

HPNC Opportunities at Mainz

Misha Gorshteyn - JGU Mainz

Workshop on Hadronic Parity Non-Conservation KITP Santa Barbara, California, March 15-16 2018

OUTLINE

P2 @ MESA: low-energy PVES with unprecedented precision
Threshold semi inclusive π^{+}production with polarized e-beam

Long-range PV effects from HPNC

PNC in Yb and Dy isotopes
Summary \& Outlook

MESA = Mainz Energy-recovering Superconducting Accelerator

MAGIX:
Dark photon search
DM beam dump exp.
Proton radii
Nuclear physics

Source \& spin manipulation system "MELBA"
(Mostly) fits in the existing facility Construction of a new hall 2018

Commissioning 2019
Running 2020

Extracted beam mode (P2)

$$
\mathrm{E}=155 \mathrm{MeV}, \mathrm{I}=150 \mu \mathrm{~A}
$$

Polarization > 85\%

Weak charge of the proton Weak charge of C-12 Neutron skins

$$
E=105 \mathrm{MeV}, \mathrm{I}=10 \mathrm{~mA}
$$

P2 Experiment

Parity-violating asymmetry at low Q ${ }^{2}$

$$
A^{\mathrm{PV}}=\frac{-G_{\mathrm{F}} Q^{2}}{4 \pi \alpha_{\mathrm{em}} \sqrt{2}}\left[Q_{\mathrm{W}}(\mathrm{p})-F\left(E_{\mathrm{i}}, Q^{2}\right)\right]
$$

Proton's weak charge ~ WMA

$$
Q_{\mathrm{W}}(\mathrm{p})=1-4 \sin ^{2} \theta_{\mathrm{W}}
$$

Enhanced sensitivity to WMA

$$
\frac{\Delta \sin ^{2} \theta_{\mathrm{W}}}{\sin ^{2} \theta_{\mathrm{W}}}=\frac{1-4 \sin ^{2} \theta_{\mathrm{W}}}{4 \sin ^{2} \theta_{\mathrm{W}}} \cdot \frac{\Delta Q_{\mathrm{W}}(\mathrm{p})}{Q_{\mathrm{W}}(\mathrm{p})} \approx 0.09 \cdot \frac{\Delta Q_{\mathrm{W}}(\mathrm{p})}{Q_{\mathrm{W}}(\mathrm{p})}
$$

Correction term ~ known

C-12 weak charge ~ WMA

$$
F\left(E_{\mathrm{i}}, Q^{2}\right) \equiv F^{\mathrm{EM}}\left(E_{\mathrm{i}}, Q^{2}\right)+F^{\mathrm{A}}\left(E_{\mathrm{i}}, Q^{2}\right)+F^{\mathrm{S}}\left(E_{\mathrm{i}}, Q^{2}\right)
$$

No gain in precision but much easier to measure experimentally

P2 Setup

P2 Impact

1-loop radiative corrections: running WMA

Competitive and complementary to Z-pole measurements

Sensitive test of SM and beyond

Extra Z

Mixing with Dark photon or Dark Z

Contact interaction Fermions

Running $\sin ^{2} \theta_{w}$ and Dark Parity Violation

PVES @ MESA: Impact

Experimental "hardness"

Effective four-fermion operators

$$
\mathcal{L}=-\frac{G_{F}}{\sqrt{2}} \sum_{q}\left[g_{A V}^{e q} \bar{e} \gamma^{\mu} \gamma_{5} e \bar{q} \gamma_{\mu} q+g_{V A}^{e q} \bar{e} \gamma^{\mu} e \bar{q} \gamma_{\mu} \gamma_{5} q\right]
$$

