
0.35

0.25

12 x 8 system, Vertical PBC’s
Jx/t= 0.55,Jy/t=0.45, mu=1.165,doping=0.1579

White & 
ScalapinoDMRG results you’ve seen:

Rest of talk:  can we do finite temperature for 2D clusters?  YES

Key question (old):  What is a typical wavefunction of a quantum system at 
finite T?

--Much more efficient algorithm for finite T DMRG
--Highly intuitive (“semiclassical”) results in an exact framework

What some of you have noticed: (a) in 1D, excellent dynamics [e.g. Pereira, 
White, Affleck,  key advance in real-time evolution by Vidal (QI))
(b) In 1D, finite temperature (two methods: transfer matrix DMRG;  direct 
calculation of thermodynamic density matrix (QI))

What you haven’t seen:  DMRG on 2D clusters with dynamics  or finite 
temperature  (computational efficiency)

Steven White, UC Irvine
KITP Higher Tc Conference, June 26, 2009
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Minimally entangled typical thermal states

• “Typical quantum states” at finite temperature
– What are typical states?
– Why energy eigenstates are a poor choice

• METTS: typical wavefunctions which are as classical as possible
• Examples for Heisenberg spin systems

– 1D
– 2 leg ladders
– Square lattice
– Kagome lattice

Physics Viewpoint:  http://physics.aps.org/articles/v2/39  (May 11) & PRL
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“Typical”
• Example of usefulness of typical versus averages: average 

number of kids per family in US:  2.1 ± 0.9

• Generically:  want |x> with P(x), choose |x> at random
– If |x> not chosen from whole space (e.g. only people in 

phone book) want no “atypical” , “biased” characteristics
– Expect statistics to duplicate whole space

• Typical wavefunctions |ϕ(i)> at finite T (pure, not mixed):
– Expect usual, correct statistical mechanics from unweighted 

averages over typical states

– This holds if 
– At T=0, the typical wavefunction should be the ground state!
– Introductory SM textbook answer:  energy eigenstates are typical!

????

〈A〉SM =
∑

i

P (i)〈φ(i)|A|φ(i)〉
∑

i

P (i)|φ(i)〉〈φ(i)| = e−βH

(0,0,0,0,0,1,0,0,0,....)     versus   (0.3742,-0.43838,0.04172,-0.14499-0.2377i,...  )
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Energy eigenstates as typical states
• Is an eigenstate of H a typical finite T state?

– Schrödinger: “...the attitude is altogether wrong.”

– “this assumption is irreconcilable with the very foundations 
of quantum mechanics”

– “We yet decided to adopt it ...  very convenient ... same 
results ...”

– Modern textbooks:  skip the warnings, sweep subtle 
questions under the rug

• Why is it so wrong?    (eigenstates = senators)

– No mechanism in thermalization to go to a definite 
eigenstate (heat bath or “ergodic” time evolution)

– Level spacing is exponentially small, would take exponentially 
long to get to one eigenstate  (exp(1023)...)

– Exponentially small spacings mean even tiny perturbations (e.g. 
coupling to vacuum E&M fields) completely change states-- Exact 
highly excited eigenstates physically meaningless

(1946, 1952)
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N/2 ln 2

N=8

N=12

Von Neumann Entanglement 
entropy S for every eigenstate 
(system divided in center)Energy levels of S=1/2 

Heisenberg chains

Mostly Classical Regime

Bulk eigenstates are “super-entangled”
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What is the key problem?
• Ask an experimentalist:  systems at high temperature show smaller 

quantum effects than at low T
• The eigenstate formalism describes high T in terms of much more 

entangled states--is there another representation that is more 
classical at high T??

• Yes: Density matrix formalism ρ=e-βH

– Trotter/QMC:  short world lines for small β
– DMRG applied directly to ρ: ρ ≈ 1 for small β
– But:  sign problem, computational inefficiency

• Yes:  METTS
– Wavefunction based
– Minimal entanglement at high T
– Very intuitive
– Much more efficient computationally
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Von Neuman entanglement entropy
Ordinary entropy:  S ~ ln(number of accessible states)

SVN =  SVN(ψ, bipartition)~ ln(number of states required to 
represent quantum fluctuations across the cut) 
Even ground state has finite SVN

• Purely classical states:   SVN =0 for every partition--classical 
product state |↑↓↑↓↑↑↓↓↑↓>

• If  SVN  is fairly small, DMRG works
– Throw away low probability states 
– “Low entanglement approximation” 

i j
S ~ entanglement 
across the cut
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Definition of METTS
• A typical state is one selected from an ensemble {|φ(i)>} with 

probability P(i)
• To reproduce Stat Mech, require
• To rewrite ρ in terms of some set of “typical” states:

