Parity-odd Gamma-ray Asymmetry in Polarized Neutron Capture on Hydrogen: The NPDGamma Experiment

Libertad Barrón Palos*

Instituto de Física Universidad Nacional Autónoma de México

* for the NPDGamma collaboration

Traditional Theoretical Description

Meson-exchange Model

- One-meson-exchange potential
- Model dependent

Coupling	DDH reasonable range			e '	DDH 'best value"
h_{π}^{l}	0	→	11		+4.6
$h_ ho^{0}$	11	→	-31		-11
$h_{ ho}^{1}$	-0.4	→	0		-0.2
$h_{ ho}^{2}$	-7.6	→	-11		-9.5
$h_{\omega}^{\ 0}$	5.7	\rightarrow	-10.3		-1.9
h_{ω}^{1}	-1.9	\rightarrow	-0.8		-1.2
in units of ×	10 ⁻⁷			$h_{ ho}^{1}$	is set to zero

Ramsey-Musolf, Page, *Annu. Rev. Nucl. Part. Sci.* 56, 1-52 (2006)

Desplanques, Donoghue, Holstein, Annals of Physics 124, 449 (1980)

Traditional Theoretical Description

Meson-exchange Model

- One-meson-exchange potential
- Model dependent

Coupling	DDH reasonable range		•	DDH 'best value"	
h_{π}^{l}	0	→	11		+4.6
$h_ ho^{0}$	11	→	-31		-11
$h_{ ho}^{1}$	-0.4	→	0		-0.2
$h_{ ho}^{2}$	-7.6	→	-11		-9.5
$h^{\ 0}_{\omega}$	5.7	\rightarrow	-10.3		-1.9
h_{ω}^{1}	-1.9	→	-0.8		-1.2
in units of ×	10 ⁻⁷			$h_{ ho}^{1'}$	is set to zero

Desplanques, Donoghue, Holstein, Annals of Physics 124, 449 (1980)

Motivation for NPDGamma and other few-nucleon experiments using neutrons

NPDGamma

 $\vec{n} + p \rightarrow d + \gamma$

- Dominated by a $\Delta I = 1 {}^{3}S_{1} {}^{3}P_{1}$ parity-odd transition in the *n*-*p* system (π -exchange)
- h_{π}^{1} coupling can be isolated (heavy meson contributions very small)
- $A_{\gamma} \approx -0.11 \ h_{\pi}^{1} \ (A_{\gamma} \approx -5 \times 10^{-8} \text{ using DDH "best value"})$
- Also charged currents are suppressed for *∆I=1*, so potential to study neutral currents (not present in strangeness-changing HWI)

More Recent Theoretical Developments

Effective Field Theory (EFT)

$$\begin{split} \Lambda_{0}^{^{1}S_{0}-^{^{3}P_{0}}} &= -g_{\rho}(2+\chi_{\rho})b_{\rho}^{0} - g_{\omega}(2+\chi_{\omega})b_{\omega}^{0} \\ \Lambda_{0}^{^{3}S_{1}-^{^{1}P_{1}}} &= -3g_{\rho}\chi_{\rho}b_{\rho}^{0} + g_{\omega}\chi_{\omega}b_{\omega}^{0} \\ \Lambda_{1}^{^{1}S_{0}-^{^{3}P_{0}}} &= -g_{\rho}(2+\chi_{\rho})b_{\rho}^{1} - g_{\omega}(2+\chi_{\omega})b_{\omega}^{1} \\ \Lambda_{1}^{^{3}S_{1}-^{^{3}P_{1}}} &= \sqrt{\frac{1}{2}}g_{\pi NN}\left(\frac{m_{\rho}}{m_{\pi}}\right)^{2}b_{\pi}^{1} + g_{\rho}(b_{\rho}^{1} - b_{\rho}^{1'}) - g_{\omega}b_{\omega}^{1} \\ \Lambda_{2}^{^{1}S_{0}-^{^{3}P_{0}}} &= -g_{\rho}(2+\chi_{\rho})b_{\rho}^{2} \end{split}$$
 Haxto

- Not dependent on a model .
- Consistent with the symmetries and degrees of freedom of QCD

Haxton, Holstein, Prog. Part. Nucl. Phys. 71, 187 (2013)

Hierarchy of Parameters in Large-N_c Expansion

Two leading order (LO)

$$\Lambda_0^+ \equiv \frac{3}{4} \Lambda_0^{3S_1 - {}^1P_1} + \frac{1}{4} \Lambda_0^{1S_0 - {}^3P_0} \sim N_c$$
$$\Lambda_2^{1S_0 - {}^3P_0} \sim N_c$$