10000 hours of data taking

P2 Error Budget

Statistics based on 10000 hours data MESA - heavy duty machine - > 4000 h/year

$E_{\text {beam }}$	
$\bar{\theta}_{\mathrm{f}}$	155 MeV
$\delta \theta_{\mathrm{f}}$	35°
$\left\langle Q^{2}\right\rangle_{L=600 \mathrm{~mm}, \delta \theta_{\mathrm{f}}=20^{\circ}}$	20°
$\left\langle A^{\text {exp }}\right\rangle$	-39.94 ppb
$\left(\Delta 0^{\text {exp }}\right)_{\text {Total }}$	$0.56 \mathrm{ppb}(1.40 \%)$
$\left(\Delta A^{\text {exp }}\right)_{\text {Statistics }}$	$0.51 \mathrm{ppb}(1.28 \%)$
$\left(\Delta A^{\text {exp }}\right)_{\text {Polarization }}$	$0.21 \mathrm{ppb}(0.53 \%)$
$\left(\Delta A^{\text {exp }}\right)_{\text {Apparative }}$	$0.10 \mathrm{ppb}(0.25 \%)$
$\left\langle s_{\mathrm{W}}^{2}\right\rangle$	0.23116
$\left(\Delta s_{\mathrm{W}}^{2}\right)_{\text {Total }}$	$3.3 \times 10^{-4}(0.14 \%)$
$\left(\Delta s_{\mathrm{W}}^{2}\right)_{\text {Statistics }}$	$2.7 \times 10^{-4}(0.12 \%)$
$\left(\Delta s_{\mathrm{W}}^{2}\right)_{\text {Polarization }}$	$1.0 \times 10^{-4}(0.04 \%)$
$\left(\Delta s_{\mathrm{W}}^{2}\right)_{\text {Apparative }}$	$0.5 \times 10^{-4}(0.02 \%)$
$\left(\Delta s_{\mathrm{W}}^{2}\right)_{\square_{\gamma Z}}$	$0.4 \times 10^{-4}(0.02 \%)$
$\left(\Delta s_{\mathrm{W}}^{2}\right)_{\text {nucl. FF }}$	$1.2 \times 10^{-4}(0.05 \%)$
$\left\langle Q^{2}\right\rangle_{\text {Cherenkov }}$	$4.57 \times 10^{-3}(\mathrm{GeV} / \mathrm{c})^{2}$
$\left\langle A^{\text {exp }}\right\rangle_{\text {Cherenkov }}$	-28.77 ppb

P2 Error Budget - Theory

To match exp. precision: full set of 1-loop RC Universal corrections $->$ running A few non-universal corrections (boxes) γ Z-box special: γ sensitive to long-range part of interaction, strong energy dependence

MG, Horowitz 2009

Energy dependence of the γ Z-box under control for P2
Advantage w.r.t. Qweak - strong motivation for P2

MG, Horowitz, MJRM 2011
MG, Spiesberger, Zhang 2016
MG, Spiesberger 2016

At low energy uncertainty dominated by the proton's anapole moment
for C-12 - need a reliable estimate of $\gamma \mathrm{Z}$-box including nuclear structure - work in progress with Jens Erler and H. Spiesberger

P2 Error Budget - Theory

$$
A^{\mathrm{PV}}=\frac{-G_{\mathrm{F}} Q^{2}}{4 \pi \alpha_{\mathrm{em}} \sqrt{2}}\left[Q_{\mathrm{W}}(\mathrm{p})-F\left(E_{\mathrm{i}}, Q^{2}\right)\right] \quad \quad F\left(E_{\mathrm{i}}, Q^{2}\right) \equiv F^{\mathrm{EM}}\left(E_{\mathrm{i}}, Q^{2}\right)+F^{\mathrm{A}}\left(E_{\mathrm{i}}, Q^{2}\right)+F^{\mathrm{S}}\left(E_{\mathrm{i}}, Q^{2}\right)
$$

Strangeness contribution - suppressed by $\mathrm{Q}^{2} \sim 0.006 \mathrm{GeV}^{2}$;

SFF known from experiment (global fit to all PVES data) Recent lattice QCD evaluations - small

Green et al. (LHPC) 2015;
Sufian et al (χ QCD) 2017;
Alexandrou et al. (ETMC) 2018

Contribution of the proton's axial FF - non-negligible in P2 kinematics! Electron's weak charge is small, but $\left[1-\epsilon^{2}\right]^{1 / 2}$ is large (compare to $Q_{\text {weak }}$)

$$
F^{\mathrm{A}}\left(Q^{2}\right) \equiv \frac{\left(1-4 \sin ^{2} \theta_{\mathrm{W}}\right) \sqrt{1-\epsilon^{2}} \sqrt{\tau(1-\tau)} G_{\mathrm{M}}^{\mathrm{p}, \gamma} G_{\mathrm{A}}^{\mathrm{p}, \mathrm{Z}}}{\epsilon\left(G_{\mathrm{E}}^{\mathrm{p}, \gamma}\right)^{2}+\tau\left(G_{\mathrm{M}}^{\mathrm{p}, \gamma}\right)^{2}}
$$

