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excitations and no antiferromagnetic long-range order
modeled after the ground state of the Hubbard model
at half-filling in 1 spatial dimension. Baskaran and An-
derson go further to say that the antiferromagnet is a
Mott insulator, and it is an antiferromagnet because it is
a Mott insulator, not vice versa; superexchange is a con-
sequence of the insulating state. Unfortunately, ten years
of work by some of the best minds in theoretical physics
have failed to produce any formal demonstration of the
existence of such a state at zero temperature - essential
here because everything conducts a little at finite tem-
perature - and dimension greater than 1. Probably the
closest anyone came was my own work6 which produced
a state with a spin gap and discrete broken symmetries
at the price of long-range interactions, and which had
a phenomenology inconsistent with that of the cuprates.
Anderson’s views to the contrary, this matters a great
deal because one’s inability to back up phenomenological
observations with a simple model that is easy to solve and
makes sense usually means that an important physical
idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes
gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the
interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.

In light of the magnitude and scope of these problems
it is rather ironic that a zero-temperature state with or-
der possessing all of these properties, namely the con-
ventional Hartree-Fock spin density wave, has existed all
along and can be written down and explained easily.

Why is it so hard to construct a Mott insulating vac-
uum that makes sense in 2 or more spatial dimensions
when it can be done so readily in 1? I would like to ad-
dress this question in the context of the pure spin limit of
the problem, as the difficulty is exhibited already there,
but the meaningfulness of this limit is not obvious and is
one of the things we need eventually to address. Consider
a spin Hamiltonian of the form

H =
∑

<j,k>

Jjk
!Sj · !Sk , (1)

where < j, k > denotes a sum over lattice pairs, not
necessarily near neighbors, and Jjk is a translationally-
invariant Heisenberg exchange interaction of finite range.
When the total spin per site is integral it is possible to
find exact solutions in any number of dimensions that

are legitimate spin liquids, in the sense of having ex-
ponentially decaying correlations, an energy gap, and a
common-sense relationship between this gap and the cor-
relation length7. When the spin per site is half-integral,
on the other hand, no such solution has even been found,
and such computer work as we have indicates either or-
der or inadequate sample-size convergence, i.e. that the
simulation is not large enough to determine one way or
the other whether ordering occurs. This fundamental
disparity between integral and half-integral spins was an-
ticipated by Lieb, Schultz, and Mattis8 long before the
discovery of high-Tc superconductivity and is manifested
as the Haldane effect in 1 dimension9. They introduced
the unitary operator

U = exp

{

i
∑

j

2πxj

L
Sz

j

}

, (2)

where xj denotes the x-coordinate of the jth lattice site
and L denotes the sample size, which has the effect of
rotating each spin about the z-axis in a way that twists
by 2π as one advances across the sample. This opera-
tor is defined in any number of dimensions, but for the
arguments to work properly in dimension greater than
1 it is necessary to imagine a sample that is long and
skinny, say 50 light-years wide and 105 light-years long,
and to have an odd number of sites in the plane perpen-
dicular to the long axis. Since U rotates all the spins
in a given region together it is almost a symmetry oper-
ator and therefore increases the expected energy by an
amount that vanishes as the sample size grows. Denoting
the exact ground state by |Ψ0 >, we have specifically

<Ψ0|U †HU |Ψ0 >

<Ψ0|Ψ0 >
−

<Ψ0|H|Ψ0 >

<Ψ0|Ψ0 >
∝ 1/L2 , (3)

where L denotes the sample length. However, in a half-
integral spin system we also have

<Ψ0|U |Ψ0 >= 0 , (4)

this following from the minus sign acquired by a spinor
when it is rotated by 2π. So U |Ψ0 > is exactly orthogonal
to |Ψ0 > when the spin per unit cell is half-integral. Since
U does not conserve total spin, this implies that half-
integral spin systems have arbitrarily low-energy excita-
tions in every spin channel and are thus fundamentally
infrared-degenerate. This is inconsistent with the energy
gap characteristic of a legitimate quantum spin liquid but
an expected and necessary consequence of ordering. So
the simplest explanation of the computer experiments,
the one I believe to be right, is that half-integral spin
systems have a powerful propensity to order and do so
almost always. The case of 1 dimension is an exception
for the simple reason that continuous symmetry breaking
is impossible in 1 dimension. The quantum spin liquid in
1 dimension is not a new state of matter at all but a still-
born antiferromagnet. The higher-dimensional analogue
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I argue that Anderson’s identification of the conflict between the fermi-liquid and non-fermi-liquid
metallic states as the central issue of cuprate superconductivity is fundamentally wrong. All ex-
perimental evidence points to adiabatic continuability of the strange metal into a conventional one,
and thus to one metallic phase rather than two, and all attempts to account theoretically for the
existence of a luttinger-liquid at zero temperature in spatial dimension greater than 1 have failed.
I discuss the underlying reasons for this failure and then argue that the true higher-dimensional
generalization of the luttinger-liquid behavior is a propensity of the system to order. This implies
that the central issue is actually the conflict between different kinds of order, i.e. exactly the idea
implicit in Zhang’s paper. I then speculate about how the conflict between antiferromagnetism
and superconductivity, the two principal kinds of order in this problem, might result in both the
observed zero-temperature phase diagram of the cuprates and the luttinger-liquid phenomenology,
i.e. the breakup of the electron into spinons and holons in certain regimes of doping and energy.
The key idea is a quantum critical point regulating a first-order transition between these phases,
and toward which one is first attracted under renormalization before bifurcating between the two
phases. I speculate that this critical point lies on the insulating line, and that the difference between
the Mott-insulator and fermi-liquid approaches to the high-Tc problem comes down to whether or
not the superconducting states made by n- and p-type doping can be continued into each other.
A candidate for the second fixed point required for distinct superconducting phases is the P- and
T-violating chiral spin liquid state invented by me.

PACS numbers: 71.10.Pm, 74.25.Dw, 74.20.Mn

In a recent paper Baskaran and Anderson1 have criti-
cized Zhang’s2 SO(5) theory of cuprate superconductiv-
ity on various microscopic grounds following the general
thinking of Greiter3 and also on the much more seri-
ous grounds that the entire idea of ascribing the behav-
ior of the cuprates to quantum criticality4 is physically
wrong. The right idea, according to them, is that a sec-
ond kind of metallic state, the luttinger-liquid, is present
in the cuprates, and that the strange phenomenology of
these materials is due to the presence of this new state
of matter5. The existence and importance of the non-
fermi-liquid state has been the central feature of Ander-
son’s ideas on cuprate superconductivity from the very
beginning, and has had a powerful influence on the de-
velopment of the subject by virtue of being the only
genuinely new idea in the field. But it is now obvious
that we have reached an impasse on this matter, and
I think the controversy surrounding Zhang’s paper pro-
vides a much-needed opportunity to question whether
the conflict between the fermi-liquid and the non-fermi-
liquid might have been the wrong issue. There are a great
many reasons to be worried about this. What is the evi-
dence that the non-fermi-liquid state is actually different
from the fermi-liquid in the sense of finite-temperature
adiabatic continuability? Why is it so difficult to write
down a luttinger-liquid in spatial dimension greater than
1, much less find a Hamiltonian that stabilizes such a

state? Why does existence of the luttinger-liquid help
identify the cause of cuprate superconductivity? What is
the experiment that would resolve the key controversies
of the luttinger-liquid state in a definitive way? There
is still reason to take Anderson’s phenomenological ob-
servations seriously, in particular the interpretation of
certain experiments in terms of spinon and holon excita-
tions into which the electron decays, but there are also
reasons to suspect that the central issue he identified is
not quite right. Zhang’s ideas, which are not completely
right either in my view, have had the salubrious effect of
articulating an alternate view of the underlying physics,
namely the quantum criticality idea Baskaran and An-
derson are so quick to dismiss, in a particularly simple
and elegant way using equations that everyone can un-
derstand. As a result there is now a second important
idea on the table, one that I think makes considerably
more sense than the luttinger-liquid idea, namely that
cuprate phenomenology might be fundamentally due to
a conflict between different kinds of order.

The antiferromagnetic and superconducting phases
each derive, according to Baskaran and Anderson, from
a more fundamental thermodynamic phase, the Mott in-
sulator and the metal, respectively. Let me for a moment
defer the question of which metallic state is intended here
and concentrate on the existence of the Mott insulator, a
paramagnetic spin singlet with an energy gap for charged

1



excitations and no antiferromagnetic long-range order
modeled after the ground state of the Hubbard model
at half-filling in 1 spatial dimension. Baskaran and An-
derson go further to say that the antiferromagnet is a
Mott insulator, and it is an antiferromagnet because it is
a Mott insulator, not vice versa; superexchange is a con-
sequence of the insulating state. Unfortunately, ten years
of work by some of the best minds in theoretical physics
have failed to produce any formal demonstration of the
existence of such a state at zero temperature - essential
here because everything conducts a little at finite tem-
perature - and dimension greater than 1. Probably the
closest anyone came was my own work6 which produced
a state with a spin gap and discrete broken symmetries
at the price of long-range interactions, and which had
a phenomenology inconsistent with that of the cuprates.
Anderson’s views to the contrary, this matters a great
deal because one’s inability to back up phenomenological
observations with a simple model that is easy to solve and
makes sense usually means that an important physical
idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes
gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the
interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.

In light of the magnitude and scope of these problems
it is rather ironic that a zero-temperature state with or-
der possessing all of these properties, namely the con-
ventional Hartree-Fock spin density wave, has existed all
along and can be written down and explained easily.

Why is it so hard to construct a Mott insulating vac-
uum that makes sense in 2 or more spatial dimensions
when it can be done so readily in 1? I would like to ad-
dress this question in the context of the pure spin limit of
the problem, as the difficulty is exhibited already there,
but the meaningfulness of this limit is not obvious and is
one of the things we need eventually to address. Consider
a spin Hamiltonian of the form

H =
∑

<j,k>

Jjk
!Sj · !Sk , (1)

where < j, k > denotes a sum over lattice pairs, not
necessarily near neighbors, and Jjk is a translationally-
invariant Heisenberg exchange interaction of finite range.
When the total spin per site is integral it is possible to
find exact solutions in any number of dimensions that

are legitimate spin liquids, in the sense of having ex-
ponentially decaying correlations, an energy gap, and a
common-sense relationship between this gap and the cor-
relation length7. When the spin per site is half-integral,
on the other hand, no such solution has even been found,
and such computer work as we have indicates either or-
der or inadequate sample-size convergence, i.e. that the
simulation is not large enough to determine one way or
the other whether ordering occurs. This fundamental
disparity between integral and half-integral spins was an-
ticipated by Lieb, Schultz, and Mattis8 long before the
discovery of high-Tc superconductivity and is manifested
as the Haldane effect in 1 dimension9. They introduced
the unitary operator

U = exp

{

i
∑

j

2πxj

L
Sz

j

}

, (2)

where xj denotes the x-coordinate of the jth lattice site
and L denotes the sample size, which has the effect of
rotating each spin about the z-axis in a way that twists
by 2π as one advances across the sample. This opera-
tor is defined in any number of dimensions, but for the
arguments to work properly in dimension greater than
1 it is necessary to imagine a sample that is long and
skinny, say 50 light-years wide and 105 light-years long,
and to have an odd number of sites in the plane perpen-
dicular to the long axis. Since U rotates all the spins
in a given region together it is almost a symmetry oper-
ator and therefore increases the expected energy by an
amount that vanishes as the sample size grows. Denoting
the exact ground state by |Ψ0 >, we have specifically

<Ψ0|U †HU |Ψ0 >

<Ψ0|Ψ0 >
−

<Ψ0|H|Ψ0 >

<Ψ0|Ψ0 >
∝ 1/L2 , (3)

where L denotes the sample length. However, in a half-
integral spin system we also have

<Ψ0|U |Ψ0 >= 0 , (4)

this following from the minus sign acquired by a spinor
when it is rotated by 2π. So U |Ψ0 > is exactly orthogonal
to |Ψ0 > when the spin per unit cell is half-integral. Since
U does not conserve total spin, this implies that half-
integral spin systems have arbitrarily low-energy excita-
tions in every spin channel and are thus fundamentally
infrared-degenerate. This is inconsistent with the energy
gap characteristic of a legitimate quantum spin liquid but
an expected and necessary consequence of ordering. So
the simplest explanation of the computer experiments,
the one I believe to be right, is that half-integral spin
systems have a powerful propensity to order and do so
almost always. The case of 1 dimension is an exception
for the simple reason that continuous symmetry breaking
is impossible in 1 dimension. The quantum spin liquid in
1 dimension is not a new state of matter at all but a still-
born antiferromagnet. The higher-dimensional analogue

2

ar
X

iv
:c

o
n
d
-m

at
/9

7
0
9
1
9
5
v
2
  
[c

o
n
d
-m

at
.s

u
p
r-

co
n
] 

 8
 F

eb
 1

9
9
8

A Critique of Two Metals

R. B. Laughlin
Departrment of Physics

Stanford University

Stanford, California 94305

(February 1, 2008)

I argue that Anderson’s identification of the conflict between the fermi-liquid and non-fermi-liquid
metallic states as the central issue of cuprate superconductivity is fundamentally wrong. All ex-
perimental evidence points to adiabatic continuability of the strange metal into a conventional one,
and thus to one metallic phase rather than two, and all attempts to account theoretically for the
existence of a luttinger-liquid at zero temperature in spatial dimension greater than 1 have failed.
I discuss the underlying reasons for this failure and then argue that the true higher-dimensional
generalization of the luttinger-liquid behavior is a propensity of the system to order. This implies
that the central issue is actually the conflict between different kinds of order, i.e. exactly the idea
implicit in Zhang’s paper. I then speculate about how the conflict between antiferromagnetism
and superconductivity, the two principal kinds of order in this problem, might result in both the
observed zero-temperature phase diagram of the cuprates and the luttinger-liquid phenomenology,
i.e. the breakup of the electron into spinons and holons in certain regimes of doping and energy.
The key idea is a quantum critical point regulating a first-order transition between these phases,
and toward which one is first attracted under renormalization before bifurcating between the two
phases. I speculate that this critical point lies on the insulating line, and that the difference between
the Mott-insulator and fermi-liquid approaches to the high-Tc problem comes down to whether or
not the superconducting states made by n- and p-type doping can be continued into each other.
A candidate for the second fixed point required for distinct superconducting phases is the P- and
T-violating chiral spin liquid state invented by me.