Schindler, Springer, Vanasse, *Phys. Rev. C*. 93, 025502 (2016) Gardner, Haxton, Holstein, *Annu. Rev. Nucl. Part. Sci.* 67, 69-95 (2017) Three next-to-next-to leading order (N²LO)

$$\Lambda_0^{-} \equiv \frac{1}{4} \Lambda_0^{3S_1 - {}^{1}P_1} - \frac{3}{4} \Lambda_0^{1S_0 - {}^{3}P_0} \sim 1/N_c$$
$$\Lambda_1^{1S_0 - {}^{3}P_0} \sim \sin^2 \theta_w$$
$$\Lambda_1^{3S_1 - {}^{3}P_1} \sim \sin^2 \theta_w$$

More Recent Theoretical Developments

Effective Field Theory (EFT)

$$\begin{split} \Lambda_{0}^{^{1}S_{0}-^{^{3}P_{0}}} &= -g_{\rho}(2+\chi_{\rho})b_{\rho}^{0} - g_{\omega}(2+\chi_{\omega})b_{\omega}^{0} \\ \Lambda_{0}^{^{3}S_{1}-^{^{1}P_{1}}} &= -3g_{\rho}\chi_{\rho}b_{\rho}^{0} + g_{\omega}\chi_{\omega}b_{\omega}^{0} \\ \Lambda_{1}^{^{1}S_{0}-^{^{3}P_{0}}} &= -g_{\rho}(2+\chi_{\rho})b_{\rho}^{1} - g_{\omega}(2+\chi_{\omega})b_{\omega}^{1} \\ \Lambda_{1}^{^{3}S_{1}-^{^{3}P_{1}}} &= \sqrt{\frac{1}{2}}g_{\pi NN}\left(\frac{m_{\rho}}{m_{\pi}}\right)^{2}b_{\pi}^{1} + g_{\rho}(b_{\rho}^{1} - b_{\rho}^{1'}) - g_{\omega}b_{\omega}^{1} \\ \Lambda_{2}^{^{1}S_{0}-^{^{3}P_{0}}} &= -g_{\rho}(2+\chi_{\rho})b_{\rho}^{2} \end{split}$$
 Haxto

- Not dependent on a model •
- Consistent with the symmetries and degrees of freedom of QCD

Haxton, Holstein, Prog. Part. Nucl. Phys. 71, 187 (2013)

Hierarchy of Parameters in Large-N_c Expansion

Two leading order (LO)

$$\Lambda_0^+ \equiv \frac{3}{4} \Lambda_0^{3S_1 - {}^1P_1} + \frac{1}{4} \Lambda_0^{1S_0 - {}^3P_0} \sim N_c$$
$$\Lambda_2^{1S_0 - {}^3P_0} \sim N_c$$

Schindler, Springer, Vanasse, *Phys. Rev. C*. 93, 025502 (2016) Gardner, Haxton, Holstein, *Annu. Rev. Nucl. Part. Sci.* 67, 69-95 (2017) Three next-to-next-to leading order (N²LO)

$$\Lambda_0^- \equiv \frac{1}{4} \Lambda_0^{3S_1 - {}^1P_1} - \frac{3}{4} \Lambda_0^{1S_0 - {}^3P_0} \sim 1/N_c$$

Isolated in γ polarization in ¹⁸F
decay and NPDGamma $\Lambda_1^{3S_1 - {}^3P_1} \sim \sin^2 \theta_w$

A Long Way Coming

First Stage at the Los Alamos Neutron Science Center (LANL)

- Letter of intent in 1998
- Construction of FP12
- Data taking at Los Alamos in 2006-2007
- Statistically limited result: $A_{\gamma} = [-1.2 \pm 2.1(\text{stat.}) \pm 0.2(\text{syst.})] \times 10^{-7}$ [Gericke et al. *Phys. Rev. C* 83, 015505 (2011)]

Second Stage at the Spallation Neutron Source (ORNL)

- More intense neutron flux available
- Modifications to some components, installation and commissioning (2008-2012)
- H₂ data taking at the SNS (November 2012 March 2014)
- Apparatus decommissioned in the Summer of 2014 and partially reinstalled again in 2016 for background asymmetry measurement (Aluminium inconsistencies)
- Final result to be announced at the CIPANP 2018 meeting
- Preliminary result: $A_{\gamma} = [-3.1 \pm 1.5(\text{stat.}) \pm 0.3 \text{ (syst.)}] \times 10^{-8}$ [David Blyth, PhD thesis, Arizona State University (2017)]

