time of T = 10 ⇥ 104 h, we have decided to
use a beam energy of Ebeam = 155MeV, a central scatter-
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tree-level is related to the weak mixing angle, QW(p) =
1 � 4 sin2 ✓W .

The parity-violating asymmetry measures the di↵er-
ence between the cross sections for electrons with opposite
helicities,

APV =
|M

+
ep|

2
� |M

�
ep|

2

|M
+
ep|

2 + |M
�
ep|

2
, (74)

and for Q2
⌧ m2

Z it is a small quantity which arises from
the interference of virtual � and Z exchange. Evaluating
this asymmetry using Eq. (73) for very low Q2 and intro-
ducing the Fermi constant

GF =
⇡↵em

p
2m2

W sin2 ✓W
, (75)

we obtain

APV(Q2
! 0) = �

GFQ2

4⇡
p

2↵em

QW(p). (76)

The direct proportionality between the PV asymmetry
and the proton’s weak charge constitutes the basis of the
P2 experiment.

To match the precision of the experimental measure-
ment of APV, one has to go beyond the tree-level ap-
proximation and include radiative corrections described
by Feynman diagrams with loops. They generically scale
as ↵em/⇡ = O(10�3), but may be enhanced by logarithms
or large numerical factors, as, e.g., in the case of the WW
box. Moreover, box diagrams are in general functions of
two kinematical variables, Ei and Q2, which requires ad-
ditional caution when relating the PV asymmetry to the
proton’s weak charge.

We follow Refs. [91,92] to define the weak charge as

Q1-loop
W (p) = lim

Ei!0
lim

Q2!0

APV

A0
(77)

with A0 = �GFQ2/(4
p

2⇡↵em).
The measurement of the PV asymmetry in PVES real-

ized at finite energy Ei and finite momentum transfer Q2

can be cast in the following form that generalizes Eq. (7)
to include one-loop e↵ects,

APV = A0

h
Q1-loop

W (p) � F (Ei, Q
2)

+�⇤(Ei, Q
2) � �⇤(0, 0)

⇤
, (78)

where, for the sake of completeness, we keep the kine-
matically suppressed term F (Ei, Q2) introduced earlier in
Eq. (7).

The one-loop SM result for QW (p) has been formulated
in Ref. [93] in the MS scheme, and Eq. (15) is replaced by

Q1-loop
W (p) = (⇢nc+�e)

⇣
1 � 4 sin2 ✓̂W (µ) + �0

e

⌘
+�⇤(0, 0)

(79)
where ✓̂W (µ) is the weak mixing angle defined in the MS
scheme at scale µ, where µ ' 0 for the P2 experiment.
In this equation, the Veltman parameter ⇢nc is a univer-
sal correction which renormalizes the ratio of the neutral

f f

f f

W W

Fig. 69. Feynman graphs of universal and non-universal elec-
troweak corrections which lead to an energy scale dependence
of sin ✓W,e↵.

and charged current strengths at low energies. �e and �0
e

are small, non-universal corrections at the electron vertex.
The term �⇤ in Eq. (79) represents the contributions to
QW(p) from box graphs and is the subject of the next
subsection.

The scale dependence of the MS weak mixing angle
has been studied in Ref. [94] (see also [95] for a recent up-
date). The value of sin2 ✓̂W (µ) at low momentum transfer
is related by

sin2 ✓̂W (0) = (mZ) · sin2 ✓̂W (mZ), (80)

to its value at the Z pole (with (mZ) = 1.0317 for the
present values of the SM parameters).

In the MS scheme the scale dependence of the weak
mixing angle is determined by the renormalization group
evolution of the SM coupling constants. Other definitions
of a scale-dependent e↵ective weak mixing angle exist in
the literature, see for example [96]. They are based on a
redefinition of sin ✓W which absorbs universal and partly
non-universal one-loop corrections into an e↵ective weak
mixing angle sin ✓W,e↵. Figure 69 shows some typical Feyn-
man diagrams contributing to the scale dependence of the
e↵ective weak mixing angle.

6.1 Box graph and hadronic uncertainties

The one-loop result of Eqs. (78, 79) singles out the two-
boson exchange contributions,

�⇤ ⌘ ⇤WW + ⇤ZZ + ⇤�Z + ⇤�� , (81)

representative Feynman diagrams of which are displayed
in Fig. 70. For each box graph, only the real part con-
tributes and ⇤ab is understood as the real part of the
corresponding diagram here and in the following. The box
graphs are specific and have to be added as separate con-
tributions since they depend on both the 4-momentum

Fig. 70. Electroweak box corrections to parity-violating ep
scattering. Shown are, from left to right, WW -, ZZ-, �Z-
and ��-exchange diagrams, respectively. Contributions with
crossed boson lines are not displayed. The grey blob at the
lower part of each diagram denotes inclusive hadronic interme-
diate states.

for C-12 - need a reliable estimate of 𝛾Z-box including nuclear structure

- work in progress with Jens Erler and H. Spiesberger
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transfer Q2 and the electron energy. Other one-loop cor-
rections depend on Q2 only and can therefore be factor-
ized and partly absorbed into universal correction factors
as shown above in Eq. (79).

It has been observed in Refs. [97–99] that the energy
dependence of the heavy-boson box graphs associated with
WW and ZZ exchange induces corrections of order GFE2

i ,
rather than ⇠ ↵em/⇡. For electron energies up to a few
GeV these energy-dependent contributions can be safely
neglected. The constant terms, however, are numerically
large. Since they are dominated by contributions from
loop momenta of the order of mZ , their calculation in the
framework of perturbation theory is safe with a reliable
uncertainty estimate [93].

The �� box does not contain large logarithms and is
known to vanish at small momentum transfer as it can
only renormalize the charge radius of the proton but not
its charge. Since it only corrects the parity-conserving
part of the amplitude, its e↵ect on the PV asymmetry
will also be multiplied by the proton’s weak charge. All
in all, it is natural to expect a correction to APV of the
order of (↵em/⇡)(Q2/E2

i )QW(p) due to ��-box graphs.
This amounts to a negligible correction of order O(10�5)
for the kinematical conditions at the P2 experiment that
can be accommodated in the uncertainty associated with
the kinematically suppressed correction term F (Ei, Q2).
With these observations, the energy dependence of the
boxes present in Eq. (78) reduces to that of the �Z box,

�⇤(Ei, Q
2) � �⇤(0, 0) = ⇤�Z(Ei, Q

2) �⇤�Z(0, 0). (82)

The �Z-box graph contains a large logarithm log m2
Z

⇤2

where ⇤ ⇠ 1 GeV is a typical hadronic mass scale. The co-
e�cient in front of this large logarithm is energy-indepen-
dent up to corrections ⇠ GFE2

i and can be calculated pre-
cisely using quark sum rules [97,98]. The presence of the
hadronic mass scale ⇤ signals the sensitivity of the �Z box
to the hadronic structure, and this sensitivity was used to
estimate the hadronic structure-related uncertainty [93].
However, early studies described in the references given
above had assumed that the energy dependence of the �Z
box was negligible, ⇠ GFE2

i , following the pattern of the
heavy boson boxes.