PACS numbers: 71.10.Pm, 74.25.Dw, 74.20.Mn

In a recent paper Baskaran and Anderson1 have criti-
cized Zhang’s2 SO(5) theory of cuprate superconductiv-
ity on various microscopic grounds following the general
thinking of Greiter3 and also on the much more seri-
ous grounds that the entire idea of ascribing the behav-
ior of the cuprates to quantum criticality4 is physically
wrong. The right idea, according to them, is that a sec-
ond kind of metallic state, the luttinger-liquid, is present
in the cuprates, and that the strange phenomenology of
these materials is due to the presence of this new state
of matter5. The existence and importance of the non-
fermi-liquid state has been the central feature of Ander-
son’s ideas on cuprate superconductivity from the very
beginning, and has had a powerful influence on the de-
velopment of the subject by virtue of being the only
genuinely new idea in the field. But it is now obvious
that we have reached an impasse on this matter, and
I think the controversy surrounding Zhang’s paper pro-
vides a much-needed opportunity to question whether
the conflict between the fermi-liquid and the non-fermi-
liquid might have been the wrong issue. There are a great
many reasons to be worried about this. What is the evi-
dence that the non-fermi-liquid state is actually different
from the fermi-liquid in the sense of finite-temperature
adiabatic continuability? Why is it so difficult to write
down a luttinger-liquid in spatial dimension greater than
1, much less find a Hamiltonian that stabilizes such a

state? Why does existence of the luttinger-liquid help
identify the cause of cuprate superconductivity? What is
the experiment that would resolve the key controversies
of the luttinger-liquid state in a definitive way? There
is still reason to take Anderson’s phenomenological ob-
servations seriously, in particular the interpretation of
certain experiments in terms of spinon and holon excita-
tions into which the electron decays, but there are also
reasons to suspect that the central issue he identified is
not quite right. Zhang’s ideas, which are not completely
right either in my view, have had the salubrious effect of
articulating an alternate view of the underlying physics,
namely the quantum criticality idea Baskaran and An-
derson are so quick to dismiss, in a particularly simple
and elegant way using equations that everyone can un-
derstand. As a result there is now a second important
idea on the table, one that I think makes considerably
more sense than the luttinger-liquid idea, namely that
cuprate phenomenology might be fundamentally due to
a conflict between different kinds of order.

The antiferromagnetic and superconducting phases
each derive, according to Baskaran and Anderson, from
a more fundamental thermodynamic phase, the Mott in-
sulator and the metal, respectively. Let me for a moment
defer the question of which metallic state is intended here
and concentrate on the existence of the Mott insulator, a
paramagnetic spin singlet with an energy gap for charged

1

 Church 
of weak
coupling



Beliefs:
Mott gap is heresy?

HF is the way!
No UHB and LHB!

excitations and no antiferromagnetic long-range order
modeled after the ground state of the Hubbard model
at half-filling in 1 spatial dimension. Baskaran and An-
derson go further to say that the antiferromagnet is a
Mott insulator, and it is an antiferromagnet because it is
a Mott insulator, not vice versa; superexchange is a con-
sequence of the insulating state. Unfortunately, ten years
of work by some of the best minds in theoretical physics
have failed to produce any formal demonstration of the
existence of such a state at zero temperature - essential
here because everything conducts a little at finite tem-
perature - and dimension greater than 1. Probably the
closest anyone came was my own work6 which produced
a state with a spin gap and discrete broken symmetries
at the price of long-range interactions, and which had
a phenomenology inconsistent with that of the cuprates.
Anderson’s views to the contrary, this matters a great
deal because one’s inability to back up phenomenological
observations with a simple model that is easy to solve and
makes sense usually means that an important physical
idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes
gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the
interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.

In light of the magnitude and scope of these problems
it is rather ironic that a zero-temperature state with or-
der possessing all of these properties, namely the con-
ventional Hartree-Fock spin density wave, has existed all
along and can be written down and explained easily.

Why is it so hard to construct a Mott insulating vac-
uum that makes sense in 2 or more spatial dimensions
when it can be done so readily in 1? I would like to ad-
dress this question in the context of the pure spin limit of
the problem, as the difficulty is exhibited already there,
but the meaningfulness of this limit is not obvious and is
one of the things we need eventually to address. Consider
a spin Hamiltonian of the form

H =
∑

<j,k>

Jjk
!Sj · !Sk , (1)

where < j, k > denotes a sum over lattice pairs, not
necessarily near neighbors, and Jjk is a translationally-
invariant Heisenberg exchange interaction of finite range.
When the total spin per site is integral it is possible to
find exact solutions in any number of dimensions that

are legitimate spin liquids, in the sense of having ex-
ponentially decaying correlations, an energy gap, and a
common-sense relationship between this gap and the cor-
relation length7. When the spin per site is half-integral,
on the other hand, no such solution has even been found,
and such computer work as we have indicates either or-
der or inadequate sample-size convergence, i.e. that the
simulation is not large enough to determine one way or
the other whether ordering occurs. This fundamental
disparity between integral and half-integral spins was an-
ticipated by Lieb, Schultz, and Mattis8 long before the
discovery of high-Tc superconductivity and is manifested
as the Haldane effect in 1 dimension9. They introduced
the unitary operator

U = exp

{

i
∑

j

2πxj

L
Sz

j

}

, (2)

where xj denotes the x-coordinate of the jth lattice site
and L denotes the sample size, which has the effect of
rotating each spin about the z-axis in a way that twists
by 2π as one advances across the sample. This opera-
tor is defined in any number of dimensions, but for the
arguments to work properly in dimension greater than
1 it is necessary to imagine a sample that is long and
skinny, say 50 light-years wide and 105 light-years long,
and to have an odd number of sites in the plane perpen-
dicular to the long axis. Since U rotates all the spins
in a given region together it is almost a symmetry oper-
ator and therefore increases the expected energy by an
amount that vanishes as the sample size grows. Denoting
the exact ground state by |Ψ0 >, we have specifically

<Ψ0|U †HU |Ψ0 >

<Ψ0|Ψ0 >
−

<Ψ0|H|Ψ0 >

<Ψ0|Ψ0 >
∝ 1/L2 , (3)

where L denotes the sample length. However, in a half-
integral spin system we also have

<Ψ0|U |Ψ0 >= 0 , (4)

this following from the minus sign acquired by a spinor
when it is rotated by 2π. So U |Ψ0 > is exactly orthogonal
to |Ψ0 > when the spin per unit cell is half-integral. Since
U does not conserve total spin, this implies that half-
integral spin systems have arbitrarily low-energy excita-
tions in every spin channel and are thus fundamentally
infrared-degenerate. This is inconsistent with the energy
gap characteristic of a legitimate quantum spin liquid but
an expected and necessary consequence of ordering. So
the simplest explanation of the computer experiments,
the one I believe to be right, is that half-integral spin
systems have a powerful propensity to order and do so
almost always. The case of 1 dimension is an exception
for the simple reason that continuous symmetry breaking
is impossible in 1 dimension. The quantum spin liquid in
1 dimension is not a new state of matter at all but a still-
born antiferromagnet. The higher-dimensional analogue

2

ar
X

iv
:c

o
n
d
-m

at
/9

7
0
9
1
9
5
v
2
  
[c

o
n
d
-m

at
.s

u
p
r-

co
n
] 

 8
 F

eb
 1

9
9
8

A Critique of Two Metals

R. B. Laughlin
Departrment of Physics

Stanford University

Stanford, California 94305

(February 1, 2008)

I argue that Anderson’s identification of the conflict between the fermi-liquid and non-fermi-liquid
metallic states as the central issue of cuprate superconductivity is fundamentally wrong. All ex-
perimental evidence points to adiabatic continuability of the strange metal into a conventional one,
and thus to one metallic phase rather than two, and all attempts to account theoretically for the
existence of a luttinger-liquid at zero temperature in spatial dimension greater than 1 have failed.
I discuss the underlying reasons for this failure and then argue that the true higher-dimensional
generalization of the luttinger-liquid behavior is a propensity of the system to order. This implies
that the central issue is actually the conflict between different kinds of order, i.e. exactly the idea
implicit in Zhang’s paper. I then speculate about how the conflict between antiferromagnetism
and superconductivity, the two principal kinds of order in this problem, might result in both the
observed zero-temperature phase diagram of the cuprates and the luttinger-liquid phenomenology,
i.e. the breakup of the electron into spinons and holons in certain regimes of doping and energy.
The key idea is a quantum critical point regulating a first-order transition between these phases,
and toward which one is first attracted under renormalization before bifurcating between the two
phases. I speculate that this critical point lies on the insulating line, and that the difference between
the Mott-insulator and fermi-liquid approaches to the high-Tc problem comes down to whether or
not the superconducting states made by n- and p-type doping can be continued into each other.
A candidate for the second fixed point required for distinct superconducting phases is the P- and
T-violating chiral spin liquid state invented by me.

PACS numbers: 71.10.Pm, 74.25.Dw, 74.20.Mn

In a recent paper Baskaran and Anderson1 have criti-
cized Zhang’s2 SO(5) theory of cuprate superconductiv-
ity on various microscopic grounds following the general
thinking of Greiter3 and also on the much more seri-
ous grounds that the entire idea of ascribing the behav-
ior of the cuprates to quantum criticality4 is physically
wrong. The right idea, according to them, is that a sec-
ond kind of metallic state, the luttinger-liquid, is present
in the cuprates, and that the strange phenomenology of
these materials is due to the presence of this new state
of matter5. The existence and importance of the non-
fermi-liquid state has been the central feature of Ander-
son’s ideas on cuprate superconductivity from the very
beginning, and has had a powerful influence on the de-
velopment of the subject by virtue of being the only
genuinely new idea in the field. But it is now obvious
that we have reached an impasse on this matter, and
I think the controversy surrounding Zhang’s paper pro-
vides a much-needed opportunity to question whether
the conflict between the fermi-liquid and the non-fermi-
liquid might have been the wrong issue. There are a great
many reasons to be worried about this. What is the evi-
dence that the non-fermi-liquid state is actually different
from the fermi-liquid in the sense of finite-temperature
adiabatic continuability? Why is it so difficult to write
down a luttinger-liquid in spatial dimension greater than
1, much less find a Hamiltonian that stabilizes such a

state? Why does existence of the luttinger-liquid help
identify the cause of cuprate superconductivity? What is
the experiment that would resolve the key controversies
of the luttinger-liquid state in a definitive way? There
is still reason to take Anderson’s phenomenological ob-
servations seriously, in particular the interpretation of
certain experiments in terms of spinon and holon excita-
tions into which the electron decays, but there are also
reasons to suspect that the central issue he identified is
not quite right. Zhang’s ideas, which are not completely
right either in my view, have had the salubrious effect of
articulating an alternate view of the underlying physics,
namely the quantum criticality idea Baskaran and An-
derson are so quick to dismiss, in a particularly simple
and elegant way using equations that everyone can un-
derstand. As a result there is now a second important
idea on the table, one that I think makes considerably
more sense than the luttinger-liquid idea, namely that
cuprate phenomenology might be fundamentally due to
a conflict between different kinds of order.

The antiferromagnetic and superconducting phases
each derive, according to Baskaran and Anderson, from
a more fundamental thermodynamic phase, the Mott in-
sulator and the metal, respectively. Let me for a moment
defer the question of which metallic state is intended here
and concentrate on the existence of the Mott insulator, a
paramagnetic spin singlet with an energy gap for charged
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Origin of the Mott Gap

R. G. Leigh and Philip Phillips
Department of Physics, University of Illinois 1110 W. Green Street, Urbana, IL 61801, U.S.A.