Large uncertainty due to proton's anapole moment

$$
\begin{aligned}
& G_{A}^{e p}\left(Q^{2}\right)=G_{a}\left(Q^{2}\right)\left[G_{A}\left(1+R_{A}^{T=1}\right)+\frac{3 F-D}{2} R_{A}^{T=0}+\Delta s\left(1+R_{A}^{(0)}\right)\right] \\
& G_{A}^{e p}=-1.04 \pm 0.44 \quad \text { Zhu, Puglia, Holstein, Ramsey-Musolf } 2001
\end{aligned}
$$

Global fit to PVES data - similar uncertainty

$$
G_{A}^{e p}=-0.62 \pm 0.41
$$

Anapole moment @ MESA

Backward measurement - a must to better constrain the axial form factor
Two options:
a parallel measurement - then 10000 hours of data or two dedicated measurement - à 1000 on H and D targets

P2 backward-angle experiment	
Integrated luminosity	$8.7 \cdot 10^{7} \mathrm{fb}^{-1}$
Statistical uncertainty	$\Delta A_{\text {stat }}=0.03 \mathrm{ppm}$
False asymmetries	$\Delta A_{\mathrm{HC}}<0.01 \mathrm{ppm}$
Polarimetry	$\Delta A_{\mathrm{pol}}=0.04 \mathrm{ppm}$
Total uncertainty	$\Delta A_{\mathrm{tot}}=0.05 \mathrm{ppm}$

Table 16. Performance of a possible P2 backward-angle measurement parallel to the P2 forward experiment. The beam energy used for this calculation is 200 MeV , the Standard Model expectation for the asymmetry is $A^{\mathrm{PV}} \approx 7.5 \mathrm{ppm}$.

Backward measurement will address

$$
F^{\mathrm{S}}+F^{\mathrm{A}}=0.398 \cdot\left(G_{\mathrm{M}}^{\mathrm{s}}+0.442 G_{\mathrm{A}}^{\mathrm{p}, Z}\right) \pm 0.011
$$

Forward measurement depends on

$$
F^{\mathrm{S}}+F^{\mathrm{A}}=0.0040 \cdot\left(G_{\mathrm{M}}^{\mathrm{s}}+0.691 G_{\mathrm{A}}^{\mathrm{p}, Z}\right)
$$

Uncertainty without backward measurement:

$$
\begin{aligned}
\Delta\left(F^{\mathrm{S}}+F^{\mathrm{A}}\right) & =0.00076 \\
\Delta\left(F^{\mathrm{S}}+F^{\mathrm{A}}\right) & =0.00016
\end{aligned} Q_{W}^{p}=1-4 \sin ^{2} \theta_{W} \approx 0.07
$$

Uncertainty with backward measurement:

HPNC @ MESA

At present: planned energy 155 MeV - just below the pion production threshold
There may be a possibility to upgrade to $\sim 200 \mathrm{MeV}$
Would permit to access PV pion production near threshold
Idea from Chen, di 2001:
detect only charged pion in the final state Weizsäcker-Williams approximation ->
 quasi-real photon carries all the beam momentum and polarization

PV amplitude $\sim h^{1}{ }_{\pi}$

interferes with

PC amplitude $\sim g_{\pi N N}$

HPNC @ MESA

Chen, Ji 2001

$$
A_{e}^{h_{\pi}^{1}} \approx \frac{\sqrt{2}\left(\mu_{p}-\mu_{n}\right)}{g_{\pi N N}} h_{\pi}^{1} \approx 0.5 h_{\pi}^{1}
$$

$$
\theta_{\pi^{+}}(\operatorname{deg})
$$

$\mathrm{h}^{1} \pi$ contribution partially cancels Z-exchange;
harder to measure but a good measurement has high potential impact
Asymmetry ~ 5-6 times larger than in elastic P2 experiment (-4×10^{-8} to 1.5\%) Cross section is large - may be doable Precision? Hard to say - 25\%? 10\%? - need a dedicated feasibility studies

HPNC @ MESA

BUT:

P2 forward detector cannot detect charged pions (Cherenkov, magnetic field, distance)
P2 backward detector cannot detect charged pions + need higher energy to produce pions at backward angles

Need a pion spectrometer - one exists in A1 @ Mainz - can it be used?
Cannot be done as a parasitic measurement to P2

- but still may be possible if a strong case can be made - the message to this workshop