Consecutively, the energy dependence of the �Z box
was addressed in Ref. [100] in the framework of forward
dispersion relations. It was shown that the energy depen-
dence of ⇤�Z is much more significant than anticipated.
It has been the subject of active scrutiny in the theory
community [91,101–103,18,104]. The dispersive method
for calculating ⇤�Z is per se model-independent, relating
the �Z box to an integral over measurable unpolarized in-
terference structure functions F �Z

1,2,3. Nonetheless, due to
the lack of reliable experimental data for these structure
functions one is forced to introduce model assumptions to
define the required input in unmeasured regions. While
di↵erent groups agree on the central value of ⇤�Z(Ei)
within errors, this model dependence leads to a discrep-
ancy in the uncertainty estimate.

In Fig. 71 the energy dependence of the �Z box is
shown. It is obtained as a sum of its vector part ⇤V

�Z
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Fig. 71. Energy dependence of the �Z box graph, Eq. (82) at
Q

2 = 0, and its uncertainty band.

calculated in Ref. [18] and its axial-vector part, ⇤A
�Z ob-

tained in Ref. [105,103,106] at zero momentum transfer.
The respective uncertainties are added in quadrature. The
extrapolation from the actual value of Q2 corresponding
to the kinematics at P2 down to Q2 = 0 is done according
to Ref. [91]. Due to the tiny value of Q2

⇡ 0.0045 GeV2

this extrapolation leads to a numerically negligible e↵ect,
both on the central value and its uncertainty. For the kine-
matics at P2, the energy-dependent contribution amounts
to

⇤�Z(Ei = 155MeV, Q2 = 0) � ⇤�Z(0, 0)

= (1.06 ± 0.32) ⇥ 10�3 (83)

and the uncertainty is dominated by that due to the e↵ec-
tive axial charge of the nucleon seen by charged leptons,
also referred to as the anapole moment,

�⇤A
�Z = 0.27 ⇥ 10�3, (84)

�⇤V
�Z = 0.18 ⇥ 10�3. (85)

A measurement at backward angles as described in section
7.3 will allow to reduce the uncertainty due to the anapole
moment considerably, �⇤A

�Z ! 0.07⇥10�3. Assuming that
this precision goal is achieved, the energy-dependent cor-
rection from the �Z box will change to

⇤�Z(Ei = 155MeV, Q2 = 0) � ⇤�Z(0, 0)

= (1.06 ± 0.19) ⇥ 10�3 (86)

with a reduced uncertainty. This estimate was used in
Sect. 2, Tab. 2 in the summary of the uncertainty bud-
get.

6.2 QED corrections

Electromagnetic corrections are parity conserving and do
not a↵ect the proton’s weak charge. However, the relation

QweakMESA

At low energy uncertainty dominated 

by the proton’s anapole moment

To match exp. precision: full set of 1-loop RC

Universal corrections —> running

A few non-universal corrections (boxes)

𝛾Z-box special: 𝛾 sensitive to long-range part of interaction,

strong energy dependence MG, Horowitz 2009

MG, Horowitz, MJRM 2011 
MG, Spiesberger, Zhang 2016 
MG, Spiesberger 2016

MIKHAIL GORCHTEIN AND HUBERT SPIESBERGER PHYSICAL REVIEW C 94, 055502 (2016)

leads to

a0 = −(0.74 ± 1.38) × 10−6 GeV−2. (16)

The Q2-dependent axial form factor is assumed to follow a
dipole form,

Ga(Q2) = 1
(
1 + Q2/M2

A

)2 , (17)

where MA ∼ 1.02 GeV, consistent with the world PVES
data [19].

Interference of the PV vertex derived from Eq. (13) with the
PC electromagnetic vertex,

!µ
em(q) = F1(Q2)γ µ + F2(Q2)iσµβ qβ

2M
, (18)

with the Dirac and Pauli form factors F1,2 leads to the following
expression for the elastic contribution to the PV structure
function F

γ γ
3 ,

F
γ γ
3 = a0Ga(Q2)GM (Q2) 2MνQ2 δ(2Mν − Q2), (19)

where GM (Q2) = F1(Q2) + F2(Q2) is the nucleon magnetic
form factor. Inserting this expression for F

γ γ
3 into Eq. (10)

leads to the elastic contribution to Im !PV, el,

Im !PV, el
γ γ (E,t = 0) = 4πα2

2ME
a0

∫ 4M2E2

M2+2ME

0
dQ2GM (Q2)Ga(Q2)

(
2 − Q2

2ME

)
. (20)

The real part is obtained from a forward dispersion relation,

Re !PV, el
γ γ (E,t = 0) = 2

π
P

∫ ∞

0

E′dE′

E′2 − E2
Im !PV

γ γ (E′,t = 0)

= 4α2a0

ME

∫ ∞

0
dQ2GM (Q2)Ga(Q2)

[

ln
∣∣∣∣
E + EQ

E − EQ

∣∣∣∣ + Q2

2ME
ln

∣∣∣∣∣1 − E2

E2
Q

∣∣∣∣∣

]

. (21)

We have changed the order of integration and performed the
integral over E′ analytically, using the abbreviation EQ =
(Q2 +

√
Q2(Q2 + 4M2))/(4M). This result is infrared finite

and analogous to the expression for the elastic contribution to
!A

γZ .
The effect of including !PV, el

γ γ along with !A, el
γZ can easily

be obtained from the latter by a shift of the proton’s axial charge
GA → GA + δG

ep
A . This leads to a reduction of !A, el

γZ by
18%, accompanied by an uncertainty of 44% of the corrected
value of GA + δG

ep
A . We show the correction of the effective

weak charge of the proton resulting from these box-graph
contributions as a function of the electron energy in Fig. 3.
The discussion above shows in a transparent way how this
uncertainty originates from uncertainties in the data. This is
one of the important results of this work.