(Dated: December 4, 2008)

We show exactly that the only charged excitations that exist in the strong-coupling limit of the
half-filled Hubbard model are gapped composite excitations generated by the dynamics of the charge
2e boson that appears upon explicit integration of the high-energy scale. At every momentum, such
excitations have non-zero spectral weight at two distinct energy scales separated by the on-site
repulsion U . The result is a gap in the spectrum for the composite excitations accompanied by
a discontinuous vanishing of the density of states at the chemical potential when U exceeds the
bandwidth. Consequently, we resolve the long-standing problem of the cause of the charge gap in a
half-filled band in the absence of symmetry breaking.

In 1949, Sir Neville Mott[1] proposed that transition
metal oxides with half-filled bands possess a gap in the
single-particle spectrum that is due entirely to the en-
ergy cost for placing two electrons on the same site. This
explanation is clearly incomplete because even in the sim-
plest model of a Mott insulator, the Hubbard model, none
of the eigenstates have definite local occupation. As a re-
sult, the degree of freedom to which Mott attributed the
gap, namely double occupancy on the same site, has a
finite overlap with the ground state wavefunction of a
half-filled band. Consequently, the charge gap in transi-
tion metal oxides does not have the simple interpretation
as the energy gap to the first eigenstate that has some
doubly occupied character. From whence then does the
Mott gap arise? Because mobile doubly occupied sites
would be inconsistent with an insulating state, some[2, 3]
have argued that in a Mott insulator, double occupancy
is localized whereas in the metal doubly occupied sites
form an itinerant fluid. Such localization requires a dy-
namical degree of freedom which has not been ennunci-
ated despite numerous simulations which display a Mott
gap[4]. In fact, the origin of the dynamical degree of free-
dom that generates the elementary excitations responsi-
ble for the Mott gap is the essential problem of Mottness.
Knowledge of this degree of freedom and the excitations
it mediates are crucial to the physics of high-temperature
copper-oxide superconductors as they are doped Mott
insulators. Indeed, the extreme difficulty in unearthing
the mechanism for the localization of double occupancy,
a clear requirement for a Mott gap, has led Laughlin[5]
to suggest that Mott gaps in the absence of symmetry
breaking in time-reversal systems are impossible.

In this paper, we construct explicitly the dynamical
degrees of freedom that account for the Mott gap in the
absence of any symmetry breaking. There are two key
elements to our proof. First, we show that the exact
low-energy theory for a half-filled band described by the
Hubbard model lacks a bare electron kinetic energy term.
In fact, there are no bare propagating degrees of freedom.
Second, we show that the underlying cause for the van-
ishing of the electron kinetic energy is that at half-filling,
the elementary excitations are bound composite entities

mediated by charge ±2e bosons. In terms of the UV vari-
ables, the composite excitations represent bound states[7]
involving double occupancy or double holes and are the
fundamental excitations that lead to the turn-on of the
spectral weight in the lower and upper Hubbard bands.

Thus far, no one has constructed a theory of a half-
filled Hubbard band which lays plain that at the level of
the Lagrangian, only gapped charge excitations exist. In
this paper, we show that this can be done by utilizing
the methods[8] we have recently developed to explicitly
integrate out the degrees of freedom far from the chem-
ical potential in the Hubbard model. For concreteness,
we consider the Hubbard model on a square lattice in the
limit in which the bands are well separated, that is, the
on-site interaction U exceeds the bandwidth, W = 8t, t
the hopping matrix element. At half-filling, the chemical
potential lies in the Mott gap. As a consequence, both
the degrees of freedom above and below the chemical po-
tential must be integrated out if one wishes to construct
a low-energy theory of the Mott insulator. This can be
done by introducing[8] two new fermionic fields which
when constrained appropriately will correspond to the
creation of double occupancy, Di, and double holes, D̃i.
In Lorentzian signature, the Lagrangian which makes this
integration possible,

Lhf
UV =

∫

d2θ

[

iD†Ḋ − i ˙̃D
†

D̃ −
U

2
(D†D − D̃D̃†)

+
t

2
D†θb +

t

2
θ̄bD̃ + h.c. + sθ̄ϕ†(D − θc↑c↓)

+ s̃θ̄ϕ̃†(D̃ − θc†↑c
†
↓) + h.c.

]

, (1)

contains the two constraint charge ±2e bosonic fields, ϕ†
i

(charge 2e) and ϕ̃†
i (charge −2e) which enter the the-

ory as Lagrange multipliers for the creation of double
occupancy and double holes, respectively. Mathemati-
cally, they are analogous to σ in the non-linear sigma
model. All operators in Eq. (1) have the same site in-
dex which is summed over. The Lagrangian also con-
tains the integration, d2θ, over the complex Grassman,
θ, and bi =

∑

j gijci,σVσcj,−σ is a bond-singlet opera-

tor where c†iσ creates a fermion on site i with spin σ,
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(Dated: December 4, 2008)

We show exactly that the only charged excitations that exist in the strong-coupling limit of the
half-filled Hubbard model are gapped composite excitations generated by the dynamics of the charge
2e boson that appears upon explicit integration of the high-energy scale. At every momentum, such
excitations have non-zero spectral weight at two distinct energy scales separated by the on-site
repulsion U . The result is a gap in the spectrum for the composite excitations accompanied by
a discontinuous vanishing of the density of states at the chemical potential when U exceeds the
bandwidth. Consequently, we resolve the long-standing problem of the cause of the charge gap in a
half-filled band in the absence of symmetry breaking.

In 1949, Sir Neville Mott[1] proposed that transition
metal oxides with half-filled bands possess a gap in the
single-particle spectrum that is due entirely to the en-
ergy cost for placing two electrons on the same site. This
explanation is clearly incomplete because even in the sim-
plest model of a Mott insulator, the Hubbard model, none
of the eigenstates have definite local occupation. As a re-
sult, the degree of freedom to which Mott attributed the
gap, namely double occupancy on the same site, has a
finite overlap with the ground state wavefunction of a
half-filled band. Consequently, the charge gap in transi-
tion metal oxides does not have the simple interpretation
as the energy gap to the first eigenstate that has some
doubly occupied character. From whence then does the
Mott gap arise? Because mobile doubly occupied sites
would be inconsistent with an insulating state, some[2, 3]
have argued that in a Mott insulator, double occupancy
is localized whereas in the metal doubly occupied sites
form an itinerant fluid. Such localization requires a dy-
namical degree of freedom which has not been ennunci-
ated despite numerous simulations which display a Mott
gap[4]. In fact, the origin of the dynamical degree of free-
dom that generates the elementary excitations responsi-
ble for the Mott gap is the essential problem of Mottness.
Knowledge of this degree of freedom and the excitations
it mediates are crucial to the physics of high-temperature
copper-oxide superconductors as they are doped Mott
insulators. Indeed, the extreme difficulty in unearthing
the mechanism for the localization of double occupancy,
a clear requirement for a Mott gap, has led Laughlin[5]
to suggest that Mott gaps in the absence of symmetry
breaking in time-reversal systems are impossible.

In this paper, we construct explicitly the dynamical
degrees of freedom that account for the Mott gap in the
absence of any symmetry breaking. There are two key
elements to our proof. First, we show that the exact
low-energy theory for a half-filled band described by the
Hubbard model lacks a bare electron kinetic energy term.
In fact, there are no bare propagating degrees of freedom.
Second, we show that the underlying cause for the van-
ishing of the electron kinetic energy is that at half-filling,
the elementary excitations are bound composite entities

mediated by charge ±2e bosons. In terms of the UV vari-
ables, the composite excitations represent bound states[7]
involving double occupancy or double holes and are the
fundamental excitations that lead to the turn-on of the
spectral weight in the lower and upper Hubbard bands.

Thus far, no one has constructed a theory of a half-
filled Hubbard band which lays plain that at the level of
the Lagrangian, only gapped charge excitations exist. In
this paper, we show that this can be done by utilizing
the methods[8] we have recently developed to explicitly
integrate out the degrees of freedom far from the chem-
ical potential in the Hubbard model. For concreteness,
we consider the Hubbard model on a square lattice in the
limit in which the bands are well separated, that is, the
on-site interaction U exceeds the bandwidth, W = 8t, t
the hopping matrix element. At half-filling, the chemical
potential lies in the Mott gap. As a consequence, both
the degrees of freedom above and below the chemical po-
tential must be integrated out if one wishes to construct
a low-energy theory of the Mott insulator. This can be
done by introducing[8] two new fermionic fields which
when constrained appropriately will correspond to the
creation of double occupancy, Di, and double holes, D̃i.
In Lorentzian signature, the Lagrangian which makes this
integration possible,

Lhf
UV =

∫

d2θ

[

iD†Ḋ − i ˙̃D
†

D̃ −
U

2
(D†D − D̃D̃†)

+
t

2
D†θb +

t

2
θ̄bD̃ + h.c. + sθ̄ϕ†(D − θc↑c↓)

+ s̃θ̄ϕ̃†(D̃ − θc†↑c
†
↓) + h.c.

]

, (1)

contains the two constraint charge ±2e bosonic fields, ϕ†
i

(charge 2e) and ϕ̃†
i (charge −2e) which enter the the-

ory as Lagrange multipliers for the creation of double
occupancy and double holes, respectively. Mathemati-
cally, they are analogous to σ in the non-linear sigma
model. All operators in Eq. (1) have the same site in-
dex which is summed over. The Lagrangian also con-
tains the integration, d2θ, over the complex Grassman,
θ, and bi =

∑

j gijci,σVσcj,−σ is a bond-singlet opera-

tor where c†iσ creates a fermion on site i with spin σ,

bi =
∑

j

gij(ci↑cj↓ − ci↓cj↑)

|bi|2 ∝ Si · Sj
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We show exactly that the only charged excitations that exist in the strong-coupling limit of the
half-filled Hubbard model are gapped composite excitations generated by the dynamics of the charge
2e boson that appears upon explicit integration of the high-energy scale. At every momentum, such
excitations have non-zero spectral weight at two distinct energy scales separated by the on-site
repulsion U . The result is a gap in the spectrum for the composite excitations accompanied by
a discontinuous vanishing of the density of states at the chemical potential when U exceeds the
bandwidth. Consequently, we resolve the long-standing problem of the cause of the charge gap in a
half-filled band in the absence of symmetry breaking.

In 1949, Sir Neville Mott[1] proposed that transition
metal oxides with half-filled bands possess a gap in the
single-particle spectrum that is due entirely to the en-
ergy cost for placing two electrons on the same site. This
explanation is clearly incomplete because even in the sim-
plest model of a Mott insulator, the Hubbard model, none
of the eigenstates have definite local occupation. As a re-
sult, the degree of freedom to which Mott attributed the
gap, namely double occupancy on the same site, has a
finite overlap with the ground state wavefunction of a
half-filled band. Consequently, the charge gap in transi-
tion metal oxides does not have the simple interpretation
as the energy gap to the first eigenstate that has some
doubly occupied character. From whence then does the
Mott gap arise? Because mobile doubly occupied sites
would be inconsistent with an insulating state, some[2, 3]
have argued that in a Mott insulator, double occupancy
is localized whereas in the metal doubly occupied sites
form an itinerant fluid. Such localization requires a dy-
namical degree of freedom which has not been ennunci-
ated despite numerous simulations which display a Mott
gap[4]. In fact, the origin of the dynamical degree of free-
dom that generates the elementary excitations responsi-
ble for the Mott gap is the essential problem of Mottness.
Knowledge of this degree of freedom and the excitations
it mediates are crucial to the physics of high-temperature
copper-oxide superconductors as they are doped Mott
insulators. Indeed, the extreme difficulty in unearthing
the mechanism for the localization of double occupancy,
a clear requirement for a Mott gap, has led Laughlin[5]
to suggest that Mott gaps in the absence of symmetry
breaking in time-reversal systems are impossible.

In this paper, we construct explicitly the dynamical
degrees of freedom that account for the Mott gap in the
absence of any symmetry breaking. There are two key
elements to our proof. First, we show that the exact
low-energy theory for a half-filled band described by the
Hubbard model lacks a bare electron kinetic energy term.
In fact, there are no bare propagating degrees of freedom.
Second, we show that the underlying cause for the van-
ishing of the electron kinetic energy is that at half-filling,
the elementary excitations are bound composite entities

mediated by charge ±2e bosons. In terms of the UV vari-
ables, the composite excitations represent bound states[7]
involving double occupancy or double holes and are the
fundamental excitations that lead to the turn-on of the
spectral weight in the lower and upper Hubbard bands.

Thus far, no one has constructed a theory of a half-
filled Hubbard band which lays plain that at the level of
the Lagrangian, only gapped charge excitations exist. In
this paper, we show that this can be done by utilizing
the methods[8] we have recently developed to explicitly
integrate out the degrees of freedom far from the chem-
ical potential in the Hubbard model. For concreteness,
we consider the Hubbard model on a square lattice in the
limit in which the bands are well separated, that is, the
on-site interaction U exceeds the bandwidth, W = 8t, t
the hopping matrix element. At half-filling, the chemical
potential lies in the Mott gap. As a consequence, both
the degrees of freedom above and below the chemical po-
tential must be integrated out if one wishes to construct
a low-energy theory of the Mott insulator. This can be
done by introducing[8] two new fermionic fields which
when constrained appropriately will correspond to the
creation of double occupancy, Di, and double holes, D̃i.
In Lorentzian signature, the Lagrangian which makes this
integration possible,

Lhf
UV =

∫

d2θ

[

iD†Ḋ − i ˙̃D
†

D̃ −
U

2
(D†D − D̃D̃†)

+
t

2
D†θb +

t

2
θ̄bD̃ + h.c. + sθ̄ϕ†(D − θc↑c↓)

+ s̃θ̄ϕ̃†(D̃ − θc†↑c
†
↓) + h.c.