Theory reservations: analyzing power would lead to a false asymmetry that is potentially large
The beam polarization is not 100% longitudinal

$$
\text { Azimuthal-modulated asymmetry } \quad \vec{S}_{e} \cdot\left[\vec{k} \times \vec{q}_{\pi}\right] \sim \sin \phi
$$

$$
A^{\perp} \sim \frac{m_{e}}{E} \delta P_{\perp} \frac{\operatorname{Im} T_{\gamma p \rightarrow \pi^{+} n}}{\left|T_{\gamma p \rightarrow \pi^{+} n}\right|} \sim 10^{-3} \times 1 \% \times\left(q_{\pi} / \mathrm{M} \sim 5-10 \times 10^{-3}\right)->1^{-7}
$$

One will need a dedicated measurement of a.p.
2π azimuthal coverage of the detector

Side note: long-range PV forces from HPNC

$$
T_{1 \gamma+Z}^{e p}=\frac{1}{Q^{2}}+\left\{R_{C h .}^{2}, \mu^{p}, \ldots\right\}-\frac{G_{F}}{4 \sqrt{2} \pi \alpha}\left(Q_{W}^{p}+Q^{2}\left\{R_{W}^{2}, \mu_{W}^{p}, \ldots\right\}\right)
$$

Radiative corrections (mostly 2γ-exchange) induce an intermediate range term
$T_{1 \gamma+2 \gamma}^{e p} \rightarrow \frac{1}{Q^{2}}+\frac{\alpha}{\pi} C_{2 \gamma}(E) \ln \left(Q^{2} / E^{2}\right)+\left\{R_{C h .}^{2}, \mu^{p}, \ldots\right\}$
Calculate $\mathrm{C}_{2 \gamma}(\mathrm{E})$ from a near-forward dispersion relation - a sum rule
Gorchtein 2014 Large collinear log - from the WW approximation inside the loop

$$
2 \operatorname{Im} T_{2 \gamma}=e^{4} \int \frac{d^{3} \vec{k}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{\ell_{\mu \nu} \cdot \operatorname{Im} W^{\mu \nu}}{\left(q_{1}^{2}+i \epsilon\right)\left(q_{2}^{2}+i \epsilon\right)}
$$

Importantly: $\mathrm{C}_{2 \gamma}(\mathrm{E}=0)=0$ (due to symmetries)
Leads to a formal redefinition of the charge radius in terms of observables

$$
R_{C h}^{2} \sim\left[T^{e x p}-\frac{1}{Q^{2}}\right]_{Q^{2} \rightarrow 0} \quad \longrightarrow \quad R_{C h}^{2} \sim\left[T^{e x p}-\frac{1}{Q^{2}}\right]_{E \rightarrow 0, Q^{2} \rightarrow 0}
$$

Do these effects matter in practice? - Depends on precision you want to achieve for Rch

Side note: long-range PV forces from HPNC

Consider 2γ-exchange in presence of PNC in the hadronic system

$$
T_{Z+P V 2 \gamma}^{e p}=-\frac{G_{F}}{4 \sqrt{2} \pi \alpha}\left[Q_{W}^{p}+\frac{8 \sqrt{2} \alpha^{2}}{G_{F}} C_{2 \gamma}^{P V}(E) \ln \left(Q^{2} / E^{2}\right)\right]
$$

$\mathrm{CPV}_{2 \gamma}(\mathrm{E})$ from a near-forward dispersion relation

$$
2 \operatorname{Im} T_{2 \gamma}^{P V}=e^{4} \int \frac{d^{3} \vec{k}_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{\ell_{\mu \nu} \operatorname{Im} W_{P V}^{\mu \nu}}{\left(q_{1}^{2}+i \epsilon\right)\left(q_{2}^{2}+i \epsilon\right)}
$$

Forward PV Compton tensor $\operatorname{Im} W_{P V}^{\mu \nu} \sim \epsilon^{\mu \nu \alpha \beta} P_{\alpha} q_{\beta} \frac{F_{3}^{2 \gamma}}{2(P q)}$

$$
C_{2 \gamma}^{P V}(E)=\frac{1}{M} \int \frac{d \omega}{\omega^{2}} F_{3}^{2 \gamma}(\omega)\left[\frac{\omega}{2 E} \ln \left|\frac{E+\omega}{E-\omega}\right|+\frac{\omega^{2}}{4 E^{2}} \ln \left|1-\frac{E^{2}}{\omega^{2}}\right|\right]
$$