Our result can be compared to previous evaluations of the
elastic contribution to the !A

γZ correction. In Refs. [5,6], this

FIG. 2. A schematic representation of the elastic contribution to
the imaginary part of the two-boson exchange correction to the elastic
PVES amplitude. The left and right parts show the γZ and PV γ γ

contributions, respectively. The vertical dashed line cutting through
the diagrams indicates that the intermediate ep state is on-shell.

correction was evaluated at E = 0 and applied in an analysis
of PV in atoms. The result was adopted without further
modification for PVES in Ref. [7]. The authors of Ref. [23]
observed, however, a considerable energy dependence of !A

γZ ,
as is visible in the energy behavior of the black curve of Fig. 3.
Their result corresponds to the one-loop accuracy: Upon
cutting the left graph of Fig. 2, the subgraphs corresponding to
the Z0 and γ exchanges are taken at tree level. The parameters
of the SM that serve as input for a one-loop calculation may be
significantly modified when one-loop effects are added on top
of the tree-level amplitudes. We note here that the inclusion of
such higher-order corrections formally exceeds the one-loop
accuracy, yet the choice to include one-loop corrections in
the determination of the values of SM parameters is often
made. This does not pose a problem per se because once
the full two-loop result is obtained, the respective two-loop
corrections included in the one-loop result can be removed to
avoid double counting.

Recently, Blunden et al. [12] proposed such a prescription
taking into account the one-loop running of sin2 θW and α.
This results in a smaller value of ge

V and a reduction of the
previous result of Marciano and Sirlin [5,6] by 17%. Note
that because of the presence of nucleon form factors, the loop
integral is only sensitive to ge

V (Q2) at Q2 " 1 GeV2 where
the scale dependence is negligible, ge

V (Q2) ≈const. Blunden
et al.’s result is fairly well represented by the red curve in
Fig. 3. The choice made in Ref. [12] is not unique but is a
viable one, as explained above.

Another possible choice would be to use the full one-loop
result for the elastic PVES amplitude, i.e., for the left side of the
box diagrams shown in Fig. 2. This would include the tree-level
diagram, the running of sin2 θW and of α, plus further terms,
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where
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is given by the proton’s electric and magnetic form factors
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M as well as the neutron’s electric and mag-

netic form factors Gn,�
E and Gn,�

M . FA(Ei, Q2) depends on

the proton’s axial form factor Gp,Z
A and is denoted as
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�
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F S(Q2) depends on the nucleon’s strange electric and mag-
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In these expressions we have used the abbreviations

✏ ⌘


1 + 2(1 + ⌧) tan2

✓
✓f
2

◆��1

(12)

and

⌧ ⌘
Q2

4m2
p

. (13)

According to Eq. (7), APV is proportional to Q2. In
Fig. 5 we show the dependence of APV on ✓f for Ei =
155 MeV, which equals the beam energy to be used in
the P2 experiment. The picture also shows the separate
contributions

AQW ⌘
�GFQ2
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2
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AEM
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4⇡↵em

p
2

· FEM,
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p
2

· FA,
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GFQ2

4⇡↵em

p
2

· F S

(14)

to APV. One can see that at low Q2, APV is dominated
by AQW , while the hadronic contributions are small. A
measurement of APV at low Q2 is therefore sensitive to
the weak charge of the proton, QW(p).

2.1.2 The proton’s weak charge and the electroweak mixing

angle

Neglecting radiative corrections, the tree-level expression
for the proton’s weak charge in (7) is

QW(p) = 1 � 4 sin2 ✓W, (15)

/degfθ 
10 20 30 40 50 60 70 80 90

 A
/p

pb

1

10

210

310

 = 155.00 MeViE

PVA
WQ

A

EMA

AA

SA

Fig. 5. Dependence of APV on ✓f for Ei = 155MeV. Plotted
are the absolute values of the asymmetry and the contributions
by the proton’s weak charge and the nucleon form factors to
A

PV. For low values of Q
2, A

PV is dominated by the weak
charge contribution A

QW . At the central scattering angle of
the P2 experiment, APV(✓f = 35�) = �67.34 ppb.

where ✓W is the electroweak mixing angle or Weinberg-
angle. In the following we will often use the abbreviation
sW = sin ✓W. Since sin2 ✓W ⇡ 0.23, QW(p) is small in
the SM. From (15), using Gaussian error propagation, it
follows that

� sin2 ✓W
sin2 ✓W

=
1 � 4 sin2 ✓W

4 sin2 ✓W
·
�QW(p)

QW(p)
⇡ 0.09 ·

�QW(p)

QW(p)
.

(16)
Therefore, a precise measurement of QW(p) will result in
an approximately 10 times more precise determination of
the electroweak mixing angle. The weak charge of the pro-
ton is therefore highly sensitive to the electroweak mixing
angle.

Even small corrections to sin2 ✓W may modify QW(p)
significantly. A wide range of beyond-SM e↵ects can lead
to such corrections. They need to be disentangled from SM
radiative corrections. Higher-order corrections to APV will
be discussed later in Sect. 6.

2.2 Achievable precision in the determination of the
weak mixing angle

In order to predict the achievable precision in the deter-
mination of sin2 ✓W, error propagation calculations based
on the Monte Carlo method have been carried out. The
goal of these calculations was to determine the achiev-
able uncertainty �s2W as a function of the beam energy
Ebeam, the central electron scattering angle ✓̄f and the
acceptance of the azimuthally symmetric detector in ✓f,
denoted �✓f ⌘ [✓̄f � �✓f/2, ✓̄f + �✓f/2]. In the following, the
method used to calculate �s2W will be discussed and re-
sults of the calculations will be presented. Based on these
results, the beam energy and detector acceptance to be
used in the P2 experiment are chosen.
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2 Determining the Weak Mixing Angle from
Parity Violating Electron Scattering

In this chapter, the experimental method for measuring
the proton’s weak charge QW(p) is presented and the
achievable precision in the determination of the electroweak
mixing angle sin2 ✓W is discussed.

2.1 Experimental method

For the P2 experiment, MESA will provide a beam of lon-
gitudinally polarized electrons. The beam energy will be

Ebeam = 155MeV (1)

and the beam current is scheduled to be

Ibeam = 150µA. (2)

The helicity of the beam electrons will be switched with
a frequency f ⇠ 1 kHz. The beam electrons impinge on
an unpolarized `H2-target with a length of L = 600mm
oriented along the beam direction. The electrons, which
are scattered elastically o↵ the protons, are detected in an
azimuthally symmetric Cherenkov detector. Figure 3 il-
lustrates the measurement principle. Since the luminosity

Fig. 3. Experimental method to be used in the P2 experiment:
A longitudinally polarized beam of electrons is impinged on a
long proton target. For each helicity state of the beam electrons
the elastically scattered electrons are detected.

L of the P2 experiment is projected to be

L = Ibeam/e · ⇢part · L = 2.38 ⇥ 1039 cm�2s�1, (3)

where e is the elementary charge and ⇢part is the proton
density in `H2, the total rate of the electrons scattered
elastically o↵ protons which needs to be detected is in the
order of 0.1 THz. This makes an integrating measurement
of the event rates necessary.