]

, (1)

contains the two constraint charge ±2e bosonic fields, ϕ†
i

(charge 2e) and ϕ̃†
i (charge −2e) which enter the the-

ory as Lagrange multipliers for the creation of double
occupancy and double holes, respectively. Mathemati-
cally, they are analogous to σ in the non-linear sigma
model. All operators in Eq. (1) have the same site in-
dex which is summed over. The Lagrangian also con-
tains the integration, d2θ, over the complex Grassman,
θ, and bi =

∑

j gijci,σVσcj,−σ is a bond-singlet opera-

tor where c†iσ creates a fermion on site i with spin σ,

charge |2e| boson

bi =
∑

j

gij(ci↑cj↓ − ci↓cj↑)

|bi|2 ∝ Si · Sj
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We show exactly that the only charged excitations that exist in the strong-coupling limit of the
half-filled Hubbard model are gapped composite excitations generated by the dynamics of the charge
2e boson that appears upon explicit integration of the high-energy scale. At every momentum, such
excitations have non-zero spectral weight at two distinct energy scales separated by the on-site
repulsion U . The result is a gap in the spectrum for the composite excitations accompanied by
a discontinuous vanishing of the density of states at the chemical potential when U exceeds the
bandwidth. Consequently, we resolve the long-standing problem of the cause of the charge gap in a
half-filled band in the absence of symmetry breaking.

In 1949, Sir Neville Mott[1] proposed that transition
metal oxides with half-filled bands possess a gap in the
single-particle spectrum that is due entirely to the en-
ergy cost for placing two electrons on the same site. This
explanation is clearly incomplete because even in the sim-
plest model of a Mott insulator, the Hubbard model, none
of the eigenstates have definite local occupation. As a re-
sult, the degree of freedom to which Mott attributed the
gap, namely double occupancy on the same site, has a
finite overlap with the ground state wavefunction of a
half-filled band. Consequently, the charge gap in transi-
tion metal oxides does not have the simple interpretation
as the energy gap to the first eigenstate that has some
doubly occupied character. From whence then does the
Mott gap arise? Because mobile doubly occupied sites
would be inconsistent with an insulating state, some[2, 3]
have argued that in a Mott insulator, double occupancy
is localized whereas in the metal doubly occupied sites
form an itinerant fluid. Such localization requires a dy-
namical degree of freedom which has not been ennunci-
ated despite numerous simulations which display a Mott
gap[4]. In fact, the origin of the dynamical degree of free-
dom that generates the elementary excitations responsi-
ble for the Mott gap is the essential problem of Mottness.
Knowledge of this degree of freedom and the excitations
it mediates are crucial to the physics of high-temperature
copper-oxide superconductors as they are doped Mott
insulators. Indeed, the extreme difficulty in unearthing
the mechanism for the localization of double occupancy,
a clear requirement for a Mott gap, has led Laughlin[5]
to suggest that Mott gaps in the absence of symmetry
breaking in time-reversal systems are impossible.

In this paper, we construct explicitly the dynamical
degrees of freedom that account for the Mott gap in the
absence of any symmetry breaking. There are two key
elements to our proof. First, we show that the exact
low-energy theory for a half-filled band described by the
Hubbard model lacks a bare electron kinetic energy term.
In fact, there are no bare propagating degrees of freedom.
Second, we show that the underlying cause for the van-
ishing of the electron kinetic energy is that at half-filling,
the elementary excitations are bound composite entities

mediated by charge ±2e bosons. In terms of the UV vari-
ables, the composite excitations represent bound states[7]
involving double occupancy or double holes and are the
fundamental excitations that lead to the turn-on of the
spectral weight in the lower and upper Hubbard bands.

Thus far, no one has constructed a theory of a half-
filled Hubbard band which lays plain that at the level of
the Lagrangian, only gapped charge excitations exist. In
this paper, we show that this can be done by utilizing
the methods[8] we have recently developed to explicitly
integrate out the degrees of freedom far from the chem-
ical potential in the Hubbard model. For concreteness,
we consider the Hubbard model on a square lattice in the
limit in which the bands are well separated, that is, the
on-site interaction U exceeds the bandwidth, W = 8t, t
the hopping matrix element. At half-filling, the chemical
potential lies in the Mott gap. As a consequence, both
the degrees of freedom above and below the chemical po-
tential must be integrated out if one wishes to construct
a low-energy theory of the Mott insulator. This can be
done by introducing[8] two new fermionic fields which
when constrained appropriately will correspond to the
creation of double occupancy, Di, and double holes, D̃i.
In Lorentzian signature, the Lagrangian which makes this
integration possible,

Lhf
UV =

∫

d2θ

[

iD†Ḋ − i ˙̃D
†

D̃ −
U

2
(D†D − D̃D̃†)

+
t

2
D†θb +

t

2
θ̄bD̃ + h.c. + sθ̄ϕ†(D − θc↑c↓)

+ s̃θ̄ϕ̃†(D̃ − θc†↑c
†
↓) + h.c.

]

, (1)

contains the two constraint charge ±2e bosonic fields, ϕ†
i

(charge 2e) and ϕ̃†
i (charge −2e) which enter the the-

ory as Lagrange multipliers for the creation of double
occupancy and double holes, respectively. Mathemati-
cally, they are analogous to σ in the non-linear sigma
model. All operators in Eq. (1) have the same site in-
dex which is summed over. The Lagrangian also con-
tains the integration, d2θ, over the complex Grassman,
θ, and bi =

∑

j gijci,σVσcj,−σ is a bond-singlet opera-

tor where c†iσ creates a fermion on site i with spin σ,

charge |2e| boson

4

sense, we have inserted unity into the Hubbard model
path integral in a rather complicated fashion. To this
end, we compute the partition function

Z =
∫

[Dc Dc† DD DD† Dϕ Dϕ†] exp−
R τ
0 Ldt . (8)

with L given by (5). We note that ϕ is a Lagrange mul-
tiplier. As shown in the Appendix (Eq. (41)), in the Eu-
clidean signature, the fluctuations of the real and imagi-
nary parts of ϕi must be integrated along the imaginary
axis for ϕi to be regarded as a Lagrangian multiplier.
The ϕ integrations (over the real and imaginary parts)
are precisely a representation of (a series of) δ-functions
of the form,

δ

(∫
dθDi −

∫
dθ θci,↑ci,↓

)
. (9)

If we wish to recover the Hubbard model, we need only
to integrate over Di, which is straightforward because of
the δ-functions. The dynamical terms yield

∫
d2θ θ̄θ




∑

i,σ

(1 − ni,−σ)c†i,σ ċi,σ +
∑

i

c†i,↓c
†
i,↑ċi,↑ci,↓

+
∑

i

c†i,↓c
†
i,↑ci,↑ċi,↓

]

=
∫

d2θ θ̄θ
∑

i,σ

[
(1 − ni,−σ)c†i,σ ċi,σ + ni,−σc†i,σ ċi,σ

]

=
∫

d2θ θ̄θ
∑

i,σ

c†i,σ ċi,σ. (10)

Likewise the term proportional to Vσ yields
∫

d2θ θ̄θ
∑

i,j

gij

[
c†j,↓c

†
j,↑(ci,↑cj,↓ − ci,↓cj,↑)

]
+ h.c.

=
∫

d2θ θ̄θ
∑

i,j,σ

gijnj,−σc†j,σci,σ + h.c. (11)

Finally, the hopping terms that involve two D fields give
rise to

∫
d2θ θ̄θ

∑

i,j

gij

[
c†i,↓c

†
i,↑(c

†
j,↑ci,↑ + c†j,↓ci,↓)cj,↑cj,↓

]

= −
∫

d2θ θ̄θ
∑

i,j

gijnj,−σni,−σc†i,σcj,σ. (12)

Eqs. (11) and (12) add to the constrained hopping term
in the Lagrangian (the term proportional to Cij,σ) to
yield the standard kinetic energy term in the Hubbard
model. Finally, the D†D term generates the on-site re-
pulsion of the Hubbard model. Consequently, by inte-
grating over ϕi followed by an integration over Di, we
recover the Lagrangian,

∫
d2θ θ̄θLHubb =

∑

i,σ

c†i,σ ċi,σ + HHubb, (13)

of the Hubbard model. This constitutes the ultra-violet
(UV) limit of our theory. In this limit, it is clear that
the Grassman variables amount to an insertion of unity
and hence play no role. Further, in this limit the ex-
tended Hilbert space contracts, unphysical states such as
|1, 0, 1〉, |0, 1, 1〉, |1, 1, 1〉 are set to zero, and we identify
|1, 1, 0〉 with |0, 0, 1〉. Note there is no contradiction be-
tween treating D as fermionic and the constraint in Eq.
(7). The constraint never governs the commutation rela-
tion for D. The value of D is determined by Eq. (7) only
when ϕ is integrated over. This is followed immediately
by an integration over D at which point D is eliminated
from the theory.

The advantage of our starting Lagrangian over the tra-
ditional writing of the Hubbard model is that we are able
to coarse grain the system cleanly for U # t. The en-
ergy scale associated with D is the large on-site energy
U . Hence, it makes sense, instead of solving the con-
straint, to integrate out D. The resultant theory will
contain explicitly the bosonic field, ϕ. As a result of this
field, double occupancy will remain, though the energy
cost will be shifted from the UV to the infrared (IR).
Because the theory is Gaussian, the integration over Di

can be done exactly. This is the ultimate utility of the
expansion of the Hilbert space – we have isolated the
high energy physics into this Gaussian field. As a result
of the dynamical term in the action, integration over D
will yield a theory that is frequency dependent. The fre-
quency will enter in the combination ω + U which will
appear in denominators. Since U is the largest energy
scale, we expand in powers of ω/U ; the leading term
yields the proper ω = 0 low-energy theory. Since the
theory is Gaussian, it suffices to complete the square in
the D-field. To accomplish this, we define the matrix

Mij = δij −
t

(ω + U)
gij

∑

σ

c†j,σci,σ (14)

and bi =
∑

j bij =
∑

j,σ gijcj,σVσci,−σ. At zero frequency
the Hamiltonian is

HIR
h = −t

∑

i,j,σ

gijαij,σc†i,σcj,σ + Hint −
1
β

Tr lnM,

where

Hint = − t2

U

∑

j,k

b†j(M
−1)jkbk − s2

U

∑

i,j

ϕ†
i (M

−1)ijϕj

−s
∑

j

ϕ†
jcj,↑cj,↓ +

st

U

∑

i,j

ϕ†
i (M

−1)ijbj + h.c.(15)

which constitutes the true (IR) limit as long as the energy
scale s is not of order U . If s ∼ O(U) then we should
also integrate out ϕi – this integration is again Gaus-
sian and can be done exactly; one can easily check that
this leads precisely back to the UV theory, the Hubbard
model.39 Hence, the only way in which a low-energy the-
ory of the Hubbard model exists is if the energy scale for

solve constraint

 

bi =
∑

j

gij(ci↑cj↓ − ci↓cj↑)

|bi|2 ∝ Si · Sj
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Lhf
IR → 2

|s|2

U
|ϕω|2 + 2

|s̃|2

U
|ϕ̃−ω|2 +

t2

U
|bω|2

 bosons
and fermions

are strongly coupled

}
γ(!k)

!p (ω) =
U − tε(!k)

!p − 2ω

U

√
1 + 2ω/U

γ̃(!k)
!p (ω) =

U + tε(!k)
!p + 2ω

U

√
1− 2ω/U.

+sγ(!k)
!p (ω)ϕ†

ω,!k
c!k/2+!p,ω/2+ω′,↑c!k/2−!p,ω/2−ω′,↓

+s̃∗γ̃(!k)
!p (ω)ϕ̃−ω,!kc!k/2+!p,ω/2+ω′,↑c!k/2−!p,ω/2−ω′,↓ + h.c.

ε(!k)
!p = 4

∑

µ

cos(kµa/2) cos(pµa)
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U − tε(!k)
!p − 2ω

U

√
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!p + 2ω

U

√
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γ(!k)
!p (ω) =

U − tε(!k)
!p − 2ω

U

√
1 + 2ω/U
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U + tε(!k)
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U

√
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∆ = U − 4dt



Lhf
UV → Lhf

UV +
∫

d2θJi,σ

[
VσD†

i ci,−σθ + Vσ θ̄ci,−σD̃i

]
+ h.c.

UV IR

c†iσ
c†i,σ → c̃†i,σ ≡ −Vσ

t

U

(
ci,−σb†i + b†i ci,−σ

)
+ Vσ

2
U

(
sϕ†

i + s̃ϕ̃i

)
ci,−σ

spin-fluctuations CEXON

electron transform at low energies

UV-IR mixing: spectral 
weight transfer



electron overlap with composite excitations?