Neutron Flux

60 pulses per second

Neutron Flux

60 pulses per second

Neutron Flux

60 pulses per second

Beam Monitors

- Ionization chamber with N_2 and some ³He (1-2%)
- About 1% of the neutrons are absorbed
- Number of neutron per pulse determined to a precision of 10⁻⁴

Super Mirror (SM) Polarizer

- Magnetized Fe/Si SM
- Scattering length $b \pm p$, with p the magnetic component

Fe/Si on boron float glass, no Gd

m=3.0 n=45 R=9.6 m L=40 cm d=0.3mm critical angle channels radius of curvature length vane thickness

T=25.8% P=95.3% N=2.2×10¹⁰ n/s transmission polarization output flux (chopped)

Holding Magnetic Field and RF Spin Rotator

Seo et al., Phys. Rev. STAB 11, 084701 (2008)

nstituto de Física

LH₂ Target

Santra et al., *Nucl. Instrum. and Meth. A* 620, 421 (2010)

Grammer et al., Phys. Rev. B 91, 180301(R) (2015)

Gamma-ray Detector

- 48 Csl detectors
 - 3π acceptance •
- Current mode operation (5x10⁷ gammas/pulse) •

Extraction of A_{γ}

$$\begin{split} A_{\gamma,raw} &= \frac{1}{2} \Biggl(\frac{Y_{\theta}^{\uparrow} - Y_{\theta+\pi}^{\uparrow}}{Y_{\theta}^{\uparrow} + Y_{\theta+\pi}^{\uparrow}} - \frac{Y_{\theta}^{\downarrow} - Y_{\theta+\pi}^{\downarrow}}{Y_{\theta}^{\downarrow} + Y_{\theta+\pi}^{\downarrow}} \Biggr) \\ A_{\gamma} &= P_{n} \epsilon_{SR} C_{d} \Biggl(A_{\gamma,raw} - \sum_{i} F_{BG,i} \frac{A_{\gamma,i}}{P_{n,i} \epsilon_{SR,i} C_{d,i}} \Biggr) \\ A_{\gamma,i} &= A_{\gamma,i}^{PV} G_{UD,i} + A_{\gamma,i}^{PC} G_{LR,i} \end{split}$$

Corrections

- Neutron polarization (*P_n*)
- Spin Flipper efficientcy (ϵ_{SR})
- Neutron depolarization (C_d)
- Background prompt gammas from materials other than hydrogen, which contribute in different fractions (F_{BG}). The main background contribution comes from Aluminum (~20%)
- Geometrical factors (G_{UD} and G_{LR}), which include the finite structure of the beam, the effective solid angle of the detector, the spatial distribution of the material in question and other effects

Extraction of A_{γ}

Corrections

- Neutron polarization (*P_n*)
- Spin Flipper efficientcy (ϵ_{SR})
- Neutron depolarization (C_d)
- Background prompt gammas from materials other than hydrogen, which contribute in different fractions (F_{BG}). The main background contribution comes from Aluminum (~20%)
- Geometrical factors (G_{UD} and G_{LR}), which include the finite structure of the beam, the effective solid angle of the detector, the spatial distribution of the material in question and other effects

Monte Carlo

The Aluminium Background

- Capture of neutrons on ²⁷AI produces ²⁸AI*
- Several (3-4) prompt gammas are emitted in the transition to ²⁸Al g.s. (total energy of 7.8 MeV)
- Asymmetries (PV and PC) correlated to the neutron spin are expected in the emission of prompt gammas

- After the experiment was decommissioned and analysis was nearing completion, inconsistencies revealed the dedicated Aluminium target was not 6061 alloy
- The uncertainty goal of the experiment was not achievable without a new background subtraction strategy
- The experiment was partially mounted again in 2016 to perform measurements with background targets made out of the actual windows of the LH₂ target cryostat and other components

Systematic Uncertainties (preliminary)