2.1.1 Parity-violating asymmetry in elastic electron-proton

scattering

The main observable in the P2 experiment is the parity-
violating asymmetry APV in elastic electron-proton scat-
tering. It is an asymmetry in the cross section which may

be defined by

APV
⌘

d�+
ep � d��

ep

d�+
ep + d��

ep
. (4)

In this equation, d�±
ep is the di↵erential cross section for

the elastic scattering of electrons with helicity ±1/2 o↵
unpolarized protons.

e e ee

N NNN

Fig. 4. Feynman diagrams showing the exchange of a virtual
photon and Z-boson in the process of electron-nucleon scatter-
ing.

APV is due to the interference between the exchange of
a virtual photon and a Z-boson in the scattering process,
both of which are illustrated in Fig. 4. The di↵erential
cross section of the scattering process can be written

✓
d�±

ep

d⌦

◆
=

✓
↵em

4mpQ2

Ef

Ei

◆2 ��M±
ep

��2, (5)

where ↵em is the electromagnetic coupling, mp is the pro-
ton mass, and

Q2
⇡ 4EiEf sin

2 (✓f/2) (6)

is the negative square of the 4-momentum transfer be-
tween electron and proton. Here, the electron mass can be
neglected. Ei is the electron’s initial state energy, Ef the
energy of the scattered electron and ✓f the scattering angle
with respect to the beam direction. M

±
ep is the transition

matrix element, at leading order given by the Feynman
diagrams shown in Fig. 4.

The resulting parity-violating helicity asymmetry is
written as

APV =
�GFQ2

4⇡↵em

p
2

⇥
QW(p) � F (Ei, Q

2)
⇤
, (7)

where GF is the Fermi coupling constant. Here, the weak
charge of the proton, QW(p), is defined as the limit of the
asymmetry at zero-momentum transfer, normalized such
that Eq. (7) holds, i.e., F (Ei, Q2 = 0) = 0. At non-zero
momentum transfer, the hadronic structure of the proton
has to be taken into account, parametrized by the Q2- and
energy-dependent function F (Ei, Q2). The function F is
often written as F (Ei, Q2) = Q2B(Q2) and the energy-
dependence not shown explicitly.

Based on a flavour decomposition of the matrix ele-
ments of the electromagnetic and weak neutral currents,
the form factor contribution F (Q2) is usually written as
a sum of three terms

F (Ei, Q
2) ⌘ FEM(Ei, Q

2)+FA(Ei, Q
2)+F S(Ei, Q

2), (8)
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energy of the scattered electron and ✓f the scattering angle
with respect to the beam direction. M
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ep is the transition

matrix element, at leading order given by the Feynman
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The resulting parity-violating helicity asymmetry is
written as
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�GFQ2

4⇡↵em

p
2

⇥
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where GF is the Fermi coupling constant. Here, the weak
charge of the proton, QW(p), is defined as the limit of the
asymmetry at zero-momentum transfer, normalized such
that Eq. (7) holds, i.e., F (Ei, Q2 = 0) = 0. At non-zero
momentum transfer, the hadronic structure of the proton
has to be taken into account, parametrized by the Q2- and
energy-dependent function F (Ei, Q2). The function F is
often written as F (Ei, Q2) = Q2B(Q2) and the energy-
dependence not shown explicitly.

Based on a flavour decomposition of the matrix ele-
ments of the electromagnetic and weak neutral currents,
the form factor contribution F (Q2) is usually written as
a sum of three terms

F (Ei, Q
2) ⌘ FEM(Ei, Q

2)+FA(Ei, Q
2)+F S(Ei, Q

2), (8)

Strangeness contribution - suppressed by Q2 ~ 0.006 GeV2; 

SFF known from experiment (global fit to all PVES data)

Recent lattice QCD evaluations - small

Contribution of the proton’s axial FF - non-negligible in P2 kinematics!

Electron’s weak charge is small, but [1-ϵ2]1/2 is large (compare to Qweak)

5

III. ELASTIC CONTRIBUTION: ANAPOLE MOMENT

In order to calculate the box-graph contribution with a proton in the intermediate state, we
start with a study of Compton scattering. PV can appear in Compton scattering due to an
explicit PV term in the Lagrangian of the form

LPV = ie a0@µF
µ⌫
N̄�⌫�5N . (13)

The origin of this term lies in electroweak corrections at the single quark level (thus calculable at
one-loop in the SM), as well as multi-quark contributions. These latter give rise to the anapole
moment, the main source of the uncertainty in the value of a0. We can identify a0 with a
correction to the axial charge of the proton, GA, which appears when a process with a charged
lepton is compared with the corresponding neutrino process according to

a0 =
GF

8⇡↵
p
2
g
e
V (0) �G

ep
A , (14)

where the weak charge of the electron g
e
V (0) = �(1�4 sin2 ✓W (0)) ⇡ �0.0712(7) will be taken at

zero momentum transfer in the MS scheme. The axial charge of the proton, Gep
A , can be found

from the recent analysis in Ref. [18–20],

G
ep
A (Q2) = Ga(Q

2)


GA(1 +R

T=1

A ) +
3F �D

2
R

T=0

A +�s(1 +R
(0)

A )

�

⌘ Ga(Q
2)
⇥
GA + �G

ep
A

⇤
. (15)

The value of the axial charge, GA = �1.2701(25), is known from the free neutron �-decay
[21]. The baryon octet parameters F and D can be obtained from neutron and hyperon �-
decays with the assumption of SU(3) symmetry, 3F � D = 0.58(12). �s = �0.07(6) is the
strange quark contribution to the nucleon spin, and can be deduced from polarized deep inelastic
scattering data assuming that its Q2 dependence due to DGLAP evolution can be neglected [19].
The radiative corrections to the isovector, isoscalar and SU(3) singlet hadronic axial vector

amplitudes, respectively, are R
T=1

A = �0.258(340), RT=0

A = �0.239(200), R(0)

A = �0.55(55) [18].
These quantities arise from several sources: alongside the so-called one-quark contribution which
correspond to the one-loop renormalization of the Standard Model electron-quark couplings
C2q [22], multi-quark e↵ects, such as the anapole moment, and coherent strong interaction
mechanisms contribute. Combining these numbers and adding errors in quadrature gives �Gep

A =
0.23(43), corresponding to a shift and uncertainty of the modulus of GA by �18(35)%. This
leads to

a0 = �(0.74± 1.38)⇥ 10�6GeV�2
. (16)