O = |〈c†|c̃†〉〈c̃†|Ψ〉|2PΨ

destructive interference at low
energy

∆electron > ∆composites

3

FIG. 1: a) Diamond-shaped surface in momentum space
where the particle dispersion changes sign. b) Turn-on of
the spectral weight in the upper and lower Hubbard bands
for the composite excitations as a function of energy and mo-
mentum. In the UHB, the spectral density is determined to
γp while for the LHB it is governed by γ̃p. The corresponding
operators which describe the turn-on of the spectral weight
are the composite excitations ϕ†cc (UHB) and ϕ̃cc (LHB).

structure of the frequency and momentum dependence
of eq. (4) suggests that the operators ϕ†cc and ϕ̃cc
play a central role and they determine where the spectral
weight resides. These operators might then be thought
of as the kinetic terms for composite excitations medi-
ated by the charge ±2e bosonic fields (loosely speaking,
we might think of this as occurring because of the forma-
tion of bound states). More specifically, the fourth and
fifth terms in (4) determine the excitations in the lower
and upper Hubbard bands, respectively. As we have re-
tained the full frequency dependence, we will be able to
determine the complete dynamics.

That novel dynamics emerges from Eq. (4) can be
seen by inspection of the coefficients (5). We note that
the frequency poles appearing in the various terms of
the Lagrangian are an artifact of our normalization, and
could be absorbed into a redefinition of fields: ϕω →√

1 − 2ω/U ϕω , ϕ̃ω →
√

1 + 2ω/U ϕ̃ω, and (cc)ω →√
1 − 4ω2/U2 (cc)ω. Having done so, the coefficients α, α̃

are rescaled to

γ(k)
p (ω) =

−U + tε(k)
p + 2ω

U

√
1 + 2ω/U

γ̃(k)
p (ω) =

U + tε(k)
p + 2ω

U

√
1 − 2ω/U. (6)

while the coefficients of other terms in the Lagrangian
are just constants. The first thing to notice about these
expressions is that the boson frequency appears in the
combinations U ∓ 2ω. What this will ultimately mean is
that the analytic structure is concentrated around ω =
±U/2.

To determine where the spectral weight resides, we
calculate where the coefficients γk

p (γ̃k
p) vanish. Con-

sider initially k = 0 so that the dispersion simplifies to
ε(0)
p = 4

∑
µ cos apµ. Solutions are contained in a band

(depending on momentum) in the region ω = U/2 ± 4t
(ω = −U/2 ± 4t). For example, when ω = U/2 (ω =

−U/2),
∑

µ cos pµ = 0 defines the momentum surface
along which γp (γ̃p) vanish. This surface corresponds
to the diamond ap = (apx,±π − apx) as depicted in
Fig. (1a). These features define the center of the LHB
(−U/2) and UHB (U/2). At each momentum in the first
Brillouin zone, spectral weight develops at two distinct
energies, the essence of Mottness. For example, at (π, π),
γp = 0 at ω = U/2+4t and γ̃p = 0 at ω = −U/2+4t. In
general for |p| > π, γp vanishes for U/2 < ω ≤ U/2 + 4t.
Momenta within the diamond, |p| < π, give rise to a van-
ishing of γp when U/2 − 4t ≤ ω < U/2. Consequently,
U/2 − 4t ≤ ω ≤ U/2 + 4t defines the energy range over
which spectral weight is non-zero in the upper Hubbard
band. Within this energy range, we will argue that the
associated operator, which is of the form ϕ†cc, should
be viewed as a ‘quadratic kinetic term’ of some com-
posite excitation, provided such an excitation or bound
state forms. A similar picture unfolds around −U/2: a)
for |p| > π, γ̃p = 0 for −U/2 < ω ≤ −U/2 + 4t and
b) |p| < π, −U/2 − 4t ≤ ω < −U/2 defines the zero
condition. Because each momentum state lacks spectral
weight over a common range of energies provided that
U > W , with W = 8t the band width, a hard gap opens
in the spectrum. This is the Mott gap and its origin is
the emergence of composite excitations described by the
operators ϕ†cc (UHB) and ϕ̃cc (LHB) as the collective
degrees of freedom in the Hubbard model. As our anal-
ysis thus far is exact, we conclude that in the absence of
any symmetry breaking, the coefficients γp and γ̃p de-
termine the dispersion for the excitations that comprise
the here-to-fore undefined[5] UHB and LHB. Inclusion of
the center-of-mass momentum k simply shifts the value
of the momentum at which the dispersion changes sign,
thereby keeping the Mott gap intact.

Equivalently, the composite operators can be used to
characterise the turn-on of the spectral weight in terms
of the original bare electrons because it is the overlap be-
tween the bare electron operator and the operator that
creates the composite excitations that ultimately deter-
mines the electron spectral function. While it is tempt-
ing to complete the square on the ϕ†cc bringing it into
a quadratic form, Ψ†Ψ with Ψ = Aϕ + Bcc, this would
lead to the composite excitations having charge 2e. This
would result in zero overlap with a bare electron and an
absence of spectral weight at all energies for the electrons.
Alternatively, the excitations that underly the operators
ϕ†cc could correspond to a linear combination of charge
e objects, c and ϕ†c. In terms of the UV variables, the
latter can be thought of as a doubly occupied site bound
to a hole. To support this claim, we construct the exact
representation of the electron at low energies. This can
be done by adding to the starting Lagrangian a source
term that couples to the current, Ji, that generates the
canonical electron operator when the constraint is solved.
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structure of the frequency and momentum dependence
of eq. (4) suggests that the operators ϕ†cc and ϕ̃cc
play a central role and they determine where the spectral
weight resides. These operators might then be thought
of as the kinetic terms for composite excitations medi-
ated by the charge ±2e bosonic fields (loosely speaking,
we might think of this as occurring because of the forma-
tion of bound states). More specifically, the fourth and
fifth terms in (4) determine the excitations in the lower
and upper Hubbard bands, respectively. As we have re-
tained the full frequency dependence, we will be able to
determine the complete dynamics.

That novel dynamics emerges from Eq. (4) can be
seen by inspection of the coefficients (5). We note that
the frequency poles appearing in the various terms of
the Lagrangian are an artifact of our normalization, and
could be absorbed into a redefinition of fields: ϕω →√

1 − 2ω/U ϕω , ϕ̃ω →
√

1 + 2ω/U ϕ̃ω, and (cc)ω →√
1 − 4ω2/U2 (cc)ω. Having done so, the coefficients α, α̃

are rescaled to

γ(k)
p (ω) =

−U + tε(k)
p + 2ω

U

√
1 + 2ω/U

γ̃(k)
p (ω) =

U + tε(k)
p + 2ω

U

√
1 − 2ω/U. (6)

while the coefficients of other terms in the Lagrangian
are just constants. The first thing to notice about these
expressions is that the boson frequency appears in the
combinations U ∓ 2ω. What this will ultimately mean is
that the analytic structure is concentrated around ω =
±U/2.

To determine where the spectral weight resides, we
calculate where the coefficients γk

p (γ̃k
p) vanish. Con-

sider initially k = 0 so that the dispersion simplifies to
ε(0)
p = 4

∑
µ cos apµ. Solutions are contained in a band

(depending on momentum) in the region ω = U/2 ± 4t
(ω = −U/2 ± 4t). For example, when ω = U/2 (ω =

−U/2),
∑

µ cos pµ = 0 defines the momentum surface
along which γp (γ̃p) vanish. This surface corresponds
to the diamond ap = (apx,±π − apx) as depicted in
Fig. (1a). These features define the center of the LHB
(−U/2) and UHB (U/2). At each momentum in the first
Brillouin zone, spectral weight develops at two distinct
energies, the essence of Mottness. For example, at (π, π),
γp = 0 at ω = U/2+4t and γ̃p = 0 at ω = −U/2+4t. In
general for |p| > π, γp vanishes for U/2 < ω ≤ U/2 + 4t.
Momenta within the diamond, |p| < π, give rise to a van-
ishing of γp when U/2 − 4t ≤ ω < U/2. Consequently,
U/2 − 4t ≤ ω ≤ U/2 + 4t defines the energy range over
which spectral weight is non-zero in the upper Hubbard
band. Within this energy range, we will argue that the
associated operator, which is of the form ϕ†cc, should
be viewed as a ‘quadratic kinetic term’ of some com-
posite excitation, provided such an excitation or bound
state forms. A similar picture unfolds around −U/2: a)
for |p| > π, γ̃p = 0 for −U/2 < ω ≤ −U/2 + 4t and
b) |p| < π, −U/2 − 4t ≤ ω < −U/2 defines the zero
condition. Because each momentum state lacks spectral
weight over a common range of energies provided that
U > W , with W = 8t the band width, a hard gap opens
in the spectrum. This is the Mott gap and its origin is
the emergence of composite excitations described by the
operators ϕ†cc (UHB) and ϕ̃cc (LHB) as the collective
degrees of freedom in the Hubbard model. As our anal-
ysis thus far is exact, we conclude that in the absence of
any symmetry breaking, the coefficients γp and γ̃p de-
termine the dispersion for the excitations that comprise
the here-to-fore undefined[5] UHB and LHB. Inclusion of
the center-of-mass momentum k simply shifts the value
of the momentum at which the dispersion changes sign,
thereby keeping the Mott gap intact.

Equivalently, the composite operators can be used to
characterise the turn-on of the spectral weight in terms
of the original bare electrons because it is the overlap be-
tween the bare electron operator and the operator that
creates the composite excitations that ultimately deter-
mines the electron spectral function. While it is tempt-
ing to complete the square on the ϕ†cc bringing it into
a quadratic form, Ψ†Ψ with Ψ = Aϕ + Bcc, this would
lead to the composite excitations having charge 2e. This
would result in zero overlap with a bare electron and an
absence of spectral weight at all energies for the electrons.
Alternatively, the excitations that underly the operators
ϕ†cc could correspond to a linear combination of charge
e objects, c and ϕ†c. In terms of the UV variables, the
latter can be thought of as a doubly occupied site bound
to a hole. To support this claim, we construct the exact
representation of the electron at low energies. This can
be done by adding to the starting Lagrangian a source
term that couples to the current, Ji, that generates the
canonical electron operator when the constraint is solved.



H(ϕ, ϕ̃, c, c†)
1.) no derivative couplings with 

respect to bosonic field
2.)  spatially uniform

       3.)  spin-spin sub-dominant
(non-dispersive)

A(k,ω)

bosonic field
contains all

the Mott physics
(numerically verified

that spatial variation of
bosonic field does nothing)

spin part irrelevant

consistent
with exact argument



Strong-coupling antiferromagnet

4

Ji, that generates the canonical electron operator when
the constraint is solved. In this case,

Lhf
UV → Lhf

UV +
∫

d2θJi,σ

[
VσD†

i ci,−σθ + Vσ θ̄ci,−σD̃i

]
+ h.c.

is the correct transformation to generate the canonical
electron operator in the UV. If we now integrate the par-
tition function over Di and D̃i, we find that the electron
creation operator in the IR at half-filling

c†i,σ → c̃†i,σ ≡ −Vσ
t

U

(
ci,−σb†i + b†ici,−σ

)

+ Vσ
2
U

(
sϕ†

i + s̃ϕ̃i

)
ci,−σ (7)

is indeed a sum of two composite excitations, the first
having to do with spin fluctuations (b†c) and the other
with high-energy physics, ϕ†c and ϕ̃c, that is, excita-
tions in the UHB and LHB, respectively. It is important
to note that Eq. (7) is the exact expression for the low-
energy electron at half-filling. Consequently, we formu-
late the overlap

O = |〈c†|c̃†〉〈c̃†|Ψ†〉|2PΨ (8)

for the the physical process of passing an electron through
a Mott insulator in terms of the overlap between the bare
electron with the low-energy excitations of Eq. (7), 〈c|c̃〉,
and the overlap with the propagating degrees of freedom,
〈c̃|Ψ〉 with PΨ, the propagator for the composite excita-
tions. As a result of the dependence on the bosonic fields
in Eq. (7), O contains desructive interference between
states above and below the chemical potential. Such
destructive interference between excitations across the
chemical potential leads to a vanishing of the spectral
weight at low energies[11, 13, 14]. Consequently, the
turn-on of the electron spectral weight cannot be viewed
simply as a sum of the spectral weight for the composite
excitations. As a result of the destructive interference,
the gap in the electron spectrum will always exceed that
for the composite excitations. Hence, establishing (Fig.
(1)) that the composite excitations display a gap is a suf-
ficient condition for the existence of a charge gap in the
electron spectrum, a key conclusion of this work.