False Asymmetries	Process	Aγ, PV unc.	Aγ, PC unc.
Stern-Gerlach	$ec{\mu} \cdot abla B$	8×10 ⁻¹¹	
Mott-Schwinger	$\vec{n} + p \rightarrow \vec{n} + p$		9×10 ⁻⁹
γ -ray circular polarization	$\vec{n} + p \rightarrow d + \gamma$	7×10 ⁻¹³	
β decay in flight	$\vec{n} \rightarrow e^- + p + \overline{v}$	3×10 ⁻¹¹	
Radiative β decay	$\vec{n} \rightarrow e^- + p + \overline{v} + \gamma$	2×10 ⁻¹¹	
Capture on ⁶ Li	$\vec{n} + {}^{6} \text{Li} \rightarrow {}^{7} \text{Li}^{*} \rightarrow \alpha + t$	2×10 ⁻¹²	
²⁸ Al β decay	$\vec{n} + {}^{27} \text{Al} \rightarrow {}^{28} \text{Al} \rightarrow {}^{28} \text{Si} + e^-$	<1×10 ⁻⁹	
Capture on AI alloy	alloy $(\vec{n}, \gamma s)$	2×10 ⁻⁹	6×10 ⁻⁹
Beam power modulation		6×10 ⁻¹⁰	8×10 ⁻¹⁰
Instrumental		<1×10 ⁻⁹	<1×10 ⁻⁹
Multiplicative Factors	Value	Aγ unc.	
Geometric factors	Detector-dependent	3%	_
Beam polarization	0.936(5)	0.5%	
LH ₂ SF efficiency	0.969(9)	0.9%	
2016 SF efficiency	0.997(3)	0.3%	David Blyth, PhD thesis Arizona State
Beam depolarization	0.946 (avg. for LH ₂)	1.4%	University (2017)

The New Landscape for NPDGamma

In the context of new theoretical descriptions and the hierarchization of parameters in large- N_c expansion, NPDGamma, as well as gamma polarization from ¹⁸F, can provide a tests for this theory, measuring the two N²LO parameters

Gardner, Haxton, Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69-95 (2017)

The New Landscape for NPDGamma

In the context of new theoretical descriptions and the hierarchization of parameters in large- N_c expansion, NPDGamma, as well as gamma polarization from ¹⁸F, can provide a tests for this theory, measuring the two N²LO parameters

Gardner, Haxton, Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69-95 (2017)

Improvement Possibilities

- One either has to do this measurement on a pulsed neutron beam or at least pulse the beam in some way so that one can analyze the transient signals in the gamma detectors.
- We were not limited by systematics. In this experiment they were ~3×10⁻⁹. This could be decreased to about 1×10⁻⁹.
- It would be nice to try to find something better than Aluminum. A different Al alloy or one could try Titanium for the target vessel.
- Put the Lithium plastic inside the hydrogen target vessel?
- 4300 hours life time with average beam power about 1 MW at SNS for the LH₂ running gave a statistical error of \sim 1.5×10⁻⁸. Other potential beams/sources?

Summary

- The NPDGamma is about to conclude a long-time effort to measure the gamma asymmetry in the capture of polarized neutrons on Hydrogen, with in unprecedented precision (~1.5×10⁻⁸ stat.)
- The process is dominated by a $\Delta I=1$ ${}^{3}S_{1}-{}^{3}P_{1}$ parity-odd transition (π -exchange) and therefore this experiment is appropriate to constrain the h_{π}^{1} weak coupling (longest range interaction in meson-exchange models).
- The value observed by the NPDGamma collaboration is smaller than the value predicted in the DDH model by about a factor of 0.6.
- More recent theoretical approaches (EFT + large-N_c expansion) have produced a hierarchization of LEC in LO (2) and N²LO (3). The LEC related to the observable measured in NPDGamma, $\Lambda_1^{3S_1-3P_1}$, is a N²LO.

The NPDGamma Collaboration

The NPDGamma Collaboration

R. Alarcon, L. Alonzi, E. Askanazi, S. Baeßler, S. Balascuta, L. Barrón-Palos, A. Barzilov, D. Blyth, J.D. Bowman, N. Birge, J.R. Calarco, T.E. Chupp, V. Cianciolo, C.E. Coppola, C. Crawford, K. Craycraft, D. Evans, C. Fieseler, N. Fomin, E. Frlez, J. Fry, I. Garishvili, M.T.W. Gericke, R.C. Gillis, K.B. Grammer, G.L. Greene, J. Hall, J. Hamblen, C. Hayes, E.B. Iverson, M.L. Kabir, S. Kucuker, B. Lauss, R. Mahurin, M. McCrea, M. Maldonado-Velázquez, Y. Masuda, J. Mei, R. Milburn, P.E. Mueller, M. Musgrave, H. Nann, I. Novikov, D. Parsons, S.I. Penttila, D. Počanić, A. Ramírez-Morales, M. Root, A. Salas-Bacci, S. Santra, S. Schröder, E. Scott, P.-N. Seo, E.I. Sharapov, F. Simmons, W.M. Snow, A. Sprow, J. Stewart, E. Tang, Z. Tang, X. Tong, D.J. Turkoglu, R. Whitehead, and W.S. Wilburn