The Q
2-dependent axial form factor is assumed to follow a dipole form,

Ga(Q
2) =

1
�
1 +Q2/M2

A

�
2

(17)

where MA ⇠ 1.02 GeV, consistent with the world PVES data [19].
Interference of the PV vertex derived from Eq. (13) with the PC electromagnetic vertex

�µ
em(q) = F1(Q

2)�µ + F2(Q
2)i�µ� q�

2M
(18)

Zhu, Puglia, Holstein, Ramsey-Musolf 2001

Global fit to PVES data - similar uncertainty

Gep
A = �1.04± 0.44

Gep
A = �0.62± 0.41 Gonzalez-Jimenez, Caballero, Donnelly 2014

Green et al. (LHPC) 2015;  
Sufian et al (𝜒QCD) 2017;  
Alexandrou et al. (ETMC) 2018
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P2 backward-angle experiment
Integrated luminosity 8.7 · 107fb�1

Statistical uncertainty �Astat = 0.03 ppm
False asymmetries �AHC < 0.01 ppm
Polarimetry �Apol = 0.04 ppm
Total uncertainty �Atot = 0.05 ppm

Table 16. Performance of a possible P2 backward-angle mea-
surement parallel to the P2 forward experiment. The beam en-
ergy used for this calculation is 200MeV, the Standard Model
expectation for the asymmetry is APV ⇡ 7.5 ppm.

main source of uncertainty. From this asymmetry, one can
derive a value for the linear combination:

F S + FA = 0.398 ·

⇣
Gs

M + 0.442Gp,Z
A

⌘
± 0.011 . (93)

Here, the form factor input FEM = 0.558 ± 0.010 is the
predominant source of uncertainty. For the P2 forward
measurement, one needs as input the linear combination
F S + FA = 0.0040 · (Gs

M + 0.691Gp,Z
A ). If one scales down

the linear combination from the backward-angle measure-
ment to the P2 forward conditions, one has to keep in mind
that the linear combinations are slightly di↵erent and the
momentum transfers do not match exactly. Therefore we
add an additional error for this transformation of 100 % of
the error of the measured linear combination. The benefit
of the backward-angle measurement can be clearly seen:
The uncertainty which is used as an input to the P2 main
experiment analysis drops from �(F S + FA) = 0.00076
if no backward-angle measurement is performed down to
�(F S +FA) = 0.00016 using the results of the backward-
angle measurement. This would mean an improvement by
a factor of 4.

We also considered two dedicated backward-angle mea-
surements with 1000 hours of data taking each using a
hydrogen and a deuterium target. The beam energy for
this calculation is E = 150MeV, which corresponds to
a momentum transfer of Q2 = 0.06 GeV2. Combining
hydrogen and deuterium results, one could obtain Gs

M

and Gp,Z
A separately, which is a valuable physics result

by itself. In order to estimate the achievable precision
in Gs

M and Gp,Z
A , all quantities that enter into their de-

termination were varied according to their uncertainties.
The width of the distributions are displayed in Fig. 83
and Fig. 84. It turns out that the possible uncertainties
would be �Gs

M = 0.04 and �Gp,Z
A = 0.05. The impact

on the forward P2 experiment would be even better com-
pared to a parallel backward-angle measurement, because
the momentum transfer would match better and the re-
quired linear combination can be calculated directly from
the separated form factors.

To conclude, backward-angle measurements within the
P2 experiment seem promising. Two options were dis-
cussed. A backward-angle measurement parallel to the for-
ward P2 experiment doesn’t require additional beam time,
but depends on the available space in the experimental
hall. The uncertainty contribution of axial and strange
magnetic form factors, expressed by F S + FA would drop
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from dedicated backward-angle mea-
surements with a hydrogen and a deuterium target.

by a factor of 4 compared to the assumptions without such
a measurement. Separate measurements on hydrogen and
deuterium targets seem even more promising and would
yield the most precise determination of Gs

M and Gp,Z
A at

low momentum transfer.

8 Conclusions and Outlook

This work summarizes the research and development work
for the P2 experimental facility at the upcoming energy
recovering recirculating accelerator MESA in Mainz. It is
optimized for the measurement of an order 10�8 parity-
violating cross section asymmetry in electron scattering.
This is the smallest asymmetry ever measured in elec-
tron scattering. Many new experimental techniques will
be used for the first time in order to reach the high pre-
cision goal needed to obtain physics results with a high
impact on the field of research. These are:

• a superconducting solenoid as a spectrometer for scat-
tered electrons;

• HVMAPS as thin silicon tracking detectors for the Q2

measurement;
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measurement, one needs as input the linear combination
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that the linear combinations are slightly di↵erent and the
momentum transfers do not match exactly. Therefore we
add an additional error for this transformation of 100 % of
the error of the measured linear combination. The benefit
of the backward-angle measurement can be clearly seen:
The uncertainty which is used as an input to the P2 main
experiment analysis drops from �(F S + FA) = 0.00076
if no backward-angle measurement is performed down to
�(F S +FA) = 0.00016 using the results of the backward-
angle measurement. This would mean an improvement by
a factor of 4.

We also considered two dedicated backward-angle mea-
surements with 1000 hours of data taking each using a
hydrogen and a deuterium target. The beam energy for
this calculation is E = 150MeV, which corresponds to
a momentum transfer of Q2 = 0.06 GeV2. Combining
hydrogen and deuterium results, one could obtain Gs
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and Gp,Z
A separately, which is a valuable physics result

by itself. In order to estimate the achievable precision
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A , all quantities that enter into their de-
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on the forward P2 experiment would be even better com-
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the momentum transfer would match better and the re-
quired linear combination can be calculated directly from
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To conclude, backward-angle measurements within the
P2 experiment seem promising. Two options were dis-
cussed. A backward-angle measurement parallel to the for-
ward P2 experiment doesn’t require additional beam time,
but depends on the available space in the experimental
hall. The uncertainty contribution of axial and strange
magnetic form factors, expressed by F S + FA would drop

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.80

200

400

600

800

1000

Entries  10000
Mean   0.04323
RMS    0.0398

GM
s

GM
s

Fig. 83. Values for G
s
M from dedicated backward-angle mea-

surements with a hydrogen and a deuterium target.

−5 −4 −3 −2 −1 0 1 2 3 4 50

100

200

300

400

500

600

700

800
Entries  10000
Mean   −1.011
RMS    0.04923

GA
p,Z

GA
p,Z

Fig. 84. Values for Gp,Z
A

from dedicated backward-angle mea-
surements with a hydrogen and a deuterium target.

by a factor of 4 compared to the assumptions without such
a measurement. Separate measurements on hydrogen and
deuterium targets seem even more promising and would
yield the most precise determination of Gs

M and Gp,Z
A at

low momentum transfer.