– Insert 1: 
– For any orthonormal set {|i>}:
– Then

• So far very general:  could take |i> = eigenstates   (bad choice)
• To construct minimally entangled typical thermal states: choose {|i>} to 

be a complete set of classical product states, e.g. |↑↓↑↑↓↓>
• The “seed” |i> is completely unentangled, so we expect |ϕ(i)> to be 

minimally entangled

∑

i

P (i)|φ(i)〉〈φ(i)| = e−βH

P (i) ≡ 〈i| exp(−βH)|i〉 = Tr{ρ|i〉〈i|}

|φ(i)〉 = P (i)−1/2 exp(−βH/2)|i〉

Then
∑

i

P (i)|φ(i)〉〈φ(i)| =
∑

i

P (i)
P (i)

e−βH/2|i〉〈i|e−βH/2 = e−βH

ρ = e−βH/2 1 e−βH/2

ρ = e−βH/2
∑

i

|i〉〈i| e−βH/2
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Nice properties of METTS
• Reproduces exact standard Statistical Mechanics
• As classical as possible:  high T, completely classical; T=0, ground 

state

• Breaks symmetries:  no unphysical superpositions of order params
• The METTS of two widely separated subsystems has no 

entanglement between them

• Provides nice intuition
• Very easy and fast to compute (DMRG, ED, etc):  seed |i> based on 

previous METTS via quantum measurement
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Imaginary time evolution to get a METTS

Arrow represents <ϕ(i)|S|ϕ(i)> 
Bond represents <ϕ(i)|S·S|ϕ(i)>

An unentangled spin has length 1/2.
Entanglement reduces length.
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Imaginary time evolution to get a METTS

Arrow represents <ϕ(i)|S|ϕ(i)> 
Bond represents <ϕ(i)|S·S|ϕ(i)>

An unentangled spin has length 1/2.
Entanglement reduces length.
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Quantum Measurement to get new seed |i>
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Quantum Measurement to get new seed |i>
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Complete METTS Algorithm β=5
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Complete METTS Algorithm β=5
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Efficiency of METTS for thermal properties
• Alternative finite T approaches

– Quantum Monte Carlo:  sign problem for frustration and 
fermions

– Transfer matrix DMRG:  not (yet) capable of 2D clusters, ...
– Purification of density matrix (heat bath/ancilla) approach

• Doesn’t need averaging over states, but...
• Entanglement twice that of METTS

• DMRG uses matrix product state with m x m matrices,                      
m ~ exp(a S)
– DMRG calculation time ~ N m3

– Finite T heat-bath:  ~ N β m6,   
–  METTS:  ~ N β m3 (#  METTS sampled = 10-100)
– Ratio   ~m3/100;  if m ~ 1000,   METTS faster by ~ 107
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METTS for 2D Heisenberg, β=4
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METTS for Kagome Heisenberg, β=10
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METTS for Kagome Heisenberg, β=20
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Consequences

• Experimental:
–No cloning theorem means the only way we can find out 

the wavefunction of a system is if we can create the same 
state repeatedly by identical preparation

–Thermal states are inherently unrepeatable
–Experimental predictions give standard stat mech

• Theoretical and computational:
–Hopefully new insight into system properties
–Easier approach to finite T in hard systems, e.g. 2D

• Maybe 100-1000 times as much CPU time as for ground state
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Summary

• METTS provide a new answer to an old question:
–What is a typical quantum wavefunction at finite T?

• They provide very intuitive understanding of the 
fluctuating properties of the system

• They are much more efficient within DMRG than 
previous methods

• To paraphrase the bible:

– (Classical part via an ensemble; quantum part in the wavefunction)

“Give unto SchrÖdinger that which is SchrÖdinger’s; 
give unto Boltzmann that which is Boltzmann’s”
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0.35

0.25

12 x 8 system, Vertical PBC’s
Jx/t= 0.55,Jy/t=0.45, mu=1.165,doping=0.1579

0.4

White & Scalapino
White & Chernyshev

Two examples of state-of-the-art ground state DMRG

Triangular system:  sign problem, 2D, but no competing phases:  quantitative 
determination of order parameter
t-J model:  good ground state for specified cluster, but:  competing forms of 
order, sensitive to small terms (t’), other small terms may be missing... simply 
improving algorithm by factor of 10 or 100 may not help much...
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Real time evolution, growth of entanglement

0

N=40 1D Heisenberg model

Entanglement entropy 
measured in center

Systems rapidly evolve 
away from the classical 
regime to highly entangled 
states

Entanglement grows much 
faster at higher temperatures,
as seen earlier in ancilla 
method

Decoherence would tend to 
counteract the entanglement 
growth in a real system
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Typical States for Heisenberg Chains

L=200, central portion

on each bond〈!S · !S〉

〈!Sx〉, 〈!Sy〉, 〈!Sz〉

Orientation for each Measurement on a 
site chosen at random

(〈!Sx〉2 + 〈!Sy〉2 + 〈!Sz〉2)1/2 ≡ S̃

For an unentangled spin in any state,       is 1/2.  It provides a good 
measure of how classical a spin is.
The primary origin of the finite correlation length appears to be 
twisting of the order parameter--dimerization is slight.

S̃
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