Vanishing of $C^{P V_{2 \gamma}}(0)$ is non-trivially protected by an exact sum rule

$$
C_{2 \gamma}^{P V}(0) \sim \int \frac{d \omega}{\omega^{2}} F_{3}^{2 \gamma}(\omega)=0
$$

Lukaszuk 2002; Kurek, Lukaszuk, 2004

Side note: long-range PV forces from HPNC

Presence of HPNC leads to a redefinition of the weak charge

$$
Q_{W}=-\left.\frac{4 \sqrt{2} \pi \alpha}{G_{F} Q^{2}} A^{e x p}\right|_{Q^{2} \rightarrow 0} \longrightarrow \quad Q_{W}=-\left.\frac{4 \sqrt{2} \pi \alpha}{G_{F} Q^{2}} A^{e x p}\right|_{E \rightarrow 0, Q^{2} \rightarrow 0}
$$

What is the impact for current experiments?

A model estimate of $C^{P V_{2 \gamma}}(E)$ for P2, Qweak kinematics ($h^{1} \pi, d_{\Delta}+$ SR constraint):
small at current precision level - but may become significant if pushing beyond 10-4
Why is the correction small? - only natural hadronic scales present
Potentially larger effects for nuclei (much lower scales - nuclear PV polarizabilities)
An effect for C-12 @ MESA (0.3\% measurement) - will HPNC interfere?

PNC in Yb, Dy atoms - group of Dima Budker

Why PV with Yb ?

- Largest PV-effect observed in any atom
- Seven stable isotopes including two with nuclear spin Goals (Milestones)

1. Verify dependence of Qw on neutron number
2. Measure the Yb anapole moment
3. Probe neutron skins of Yb nucleus

Method

Optically excite the ${ }^{1} S_{0} \rightarrow{ }^{3} D_{1}$ transition in a region of crossed E - and B -fields, that define handedness. Field reversals flip handedness resulting in a left-right asymmetry in the excitation rate.

Rotational Invariant: $(\vec{\varepsilon} \cdot \vec{B})(\vec{E} \times \vec{\varepsilon} \cdot \vec{B})$

Current status

Finishing up Qw comparison between ${ }^{176} \mathrm{Yb},{ }^{174} \mathrm{Yb},{ }^{172} \mathrm{Yb},{ }^{170} \mathrm{Yb}$.
Then moving on to anapole.

Currently achieving 3% accuracy in 1 hr .

Need 0.5% for anapole, neutron skins. dependence to observe neutron skin effects

Yb roadmap

1. Measure Qw dependence on neutron number (almost completed)
2. Probe spin-dependent PV (anapole)
3. Precisely measure isotopic

References

1. K. Tsigutkin, D. Dounas-Frazer, A. Family, J. E. Stalnaker, V. V. Yashchuk, and D. Budker, Phys. Rev. Lett. 103, 071601 (2009).
2. D. Antypas, A. Fabricant, L. Bougas, K. Tsigutkin, and D. Budker, Hyperfine Interact. 238, 21 (2017).

Conclusions \& Outlook

Strong PV program in Mainz that can have impact on HPNC:
PVES - proton's anapole moment, PV π^{+}threshold production

- backward measurement will reduce a.m. error by factor 4
- PV π^{+}production: potentially a clean way to access $h^{1}{ }^{1}$;
- dedicated study of possible setup and systematics needed

HPNC induces energy-dependent, long-range PV forces

- potentially important

Atomic PNC - weak charges, anapole moments, neutron skins;
UCN facility TRIGA - neutron β-decay plans at the moment;

- TRIGA is thought to be a user facility in the future;
- HPNC with UCN may become an option in Mainz, too

MITP Scientific Program
 "Bridging the Standard Model to New Physics with the Parity-Violating Program at Mainz" April 23 - May 4, 2018

https://indico.mitp.uni-mainz.de/event/123/
Organizers: Jens Erler, Hubert Spiesberger, MG
Topics:
Weak mixing angle at low energy with MESA
Neutron beta decay with TRIGA
Hadronic PNC
Precision low-energy tests in a global context
Invited speakers:
Bill Marciano, Michael Ramsey-Musolf, Barry Holstein, Mike Snow, John Hardy, Vincenzo Cirigliano, Krishna Kumar, Chuck Horowitz, David Armstrong, Paul Souder, Frank Maas, Dima Budker, Werner Heil