8 Conclusions and Outlook

This work summarizes the research and development work
for the P2 experimental facility at the upcoming energy
recovering recirculating accelerator MESA in Mainz. It is
optimized for the measurement of an order 10�8 parity-
violating cross section asymmetry in electron scattering.
This is the smallest asymmetry ever measured in elec-
tron scattering. Many new experimental techniques will
be used for the first time in order to reach the high pre-
cision goal needed to obtain physics results with a high
impact on the field of research. These are:

• a superconducting solenoid as a spectrometer for scat-
tered electrons;

• HVMAPS as thin silicon tracking detectors for the Q2

measurement;

Uncertainty without backward measurement:

Dominik Becker et al.: The P2 Experiment 57

P2 backward-angle experiment
Integrated luminosity 8.7 · 107fb�1

Statistical uncertainty �Astat = 0.03 ppm
False asymmetries �AHC < 0.01 ppm
Polarimetry �Apol = 0.04 ppm
Total uncertainty �Atot = 0.05 ppm

Table 16. Performance of a possible P2 backward-angle mea-
surement parallel to the P2 forward experiment. The beam en-
ergy used for this calculation is 200MeV, the Standard Model
expectation for the asymmetry is APV ⇡ 7.5 ppm.

main source of uncertainty. From this asymmetry, one can
derive a value for the linear combination:

F S + FA = 0.398 ·

⇣
Gs

M + 0.442Gp,Z
A

⌘
± 0.011 . (93)

Here, the form factor input FEM = 0.558 ± 0.010 is the
predominant source of uncertainty. For the P2 forward
measurement, one needs as input the linear combination
F S + FA = 0.0040 · (Gs

M + 0.691Gp,Z
A ). If one scales down

the linear combination from the backward-angle measure-
ment to the P2 forward conditions, one has to keep in mind
that the linear combinations are slightly di↵erent and the
momentum transfers do not match exactly. Therefore we
add an additional error for this transformation of 100 % of
the error of the measured linear combination. The benefit
of the backward-angle measurement can be clearly seen:
The uncertainty which is used as an input to the P2 main
experiment analysis drops from �(F S + FA) = 0.00076
if no backward-angle measurement is performed down to
�(F S +FA) = 0.00016 using the results of the backward-
angle measurement. This would mean an improvement by
a factor of 4.

We also considered two dedicated backward-angle mea-
surements with 1000 hours of data taking each using a
hydrogen and a deuterium target. The beam energy for
this calculation is E = 150MeV, which corresponds to
a momentum transfer of Q2 = 0.06 GeV2. Combining
hydrogen and deuterium results, one could obtain Gs

M

and Gp,Z
A separately, which is a valuable physics result

by itself. In order to estimate the achievable precision
in Gs

M and Gp,Z
A , all quantities that enter into their de-

termination were varied according to their uncertainties.
The width of the distributions are displayed in Fig. 83
and Fig. 84. It turns out that the possible uncertainties
would be �Gs

M = 0.04 and �Gp,Z
A = 0.05. The impact

on the forward P2 experiment would be even better com-
pared to a parallel backward-angle measurement, because
the momentum transfer would match better and the re-
quired linear combination can be calculated directly from
the separated form factors.

To conclude, backward-angle measurements within the
P2 experiment seem promising. Two options were dis-
cussed. A backward-angle measurement parallel to the for-
ward P2 experiment doesn’t require additional beam time,
but depends on the available space in the experimental
hall. The uncertainty contribution of axial and strange
magnetic form factors, expressed by F S + FA would drop

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.80

200

400

600

800

1000

Entries  10000
Mean   0.04323
RMS    0.0398

GM
s

GM
s

Fig. 83. Values for G
s
M from dedicated backward-angle mea-

surements with a hydrogen and a deuterium target.

−5 −4 −3 −2 −1 0 1 2 3 4 50

100

200

300

400

500

600

700

800
Entries  10000
Mean   −1.011
RMS    0.04923

GA
p,Z

GA
p,Z

Fig. 84. Values for Gp,Z
A

from dedicated backward-angle mea-
surements with a hydrogen and a deuterium target.

by a factor of 4 compared to the assumptions without such
a measurement. Separate measurements on hydrogen and
deuterium targets seem even more promising and would
yield the most precise determination of Gs

M and Gp,Z
A at

low momentum transfer.

8 Conclusions and Outlook

This work summarizes the research and development work
for the P2 experimental facility at the upcoming energy
recovering recirculating accelerator MESA in Mainz. It is
optimized for the measurement of an order 10�8 parity-
violating cross section asymmetry in electron scattering.
This is the smallest asymmetry ever measured in elec-
tron scattering. Many new experimental techniques will
be used for the first time in order to reach the high pre-
cision goal needed to obtain physics results with a high
impact on the field of research. These are:

• a superconducting solenoid as a spectrometer for scat-
tered electrons;

• HVMAPS as thin silicon tracking detectors for the Q2

measurement;

Uncertainty with backward measurement:

Dominik Becker et al.: The P2 Experiment 57

P2 backward-angle experiment
Integrated luminosity 8.7 · 107fb�1

Statistical uncertainty �Astat = 0.03 ppm
False asymmetries �AHC < 0.01 ppm
Polarimetry �Apol = 0.04 ppm
Total uncertainty �Atot = 0.05 ppm

Table 16. Performance of a possible P2 backward-angle mea-
surement parallel to the P2 forward experiment. The beam en-
ergy used for this calculation is 200MeV, the Standard Model
expectation for the asymmetry is APV ⇡ 7.5 ppm.

main source of uncertainty. From this asymmetry, one can
derive a value for the linear combination:

F S + FA = 0.398 ·

⇣
Gs

M + 0.442Gp,Z
A

⌘
± 0.011 . (93)

Here, the form factor input FEM = 0.558 ± 0.010 is the
predominant source of uncertainty. For the P2 forward
measurement, one needs as input the linear combination
F S + FA = 0.0040 · (Gs

M + 0.691Gp,Z
A ). If one scales down

the linear combination from the backward-angle measure-
ment to the P2 forward conditions, one has to keep in mind
that the linear combinations are slightly di↵erent and the
momentum transfers do not match exactly. Therefore we
add an additional error for this transformation of 100 % of
the error of the measured linear combination. The benefit
of the backward-angle measurement can be clearly seen:
The uncertainty which is used as an input to the P2 main
experiment analysis drops from �(F S + FA) = 0.00076
if no backward-angle measurement is performed down to
�(F S +FA) = 0.00016 using the results of the backward-
angle measurement. This would mean an improvement by
a factor of 4.