What this analysis demonstrates is that the spin-spin
interaction, contained in the |b|2 term, plays a spectator
role in the generation of the Mott gap. Nonetheless, there
is a natural candidate for the antiferromagnetic order,
namely Bij = 〈gijϕ

†
ici,↑cj,↓〉. The vacuum expectation

value of this quantity is clearly non-zero as it is easily ob-
tained from a functional derivative of the partition func-
tion with respect to γp. Such an antiferromagnet, which
has no continuity with weak-coupling theory, is com-
posed of composite excitations which can form excitonic
bound states in the two-particle spectrum and hence is
not inconsistent with the excitonic modes found in the
absorption spectrum of numerous parent cuprates[? ]. In

essence, the composite excitations described by the coef-
ficients γk

p and γ̃k
p represent the orthogonal (they never

lead to a turn-on of the spectral weight in the same en-
ergy range) low-energy degrees modes that render the
original UV problem weakly coupled. That such new
degrees of freedom emerge as the dispersing modes is a
typical feature of strong coupling. In fact, an analogy
can be made here between our demonstration that the
propagating modes at strong coupling in the Hubbard
model are composite excitations (not electrons) medi-
ated by an auxiliary field that has no bare dynamics
with ’t Hooft’s[15] demonstration that meson states, not
free quarks, also mediated by a non-propagating auxiliary
field, are the dispersing modes in QCD in 1 + 1 dimen-
sions. Our analysis suggests that a fixed point underlies
the formation of such composite excitations. Whether
the β−function can be calculated within this formalism
remains the outstanding question.

We thank T.P. Choy for collaboration at an early stage
of this work, and the NSF DMR-0605769 for partial sup-
port.

[1] N. F. Mott, Proc. Phys. Soc. London, Series A, 62, 416
(1949).

[2] C. Castellani, C. Di Castro, D. Feinberg, and J. Ran-
ninger, Phys. Rev. Lett. 43, 1957 (1979).

[3] T. A. Kaplan, P. Horsch, and P. Fulde, Phys. Rev. Lett.
49, 889 (1982).

[4] For reviews see, Th. Maier, M. Jarrell, Th. Pruschke,
and M. H. Hettler, Rev. Mod. Phys. 77, 1027 (2005); A.
Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Rev. Mod. Phys. 68 13 (1996).

[5] R. B. Laughlin, Adv. Phys. 47, 943 (1998).
[6] J. Polchinski, hep-th/9210046.
[7] Numerical evidence for such binding can be found in H.

Yokoyama, M. Ogata, Y. Tanaka, J. Phys. soc. Japan 75,
114706 (2006).

[8] R. G. Leigh, P. Phillips, T. -P. Choy, Phys. Rev. Lett.
99, 046404 (2007); T. -P. Choy, R. G. Leigh, P. Phillips,
and P. D. Powell, Phys. Rev. B 77, 014512 (2008); T.
-P. Choy, R. G. Leigh and P. Phillips, ibid 77, 104524
(2008).

[9] For an explicit demonstration, see Appendix of Phys.
Rev. B 77, 014512 (2008).

[10] The spin-spin interaction here is completely general and
not projected onto the singly occupied sector. A formu-
lation in terms of the Hubbard operators is detailed in
Phys. Rev. B 77, 014512 (2008).

[11] M. B. J. Meinders, H. Eskes, and G. A. Sawatzky, Phys.
Rev. B 48, 3916-3926 (1993).

[12] H. Park, K. Haule, and G. Kotliar, arXiv:0803.1324.
[13] P. Phillips, D. Galanakis, T. D. Stanescu, Phys. Rev.

Lett. 93, 267004 (2004).
[14] F.H.L. Essler, et al. The One-Dimensional Hubbard

Model, Cambridge University Press, 2005.
[15] G. ’t Hooft, N. Phys. B 75, 461 (1974).

No adiabatic connection
with weak-coupling AF



bound states of the boson
mediate the Mott gap:

mechanism of localization of double occupancy



hole-doping



UD†
i Di

Extend the Hilbert space:
Associate with U-scale a new 

Fermionic oscillator
U

ε
N(ω)

D_i



t2/U~60meV

Electron spectral function



Two bands!!

Graf,  et al. PRL vol. 98, 67004 (2007).

Spin-charge
separation?



Origin of two bands

ϕ†
i ciσ̄

Two charge e excitations

Graf,  et al. PRL vol. 98, 67004 (2007).

ciσ(1− ni−σ)



Origin of two bands

ϕ†
i ciσ̄

Two charge e excitations

New bound state

Graf,  et al. PRL vol. 98, 67004 (2007).

ciσ(1− ni−σ)



Origin of two bands

ϕ†
i ciσ̄

Two charge e excitations

New bound stateϕi is confined (no
kinetic energy)

Graf,  et al. PRL vol. 98, 67004 (2007).

ciσ(1− ni−σ)



Origin of two bands

ϕ†
i ciσ̄

Two charge e excitations

New bound stateϕi is confined (no
kinetic energy)

Pseudogap

Graf,  et al. PRL vol. 98, 67004 (2007).

ciσ(1− ni−σ)



two types of charges

‘free’ bound



direct evidence



direct evidence

charge carrier density:  



direct evidence

charge carrier density:  

ar
X

iv
:0

9
0
5
.2

9
7
1
v
1
  
[c

o
n
d
-m

at
.s

tr
-e

l]
  
1
8
 M

ay
 2

0
0
9

Charge 2e Boson Underlies Two - Fluid Model of the Pseudogap in Cuprate
Superconductors

Shiladitya Chakraborty and Philip Phillips
Department of Physics, University of Illinois 1110 W. Green Street, Urbana, IL 61801, U.S.A.

(Dated: May 18, 2009)

Starting from the effective low energy theory of a doped Mott insulator1,2,3, we show that the
effective carrier density in the underdoped regime agrees with a two - fluid description. Namely, it has
distinct temperature independent and thermally activated components. We identify the thermally
activated component as the bound state of a hole and a charge 2e boson, which occurs naturally in
the effective theory. The thermally activated unbinding of this state leads to the strange metal and
subsequent T−linear resistivity.

The normal state of the high-Tc copper oxide super-
conductors exhibits a variety of anomalous features in
the underdoped regime which any successful theory of
these materials must explain. Central to the exotica
of the underdoped cuprates are the pseudogap5,6 and
strange metal phases. These phases are closely linked
because once the suppression of the density of states at
the chemical potential, a key experimental signature of
the pseudogap, ceases at some critical temperature, T ∗, a
metallic state ensues. Such behavior is suggestive of a lo-
calized, or more properly, a ‘bound’ electronic state that
is liberated at T ∗. While the upturn7,8 of the resistivity
at low temperatures is consistent with this bound state
scenario or charge localization9,10,11,12 a more direct sig-
nature is the activated temperature dependence14,15,16 of
the Hall coefficient. In a Fermi liquid, the inverse of the
Hall coefficient is a measure of the carrier density which
of course is independent of temperature. However, in the
underdoped cuprates, the inverse of the Hall coefficient
is strongly temperature dependent14,15,16. Gor’kov and
Teitel’baum13 observed remarkably that the charge car-
rier concentration, nHall, extracted from the inverse of
the Hall coefficient in La2−xSrxCuO4 (LSCO) obeys an
empirical formula,

nHall(x, T ) = n0(x) + n1(x) exp(−∆(x)/T ), (1)

appropriate or a two-component or two-fluid system.
One of the components is independent of temperature,
n0(x) (x the doping level) while the other is strongly
temperature dependent, n1(x) exp(−∆(x, T )). The key
observation here is that the temperature dependence in
nHall is carried entirely within ∆(x, T ) which defines
a characteristic activation energy scale for the system.
Gor’kov and Teitel‘baum’s13 analysis suggests that the
activation energy is set by the pseudogap energy scale.
Consequently, the bound component should be liber-
ated beyond the T ∗ scale for the onset of the pseudo-
gap. Should nHall be an accurate representation of the
effective charge carrier concentration in the cuprates, the
above observation indicates that the underdoped or pseu-
dogap phase necessitates a two-fluid description, which
has been championed17 recently to explain NMR, inelas-
tic neutron scattering and thermodynamic measurements
on these systems. Nonetheless, the microscopic origin of

the two fluids has not been advanced. That is, there is
no microscopic prescription for the precise nature of the
propagating degrees of freedom that underlie the tem-
perature dependence of nHall. For example, Gor‘kov and
Teitel‘baum13 attributed the unbinding of the localized
charges above T ∗ to excitations from van Hove singu-
larities at the bottom of the band up to the chemical
potential.

By contrast, our explanation of the the two fluids re-
lies entirely on the strong correlations of a doped Mott
insulator, that is, Mottness. Here we show that the ex-
act low-energy theory of a doped Mott insulator1,2,3 de-
scribed by the Hubbard model naturally resolves the two-
component conundrum in the cuprates. The propagating
degrees of freedom that constitute the two fluids are the
standard projected electron in the lower Hubbard band
and a bound composite excitation composed of a charge
2e boson and a hole. It is the unbinding of the latter that
gives rise to the strange metal regime.

We review some of the key features of the our effective
low energy theory of Mottness, the complete details of
which have been worked out elsewhere1,2,3,4. Our start-
ing point is the usual Hubbard model

HHubb = −t
∑

i,j,σ

gijc
†
i,σcj,σ + U

∑

i,σ

c†i,↑c
†
i,↓ci,↓ci,↑ (2)

where i, j label lattice sites, gij is equal to one if i, j are
nearest neighbours, ciσ annihilates an electron with spin
σ on lattice site i, t is the nearest-neighbour hopping ma-
trix element and U the energy cost when two electrons
doubly occupy the same site. The cuprates live in the
strongly coupled regime in which the interactions domi-
nate as t ≈ 0.5eV and U = 4eV. A low-energy effective
action is then obtained by integrating out the physics
on the U -scale. Because double occupancy occurs in
the ground state, integrating out the U -scale physics is
not equivalent to integrating out double occupancy. We
solved this problem by extending the Hilbert space to
include a new fermionic oscillator which represents the
creation or annihilation of double occpancy only when
a constraint is solved. The new fermionic oscillator en-
ters the action with a mass of U and hence represents the
high-energy scale, which must be integrated out to gener-
ate the low-energy action. The corresponding low-energy

PRL,  vol. 97, 247003 (2006).
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FIG. 3: (color online) (a) T dependences of 1/neff (=
eRH/VCu) for a series of LSCO single crystals in the lightly-
doped region, x = 0.01 – 0.05, with their fits (solid lines) using
Eq. (2). The fitting parameters, n1 and ∆CT , are shown in
panels (b) and (c).

mensional), for the ease of understanding the meaning of
the numbers. Since the plateau in RH(T ) at moderate
temperature gives neff that is essentially equal to x at
low doping,13 the impurity term n0e−∆imp/2kBT in Eq.
(1) should be replaced with x to describe RH(T ) in this
region.28 Hence, we fit the data for x = 0.01 – 0.05 to

RH(T ) =
VCu

e

(

x + n1e
−∆CT /2kBT

)−1

. (2)

The solid lines in Fig. 3(a) are the results of the fittings.29

Note that the upturn at very low temperature seen in
all the data is due to the strong Anderson localization13

that reduces the number of mobile carriers and naturally
causes a deviation from Eq. (2). Obviously, Eq. (2) gives
a reasonable account of the essential feature of the data
(except for the Anderson localization), and hence one
may conclude that the thermal activation of holes gives
rise to the exponential decrease in RH at high tempera-
ture not only at x = 0 but also at low doping. This in
turn indicates that there are strong charge fluctuations
in lightly-doped cuprates at !400 K, where the charge
transport must become incoherent; therefore, it is prob-
ably not reasonable to describe RH in this regime using
theories developed for a metallic system (i.e., for coherent
electrons with well-defined wave vectors), such as that in
Ref. 10.

The doping dependences of the parameters n1 and
∆CT in Eq. (2) obtained from the fits are shown in

Figs. 3(b) and 3(c). It is notable that n1, a rough mea-
sure of the number of available states for thermal activa-
tions (but is amplified by various additional effects24,25)
is essentially doping-independent for x = 0 – 0.05 [Fig.
3(b)], which would imply that thermal creations of car-
riers of essentially the same nature are taking place in
this doping range. On the other hand, the gap ∆CT for
the thermal activation [Fig. 3(c)] shows a sudden drop
from 0.89 to 0.53 eV upon doping only 1% of holes to the
parent insulator, but then shows only a small decrease
with x. Probably, there are two possibilities to inter-
pret this result. One is to take the reduction in ∆CT to
be a result of the softening of the main CT gap upon
slight doping; in this case, the same bands are involved
in the activation process after the doping, and our ob-
servation that n1 is essentially doping independent is in
good accord. Considering the fact that doping to a Mott
insulator necessarily involves a change in the electronic
structure at a high energy scale of the order of the on-site
repulsion U (because doping one hole to a Mott insulator
not only creates a hole state but also removes one state
from the upper Hubbard band),30 it would be possible
that a slight doping induces a relatively large change in
the band structure. The other possibility is that the so-
called “in-gap states”12 are created in the middle of the
original CT gap upon hole doping and our ∆CT actually
measures the charge-transfer excitations from these new
states to the upper Hubbard band (conduction band). In
this case, one would expect n1 for x ≥ 0.01 to be much
smaller than that for x =0; however, a large n1 might be
possible for some particular shape of the band edge,31 so
our result in Fig. 3(b) cannot conclusively exclude this
possibility. In any case, the true nature of ∆CT in the
doped system is best left as an open question, and its
identification is actually at the heart of understanding
what really happens upon doping to a Mott insulator. It
is intriguing to note that our ∆CT for the lightly-doped
region coincides rather well with the peak frequency of
the mid-infrared (MIR) absorption seen in the optical
conductivity of LSCO,32 so the MIR absorption may also
have something to do with the CT excitations.