We also considered two dedicated backward-angle mea-
surements with 1000 hours of data taking each using a
hydrogen and a deuterium target. The beam energy for
this calculation is E = 150MeV, which corresponds to
a momentum transfer of Q2 = 0.06 GeV2. Combining
hydrogen and deuterium results, one could obtain Gs

M

and Gp,Z
A separately, which is a valuable physics result

by itself. In order to estimate the achievable precision
in Gs

M and Gp,Z
A , all quantities that enter into their de-

termination were varied according to their uncertainties.
The width of the distributions are displayed in Fig. 83
and Fig. 84. It turns out that the possible uncertainties
would be �Gs

M = 0.04 and �Gp,Z
A = 0.05. The impact

on the forward P2 experiment would be even better com-
pared to a parallel backward-angle measurement, because
the momentum transfer would match better and the re-
quired linear combination can be calculated directly from
the separated form factors.

To conclude, backward-angle measurements within the
P2 experiment seem promising. Two options were dis-
cussed. A backward-angle measurement parallel to the for-
ward P2 experiment doesn’t require additional beam time,
but depends on the available space in the experimental
hall. The uncertainty contribution of axial and strange
magnetic form factors, expressed by F S + FA would drop

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.80

200

400

600

800

1000

Entries  10000
Mean   0.04323
RMS    0.0398

GM
s

GM
s

Fig. 83. Values for G
s
M from dedicated backward-angle mea-

surements with a hydrogen and a deuterium target.

−5 −4 −3 −2 −1 0 1 2 3 4 50

100

200

300

400

500

600

700

800
Entries  10000
Mean   −1.011
RMS    0.04923

GA
p,Z

GA
p,Z

Fig. 84. Values for Gp,Z
A

from dedicated backward-angle mea-
surements with a hydrogen and a deuterium target.

by a factor of 4 compared to the assumptions without such
a measurement. Separate measurements on hydrogen and
deuterium targets seem even more promising and would
yield the most precise determination of Gs

M and Gp,Z
A at

low momentum transfer.

8 Conclusions and Outlook

This work summarizes the research and development work
for the P2 experimental facility at the upcoming energy
recovering recirculating accelerator MESA in Mainz. It is
optimized for the measurement of an order 10�8 parity-
violating cross section asymmetry in electron scattering.
This is the smallest asymmetry ever measured in elec-
tron scattering. Many new experimental techniques will
be used for the first time in order to reach the high pre-
cision goal needed to obtain physics results with a high
impact on the field of research. These are:

• a superconducting solenoid as a spectrometer for scat-
tered electrons;

• HVMAPS as thin silicon tracking detectors for the Q2

measurement;

Qp
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HPNC @ MESA
At present: planned energy 155 MeV - just below the pion production threshold


There may be a possibility to upgrade to ~ 200 MeV


Would permit to access PV pion production near threshold


Idea from Chen, Ji 2001: 

detect only charged pion in the final state

Weizsäcker-Williams approximation —> 

quasi-real photon carries all the beam momentum and polarization

PV amplitude ~ h1π

PC amplitude ~ gπNN

interferes with



HPNC @ MESA
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FIG. 5. The electron helicity asymmetry Ae as a function of outgoing-pion polar angle at Ee = 200

(a) and 250 MeV (b). The dashed lines include the Z contributions only, whereas the solid lines include

the contribution from h
(1)
πNN (taken to be 5× 10−7) as well.

We have also shown the asymmetry as a function of the pion energy in Fig. 6. When the
incident electron energy is 200 MeV, the total asymmetry is again small. This is particularly true
for most of the pions that are produced with 160 MeV energy. When the electron energy is 250
MeV, the cancelation between the Z-exchange and hadronic parity-violation is not complete. For a
large fraction of pions which are produced with energy between 160 and 180 MeV, the asymmetry is
significant. Therefore, the best way to extract h(1)

πNN from ep → eπ+n is to measure pion production
asymmetry in the forward direction with a polarized electron beam of 250 MeV.

For the incident electron energy of 250 MeV, the virtual photon energy is around 200 MeV (see
fig. 2(a)). According to our previous study [23], the unpolarized cross section at this energy can be
described well by the LO HBχPT calculation. Therefore, the applicability of chiral perturbation
theory in studying the parity violating effects in the electroproduction is qualitatively similar to
that in photoproduction. In particular, we believe that the higher-order corrections are O(ϵ/mN ),
where ϵ stands for mπ, ω, ωπ, and ∆.

To summarize, we have studied the possibility of measuring the parity-violating coupling h(1)
πNN

from semi-inclusive π+ electroproduction on the proton target in the threshold region. For the
incident energy of 250 MeV, the electron single-spin asymmetry is estimated around −2 × 10−7 in
the forward direction. This asymmetry can be measured to an accuracy of 50% (this implies an

accuracy of 2× 10−7 in h(1)
πNN) with a luminosity of 1038 sec−1· cm−2 and a running time of 107 sec.

A more careful study of the higher-order effects will be published later [27].
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Z-exchange only

Assuming h1π = 5 x 10-7

Chen, Ji 2001

AZ
e ⇡ �2

p
2(1� 2 sin2 ✓W )

GF hQ2i
4⇡↵

A
h1
⇡

e ⇡
p
2(µp � µn)

g⇡NN
h1
⇡ ⇡ 0.5h1

⇡

h1π contribution partially cancels Z-exchange;

harder to measure but a good measurement has high potential impact

Asymmetry ~ 5-6 times larger than in elastic P2 experiment (-4x10-8 to 1.5%)

Cross section is large - may be doable 

Precision? Hard to say - 25%? 10%? - need a dedicated feasibility studies



HPNC @ MESA
BUT: 


P2 forward detector cannot detect charged pions (Cherenkov, magnetic field, distance)


P2 backward detector cannot detect charged pions + need higher energy to produce pions

at backward angles


Need a pion spectrometer - one exists in A1 @ Mainz - can it be used?


Cannot be done as a parasitic measurement to P2 

- but still may be possible if a strong case can be made - the message to this workshop

Theory reservations: analyzing power would lead to a false asymmetry that is potentially large


The beam polarization is not 100% longitudinal


Azimuthal-modulated asymmetry

A? ⇠ me

E
�P?

ImT�p!⇡+n

|T�p!⇡+n|
~ 10-3 x 1% x (qπ/M ~ 5-10 x 10-3) —> 10-7

~Se · [~k ⇥ ~q⇡] ⇠ sin�

One will need a dedicated measurement of a.p.