In passing, previous studies of the doping dependence
of the CT gap using high-energy probes33,34 have found
a hardening of the gap, which appears to be at odds
with the first possibility discussed above. However,
Markiewicz and Bansil argued26 that those high-energy
experiments may only see hard branches of the various
modes of the CT excitations; naturally, our thermody-
namic measurement probes the CT excitation of the low-
est energy, which may not be easily seen by the high-
energy probes. In this regard, it should be noted that
our ∆CT measures the effective excitation energy at high
temperature, which is naturally smaller than the band
gap at T = 0, so a care must be taken when comparing
our ∆CT to that calculated theoretically for T = 0.

Ono, et al., Phys. Rev. B 75, 024515 
(2007)
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Charge 2e Boson Underlies Two - Fluid Model of the Pseudogap in Cuprate
Superconductors

Shiladitya Chakraborty and Philip Phillips
Department of Physics, University of Illinois 1110 W. Green Street, Urbana, IL 61801, U.S.A.

(Dated: May 18, 2009)

Starting from the effective low energy theory of a doped Mott insulator1,2,3, we show that the
effective carrier density in the underdoped regime agrees with a two - fluid description. Namely, it has
distinct temperature independent and thermally activated components. We identify the thermally
activated component as the bound state of a hole and a charge 2e boson, which occurs naturally in
the effective theory. The thermally activated unbinding of this state leads to the strange metal and
subsequent T−linear resistivity.

The normal state of the high-Tc copper oxide super-
conductors exhibits a variety of anomalous features in
the underdoped regime which any successful theory of
these materials must explain. Central to the exotica
of the underdoped cuprates are the pseudogap5,6 and
strange metal phases. These phases are closely linked
because once the suppression of the density of states at
the chemical potential, a key experimental signature of
the pseudogap, ceases at some critical temperature, T ∗, a
metallic state ensues. Such behavior is suggestive of a lo-
calized, or more properly, a ‘bound’ electronic state that
is liberated at T ∗. While the upturn7,8 of the resistivity
at low temperatures is consistent with this bound state
scenario or charge localization9,10,11,12 a more direct sig-
nature is the activated temperature dependence14,15,16 of
the Hall coefficient. In a Fermi liquid, the inverse of the
Hall coefficient is a measure of the carrier density which
of course is independent of temperature. However, in the
underdoped cuprates, the inverse of the Hall coefficient
is strongly temperature dependent14,15,16. Gor’kov and
Teitel’baum13 observed remarkably that the charge car-
rier concentration, nHall, extracted from the inverse of
the Hall coefficient in La2−xSrxCuO4 (LSCO) obeys an
empirical formula,

nHall(x, T ) = n0(x) + n1(x) exp(−∆(x)/T ), (1)

appropriate or a two-component or two-fluid system.
One of the components is independent of temperature,
n0(x) (x the doping level) while the other is strongly
temperature dependent, n1(x) exp(−∆(x, T )). The key
observation here is that the temperature dependence in
nHall is carried entirely within ∆(x, T ) which defines
a characteristic activation energy scale for the system.
Gor’kov and Teitel‘baum’s13 analysis suggests that the
activation energy is set by the pseudogap energy scale.
Consequently, the bound component should be liber-
ated beyond the T ∗ scale for the onset of the pseudo-
gap. Should nHall be an accurate representation of the
effective charge carrier concentration in the cuprates, the
above observation indicates that the underdoped or pseu-
dogap phase necessitates a two-fluid description, which
has been championed17 recently to explain NMR, inelas-
tic neutron scattering and thermodynamic measurements
on these systems. Nonetheless, the microscopic origin of

the two fluids has not been advanced. That is, there is
no microscopic prescription for the precise nature of the
propagating degrees of freedom that underlie the tem-
perature dependence of nHall. For example, Gor‘kov and
Teitel‘baum13 attributed the unbinding of the localized
charges above T ∗ to excitations from van Hove singu-
larities at the bottom of the band up to the chemical
potential.

By contrast, our explanation of the the two fluids re-
lies entirely on the strong correlations of a doped Mott
insulator, that is, Mottness. Here we show that the ex-
act low-energy theory of a doped Mott insulator1,2,3 de-
scribed by the Hubbard model naturally resolves the two-
component conundrum in the cuprates. The propagating
degrees of freedom that constitute the two fluids are the
standard projected electron in the lower Hubbard band
and a bound composite excitation composed of a charge
2e boson and a hole. It is the unbinding of the latter that
gives rise to the strange metal regime.

We review some of the key features of the our effective
low energy theory of Mottness, the complete details of
which have been worked out elsewhere1,2,3,4. Our start-
ing point is the usual Hubbard model

HHubb = −t
∑

i,j,σ

gijc
†
i,σcj,σ + U

∑

i,σ

c†i,↑c
†
i,↓ci,↓ci,↑ (2)

where i, j label lattice sites, gij is equal to one if i, j are
nearest neighbours, ciσ annihilates an electron with spin
σ on lattice site i, t is the nearest-neighbour hopping ma-
trix element and U the energy cost when two electrons
doubly occupy the same site. The cuprates live in the
strongly coupled regime in which the interactions domi-
nate as t ≈ 0.5eV and U = 4eV. A low-energy effective
action is then obtained by integrating out the physics
on the U -scale. Because double occupancy occurs in
the ground state, integrating out the U -scale physics is
not equivalent to integrating out double occupancy. We
solved this problem by extending the Hilbert space to
include a new fermionic oscillator which represents the
creation or annihilation of double occpancy only when
a constraint is solved. The new fermionic oscillator en-
ters the action with a mass of U and hence represents the
high-energy scale, which must be integrated out to gener-
ate the low-energy action. The corresponding low-energy

PRL,  vol. 97, 247003 (2006).
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FIG. 3: (color online) (a) T dependences of 1/neff (=
eRH/VCu) for a series of LSCO single crystals in the lightly-
doped region, x = 0.01 – 0.05, with their fits (solid lines) using
Eq. (2). The fitting parameters, n1 and ∆CT , are shown in
panels (b) and (c).

mensional), for the ease of understanding the meaning of
the numbers. Since the plateau in RH(T ) at moderate
temperature gives neff that is essentially equal to x at
low doping,13 the impurity term n0e−∆imp/2kBT in Eq.
(1) should be replaced with x to describe RH(T ) in this
region.28 Hence, we fit the data for x = 0.01 – 0.05 to

RH(T ) =
VCu

e

(

x + n1e
−∆CT /2kBT

)−1

. (2)

The solid lines in Fig. 3(a) are the results of the fittings.29

Note that the upturn at very low temperature seen in
all the data is due to the strong Anderson localization13

that reduces the number of mobile carriers and naturally
causes a deviation from Eq. (2). Obviously, Eq. (2) gives
a reasonable account of the essential feature of the data
(except for the Anderson localization), and hence one
may conclude that the thermal activation of holes gives
rise to the exponential decrease in RH at high tempera-
ture not only at x = 0 but also at low doping. This in
turn indicates that there are strong charge fluctuations
in lightly-doped cuprates at !400 K, where the charge
transport must become incoherent; therefore, it is prob-
ably not reasonable to describe RH in this regime using
theories developed for a metallic system (i.e., for coherent
electrons with well-defined wave vectors), such as that in
Ref. 10.

The doping dependences of the parameters n1 and
∆CT in Eq. (2) obtained from the fits are shown in

Figs. 3(b) and 3(c). It is notable that n1, a rough mea-
sure of the number of available states for thermal activa-
tions (but is amplified by various additional effects24,25)
is essentially doping-independent for x = 0 – 0.05 [Fig.
3(b)], which would imply that thermal creations of car-
riers of essentially the same nature are taking place in
this doping range. On the other hand, the gap ∆CT for
the thermal activation [Fig. 3(c)] shows a sudden drop
from 0.89 to 0.53 eV upon doping only 1% of holes to the
parent insulator, but then shows only a small decrease
with x. Probably, there are two possibilities to inter-
pret this result. One is to take the reduction in ∆CT to
be a result of the softening of the main CT gap upon
slight doping; in this case, the same bands are involved
in the activation process after the doping, and our ob-
servation that n1 is essentially doping independent is in
good accord. Considering the fact that doping to a Mott
insulator necessarily involves a change in the electronic
structure at a high energy scale of the order of the on-site
repulsion U (because doping one hole to a Mott insulator
not only creates a hole state but also removes one state
from the upper Hubbard band),30 it would be possible
that a slight doping induces a relatively large change in
the band structure. The other possibility is that the so-
called “in-gap states”12 are created in the middle of the
original CT gap upon hole doping and our ∆CT actually
measures the charge-transfer excitations from these new
states to the upper Hubbard band (conduction band). In
this case, one would expect n1 for x ≥ 0.01 to be much
smaller than that for x =0; however, a large n1 might be
possible for some particular shape of the band edge,31 so
our result in Fig. 3(b) cannot conclusively exclude this
possibility. In any case, the true nature of ∆CT in the
doped system is best left as an open question, and its
identification is actually at the heart of understanding
what really happens upon doping to a Mott insulator. It
is intriguing to note that our ∆CT for the lightly-doped
region coincides rather well with the peak frequency of
the mid-infrared (MIR) absorption seen in the optical
conductivity of LSCO,32 so the MIR absorption may also
have something to do with the CT excitations.

In passing, previous studies of the doping dependence
of the CT gap using high-energy probes33,34 have found
a hardening of the gap, which appears to be at odds
with the first possibility discussed above. However,
Markiewicz and Bansil argued26 that those high-energy
experiments may only see hard branches of the various
modes of the CT excitations; naturally, our thermody-
namic measurement probes the CT excitation of the low-
est energy, which may not be easily seen by the high-
energy probes. In this regard, it should be noted that
our ∆CT measures the effective excitation energy at high
temperature, which is naturally smaller than the band
gap at T = 0, so a care must be taken when comparing
our ∆CT to that calculated theoretically for T = 0.

Ono, et al., Phys. Rev. B 75, 024515 
(2007)
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G(k, ω) =
1

Z

∫

[Dϕ∗][Dϕ]G(k, ω, ϕ) exp−
∑

k
(E0+Ek−λk−

2

β
ln(1+exp−βλk )) (10)

where

G(k, ω, ϕ) =
sin2 θk[ϕ]

ω + λk[ϕ]
+

cos2 θk[ϕ]

ω − λk[ϕ]
(11)

is the exact Green function corresponding to the La-
grangian, Eq. (7), which has a two-branch structure, cor-
responding to the bare electrons and the coupled holon-
doublon state respectively. The role of the ϕ field, which
determines the weight of the second branch, is vital to
our understanding of the properties of Mott systems, as
was demonstrated previously3,4. It is trivial to see that
in the limit of vanishing s (no ϕ field), the γkσ’s reduce
to the bare electron operators ck and the first term in
Eq.(11) vanishes. The two-fluid nature of the response
stems from this fact of the theory. Namely, the first term
contributes only when ϕ "= 0 and the second when ϕ = 0.
These contributions correspond to the dynamical and
static components of the spectral weight, respectively.

We obtained the Green function G(k, ω) by a numer-
ical integration of Eq.(10) over the ϕ field. The Hall
coefficient RH was computed from the spectral function
A(k, ω) using the Kubo formula19

RH = σxy/σ2
xx, (12)

where

σxy =
2π2|e|3aB

3h̄2

∫

dω(
∂f(ω)

∂ω
)

1

N

∑

k

(
∂εk
∂kx

)2

×
∂2εk
∂ky

2 A(k, ω)3 (13)

and

σxx =
πe2

2h̄a

∫

dω(−
∂f(ω)

∂ω
)

1

N

∑

k

(
∂εk
∂kx

)2A(k, ω)2 (14)

with σxx and σxy the diagonal and off-diagonal compo-
nents of the conductivity tensor respectively, f(ω) is the
Fermi distribution function, and B is the normal compo-
nent of the external magnetic field. The effective charge
carrier density nHall is then obtained using the relation
RH = −1/(nHalle).

Fig.1 shows a set of plots of nHall as a function of
the inverse temperature, each corresponding to a differ-
ent value of hole-doping, x, in the underdoped regime
(x ranging from 0.05 to 0.20). The plots fit remarkably
well to an exponentially decaying form. In other words,
the computed charge carrier density within the charge
2e boson theory of a doped Mott insulator agrees well
with the form given in Eq. (1) proposed by Gor’kov
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stems from this fact of the theory. Namely, the first term
contributes only when ϕ "= 0 and the second when ϕ = 0.
These contributions correspond to the dynamical and
static components of the spectral weight, respectively.

We obtained the Green function G(k, ω) by a numer-
ical integration of Eq.(10) over the ϕ field. The Hall
coefficient RH was computed from the spectral function
A(k, ω) using the Kubo formula19
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with σxx and σxy the diagonal and off-diagonal compo-
nents of the conductivity tensor respectively, f(ω) is the
Fermi distribution function, and B is the normal compo-
nent of the external magnetic field. The effective charge
carrier density nHall is then obtained using the relation
RH = −1/(nHalle).