2π azimuthal coverage of the detector



Side note: long-range PV forces from HPNC

T ep
1�+Z =

1

Q2
+ {R2

Ch., µ
p, . . . }� GF

4
p
2⇡↵

(Qp
W +Q2{R2

W , µp
W , . . . })

Radiative corrections (mostly 2𝛾-exchange) induce an intermediate range term
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FIG. 1: Imaginary part of the 2�-exchange diagram

The imaginary part of the TPE diagram in Fig. 1 is

given by the integral
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The limit of small electron mass was taken in the above

results. The real part can be obtained from a dispersion
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2
, the coe�cient in front of it is model-

independent, and has been calculated in Refs. [5, 6] using

the soft photon approximation in the loop. The former

reference used the approximation q1 ⇡ 0, q2 ⇡ � and
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the integral, the result simply factorizing the one-photon
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with c.m. energy of both the external and the intermedi-

ate electron E
cm
⇡

s�M2

2
p

s
, neglecting the electron mass.

On the other hand, the latter Ref. applied the soft pho-

ton approximation in the numerator only leading to
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The limit of small electron mass was taken in the above

results. The real part can be obtained from a dispersion

relation at fixed t,
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with ⌫
el
0 = t/(4M)  0 the threshold for the s-channel

unitarity cut. The evaluation of the dispersion integral

with the imaginary part of, e.g., Eq. (25) yields for the

real part
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We observe here that while the imaginary part of

�
(soft, b)

behaves as ln(�t/�
2
), its real part is suppressed

by an extra power of t. This is a consequence of the prin-
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The result of Eq. (27) was used in the analysis of the

low-t data from Mainz [1] (without the low-t approxima-

tion), and we use the IR part of the TPE amplitude in

this form to define the IR finite part of the elastic box as

�
el
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, (29)

Calculate C2γ(E) from a near-forward dispersion relation - a sum rule

Large collinear log - from the WW approximation inside the loop

T ep
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↵

⇡
C2�(E) ln(Q2/E2) + {R2

Ch., µ
p, . . . }

Importantly: C2γ(E=0) = 0 (due to symmetries)

Leads to a formal redefinition of the charge radius in terms of observables
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Do these effects matter in practice? - Depends on precision you want to achieve for RCh

Gorchtein 2014



Side note: long-range PV forces from HPNC
Consider 2𝛾-exchange in presence of 

PNC in the hadronic system

CPV2γ(E) from a near-forward dispersion relation

3
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where upon keeping leading terms in t only a short hand

was introduced,
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IV. NEAR-FORWARD ELASTIC
ep-SCATTERING AMPLITUDE FROM A

DISPERSION RELATION

FIG. 1: Imaginary part of the 2�-exchange diagram
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⇥ ū(p
0
)�
⇤⌫

(q2)(P/ + K/� k/1 + M)�
µ
(q1)u(p),

with the on-shell nucleon electromagnetic vertex �
µ
(q) =

F1(q
2
)�

µ
+ F2(q

2
)i�

µ↵ q↵
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, the coe�cient in front of it is model-

independent, and has been calculated in Refs. [5, 6] using

the soft photon approximation in the loop. The former

reference used the approximation q1 ⇡ 0, q2 ⇡ � and

vice versa both in the numerator and the denominator of

the integral, the result simply factorizing the one-photon

exchange (Born) amplitude as
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with c.m. energy of both the external and the intermedi-

ate electron E
cm
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2
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, neglecting the electron mass.

On the other hand, the latter Ref. applied the soft pho-

ton approximation in the numerator only leading to
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The limit of small electron mass was taken in the above

results. The real part can be obtained from a dispersion

relation at fixed t,
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with ⌫
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0 = t/(4M)  0 the threshold for the s-channel

unitarity cut. The evaluation of the dispersion integral

with the imaginary part of, e.g., Eq. (25) yields for the

real part
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We observe here that while the imaginary part of
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), its real part is suppressed

by an extra power of t. This is a consequence of the prin-

cipal value integral vanishing identically at t = 0,
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The result of Eq. (27) was used in the analysis of the

low-t data from Mainz [1] (without the low-t approxima-

tion), and we use the IR part of the TPE amplitude in

this form to define the IR finite part of the elastic box as
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Vanishing of CPV2γ(0) is non-trivially protected by an exact sum rule

MG, Spiesberger 2016

 Lukaszuk 2002; Kurek, Lukaszuk, 2004

The sum rule proven for the first time in relativistic ChPT



Side note: long-range PV forces from HPNC

A model estimate of CPV2γ(E) for P2, Qweak kinematics (h1π, dΔ + SR constraint):


small at current precision level - but may become significant if pushing beyond 10-4


Why is the correction small? - only natural hadronic scales present


Potentially larger effects for nuclei (much lower scales - nuclear PV polarizabilities)


An effect for C-12 @ MESA (0.3% measurement) - will HPNC interfere?

QW = � 4
p
2⇡↵

GFQ2
Aexp

�����
Q2!0

QW = � 4
p
2⇡↵

GFQ2
Aexp

�����
E!0, Q2!0

Presence of HPNC leads to a redefinition of the weak charge

What is the impact for current experiments?



PNC in Yb, Dy atoms - group of Dima Budker
Parity violation in Yb

Yb roadmap
1. Measure Qw dependence on neutron 
number (almost completed) 
2. Probe spin-dependent PV (anapole)
3. Precisely measure isotopic
dependence to observe neutron skin effects

Goals (Milestones)
1. Verify dependence of Qw on neutron number 
2. Measure the Yb anapole moment
3. Probe neutron skins of Yb nucleus

( )( )Rotational Invariant: B E Be e× ´ ×
! ! !! !

Why PV with Yb?
• Largest PV-effect observed in any atom
• Seven stable isotopes including two with nuclear spin

Method
Optically excite  the  1S0 → 3D1 transition in a region of 
crossed E- and B-fields, that define handedness. Field 
reversals flip handedness resulting in a left-right 
asymmetry in the excitation rate.

Current status
Finishing  up Qw comparison
between 176Yb, 174Yb, 172Yb, 170Yb.
Then moving on to anapole. 
Currently achieving 3% accuracy in 1 hr. 
Need 0.5% for anapole, neutron skins. 
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Conclusions & Outlook
Strong PV program in Mainz that can have impact on HPNC: 


PVES - proton’s anapole moment, PV π+ threshold production

- backward measurement will reduce a.m. error by factor 4

- PV π+ production: potentially a clean way to access h1π;

- dedicated study of possible setup and systematics needed


HPNC induces energy-dependent, long-range PV forces 

- potentially important 


Atomic PNC - weak charges, anapole moments, neutron skins; 


UCN facility TRIGA - neutron β-decay plans at the moment; 

- TRIGA is thought to be a user facility in the future;

- HPNC with UCN may become an option in Mainz, too
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