Fig.1 shows a set of plots of nHall as a function of
the inverse temperature, each corresponding to a differ-
ent value of hole-doping, x, in the underdoped regime
(x ranging from 0.05 to 0.20). The plots fit remarkably
well to an exponentially decaying form. In other words,
the computed charge carrier density within the charge
2e boson theory of a doped Mott insulator agrees well
with the form given in Eq. (1) proposed by Gor’kov
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to change sign around x = 0.320 in hole-doped samples.
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Universal sign change of thermopowermining Ppl, Ppl is converted from PTc
by using the relation in

Fig. 2!c" discussed below. To clearly label how Ppl was de-
termined for each sample or data set used in this paper, we
use the following character to designate such that I to be the
second method if the cited data have no TEP but Tc and II to
be the third method if the cited data has only PTc

. This des-
ignation to indicate the origin of Ppl will be used in Tables
V–IX and in Figs. 3–6. We will use no designation whenever
Ppl is directly determined from the TEP. All the HTSs used in
the present analysis are summarized in Table I.

We examine various characteristic temperatures and ener-
gies of HTSs for constructing the phase diagram. The
pseudogap is generally observed as the characteristic tem-
perature derived by a scaling of the temperature dependence,
as a distinct change in the slope of the temperature depen-
dence or as a peak value in the energy dispersion at a fixed
temperature. Therefore, a reliable estimation can only be
achieved through using a wide temperature or energy range.
We only chose the characteristic temperatures and energies
obtained by direct observation or those obtained through
careful analysis of the data covering a wide temperature or
energy range. For example, when T! is derived by the scaling
of the temperature dependence observed below 300 K, T!’s
over 300 K is not used.

The pseudogap was first noticed as the temperature show-
ing a broad maximum in !T1T"−1 vs T curve.82 The charac-
teristic temperatures are observed as a broad maximum in the
temperature dependence of S vs T !Ref. 8" and ! vs T.65 S!T"
can be scaled by S!TS

!" and TS
!.24 The resistive pseudogap

temperature !T"
!" is defined as a temperature where the resis-

tivity bends downward from the linear temperature depen-
dence at the high temperature.60 The similar characteristic
temperatures are observed also in # vs T.61 The pseudogap
by the QPR is observed as the gaplike behavior in substantial
transient change of the optical transmission or reflection in-
duced by ultrashort laser pulse photoexcitation.66 The
ARPES and tunneling experiments provide us with the char-
acteristic energies and temperatures, such as the peak and

TABLE III. The Tc
max. and Ppl

opt. for single-layer HTSs plotted in
Figs. 1!a"–1!c".

HTS Tc
max. !K" Ppl

opt. Ref.

SrD-La214 39.4 0.16 27
SrD-La214 37 0.16 28
SrD-La214 36 0.16 29
SrD-La214 38 0.16 30
OD-Hg1201 97 0.235 31 and 32
CD-Bi2201 35.5 0.28 33
CD-Bi2201 33 0.28 34
OD-Tl2201 93a 0.25a 7, 35, and 36

aWe use the reported highest Tc=93 K as Tc
max. !Ref. 37". From the

plot of Tc vs Ppl in Fig. 1!a", the optimal Ppl is estimated to be
#0.25. The detail is in the text.

FIG. 2. !Color online" S290 as a function of the hole-doping content per CuO2 plane. !a" S290 !$7 %V /K" on the upper panel is plotted
on a logarithmic scale, while !b" S290 !&7 %V /K" on the lower panel is plotted on a linear scale. The plotted data are summarized in Table
IV. !c" Quantitative comparison between Ppl and PTc

. The dotted line shows Ppl= PTc
. We used this relation for the conversion from PTc

into
Ppl. The error of Ppl is below 0.04 for the CD-Bi2201 and below 0.01 for all other HTSs. The error bar for the other materials is not shown.
The shaded area represents a region with the Ppl error of '0.01 around the universal S290!Ppl" curve.
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mining Ppl, Ppl is converted from PTc
by using the relation in
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second method if the cited data have no TEP but Tc and II to
be the third method if the cited data has only PTc
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Ppl is directly determined from the TEP. All the HTSs used in
the present analysis are summarized in Table I.
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obtained by direct observation or those obtained through
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energy range. For example, when T! is derived by the scaling
of the temperature dependence observed below 300 K, T!’s
over 300 K is not used.
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plot of Tc vs Ppl in Fig. 1!a", the optimal Ppl is estimated to be
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FIG. 2. !Color online" S290 as a function of the hole-doping content per CuO2 plane. !a" S290 !$7 %V /K" on the upper panel is plotted
on a logarithmic scale, while !b" S290 !&7 %V /K" on the lower panel is plotted on a linear scale. The plotted data are summarized in Table
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. The dotted line shows Ppl= PTc
. We used this relation for the conversion from PTc

into
Ppl. The error of Ppl is below 0.04 for the CD-Bi2201 and below 0.01 for all other HTSs. The error bar for the other materials is not shown.
The shaded area represents a region with the Ppl error of '0.01 around the universal S290!Ppl" curve.
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Universal sign change of thermopowermining Ppl, Ppl is converted from PTc
by using the relation in

Fig. 2!c" discussed below. To clearly label how Ppl was de-
termined for each sample or data set used in this paper, we
use the following character to designate such that I to be the
second method if the cited data have no TEP but Tc and II to
be the third method if the cited data has only PTc

. This des-
ignation to indicate the origin of Ppl will be used in Tables
V–IX and in Figs. 3–6. We will use no designation whenever
Ppl is directly determined from the TEP. All the HTSs used in
the present analysis are summarized in Table I.

We examine various characteristic temperatures and ener-
gies of HTSs for constructing the phase diagram. The
pseudogap is generally observed as the characteristic tem-
perature derived by a scaling of the temperature dependence,
as a distinct change in the slope of the temperature depen-
dence or as a peak value in the energy dispersion at a fixed
temperature. Therefore, a reliable estimation can only be
achieved through using a wide temperature or energy range.
We only chose the characteristic temperatures and energies
obtained by direct observation or those obtained through
careful analysis of the data covering a wide temperature or
energy range. For example, when T! is derived by the scaling
of the temperature dependence observed below 300 K, T!’s
over 300 K is not used.

The pseudogap was first noticed as the temperature show-
ing a broad maximum in !T1T"−1 vs T curve.82 The charac-
teristic temperatures are observed as a broad maximum in the
temperature dependence of S vs T !Ref. 8" and ! vs T.65 S!T"
can be scaled by S!TS

!" and TS
!.24 The resistive pseudogap

temperature !T"
!" is defined as a temperature where the resis-

tivity bends downward from the linear temperature depen-
dence at the high temperature.60 The similar characteristic
temperatures are observed also in # vs T.61 The pseudogap
by the QPR is observed as the gaplike behavior in substantial
transient change of the optical transmission or reflection in-
duced by ultrashort laser pulse photoexcitation.66 The
ARPES and tunneling experiments provide us with the char-
acteristic energies and temperatures, such as the peak and

TABLE III. The Tc
max. and Ppl

opt. for single-layer HTSs plotted in
Figs. 1!a"–1!c".

HTS Tc
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opt. Ref.

SrD-La214 39.4 0.16 27
SrD-La214 37 0.16 28
SrD-La214 36 0.16 29
SrD-La214 38 0.16 30
OD-Hg1201 97 0.235 31 and 32
CD-Bi2201 35.5 0.28 33
CD-Bi2201 33 0.28 34
OD-Tl2201 93a 0.25a 7, 35, and 36

aWe use the reported highest Tc=93 K as Tc
max. !Ref. 37". From the

plot of Tc vs Ppl in Fig. 1!a", the optimal Ppl is estimated to be
#0.25. The detail is in the text.

FIG. 2. !Color online" S290 as a function of the hole-doping content per CuO2 plane. !a" S290 !$7 %V /K" on the upper panel is plotted
on a logarithmic scale, while !b" S290 !&7 %V /K" on the lower panel is plotted on a linear scale. The plotted data are summarized in Table
IV. !c" Quantitative comparison between Ppl and PTc

. The dotted line shows Ppl= PTc
. We used this relation for the conversion from PTc

into
Ppl. The error of Ppl is below 0.04 for the CD-Bi2201 and below 0.01 for all other HTSs. The error bar for the other materials is not shown.
The shaded area represents a region with the Ppl error of '0.01 around the universal S290!Ppl" curve.
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Universal sign change of thermopowermining Ppl, Ppl is converted from PTc
by using the relation in

Fig. 2!c" discussed below. To clearly label how Ppl was de-
termined for each sample or data set used in this paper, we
use the following character to designate such that I to be the
second method if the cited data have no TEP but Tc and II to
be the third method if the cited data has only PTc

. This des-
ignation to indicate the origin of Ppl will be used in Tables
V–IX and in Figs. 3–6. We will use no designation whenever
Ppl is directly determined from the TEP. All the HTSs used in
the present analysis are summarized in Table I.

We examine various characteristic temperatures and ener-
gies of HTSs for constructing the phase diagram. The
pseudogap is generally observed as the characteristic tem-
perature derived by a scaling of the temperature dependence,
as a distinct change in the slope of the temperature depen-
dence or as a peak value in the energy dispersion at a fixed
temperature. Therefore, a reliable estimation can only be
achieved through using a wide temperature or energy range.
We only chose the characteristic temperatures and energies
obtained by direct observation or those obtained through
careful analysis of the data covering a wide temperature or
energy range. For example, when T! is derived by the scaling
of the temperature dependence observed below 300 K, T!’s
over 300 K is not used.

The pseudogap was first noticed as the temperature show-
ing a broad maximum in !T1T"−1 vs T curve.82 The charac-
teristic temperatures are observed as a broad maximum in the
temperature dependence of S vs T !Ref. 8" and ! vs T.65 S!T"
can be scaled by S!TS

!" and TS
!.24 The resistive pseudogap

temperature !T"
!" is defined as a temperature where the resis-

tivity bends downward from the linear temperature depen-
dence at the high temperature.60 The similar characteristic
temperatures are observed also in # vs T.61 The pseudogap
by the QPR is observed as the gaplike behavior in substantial
transient change of the optical transmission or reflection in-
duced by ultrashort laser pulse photoexcitation.66 The
ARPES and tunneling experiments provide us with the char-
acteristic energies and temperatures, such as the peak and

TABLE III. The Tc
max. and Ppl

opt. for single-layer HTSs plotted in
Figs. 1!a"–1!c".

HTS Tc
max. !K" Ppl

opt. Ref.

SrD-La214 39.4 0.16 27
SrD-La214 37 0.16 28
SrD-La214 36 0.16 29
SrD-La214 38 0.16 30
OD-Hg1201 97 0.235 31 and 32
CD-Bi2201 35.5 0.28 33
CD-Bi2201 33 0.28 34
OD-Tl2201 93a 0.25a 7, 35, and 36

aWe use the reported highest Tc=93 K as Tc
max. !Ref. 37". From the

plot of Tc vs Ppl in Fig. 1!a", the optimal Ppl is estimated to be
#0.25. The detail is in the text.

FIG. 2. !Color online" S290 as a function of the hole-doping content per CuO2 plane. !a" S290 !$7 %V /K" on the upper panel is plotted
on a logarithmic scale, while !b" S290 !&7 %V /K" on the lower panel is plotted on a linear scale. The plotted data are summarized in Table
IV. !c" Quantitative comparison between Ppl and PTc

. The dotted line shows Ppl= PTc
. We used this relation for the conversion from PTc

into
Ppl. The error of Ppl is below 0.04 for the CD-Bi2201 and below 0.01 for all other HTSs. The error bar for the other materials is not shown.
The shaded area represents a region with the Ppl error of '0.01 around the universal S290!Ppl" curve.
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We have analyzed various characteristic temperatures and energies of hole-doped high-Tc cuprates as a
function of a dimensionless hole-doping concentration !pu". Entirely based on the experimental grounds, we
construct a unified electronic phase diagram !UEPD", where three characteristic temperatures !T!’s" and their
corresponding energies !E!’s" converge as pu increases in the underdoped regime. T!’s and E!’s merge together
with the Tc curve and 3.5kBTc curve at pu#1.1 in the overdoped regime, respectively. They finally go to zero
at pu#1.3. The UEPD follows an asymmetric half-dome-shaped Tc curve, in which Tc appears at pu#0.4,
reaches a maximum at pu#1, and rapidly goes to zero at pu#1.3. The asymmetric half-dome-shaped Tc curve
is at odds with the well-known symmetric superconducting dome for La2−xSrxCuO4 !SrD-La214", in which two
characteristic temperatures and energies converge as pu increases and merge together at pu#1.6, where Tc goes
to zero. The UEPD clearly shows that pseudogap phase precedes and coexists with high temperature super-
conductivity in the underdoped and overdoped regimes, respectively. It is also clearly seen that the upper limit
of high-Tc cuprate physics ends at a hole concentration that equals to 1.3 times the optimal doping concentra-
tion for almost all high-Tc cuprate materials and 1.6 times the optimal doping concentration for the SrD-La214.
Our analysis strongly suggests that pseudogap is a precursor of high-Tc superconductivity, the observed quan-
tum critical point inside the superconducting dome may be related to the end point of UEPD, and the normal
state of the underdoped and overdoped high temperature superconductors cannot be regarded as a conventional
Fermi liquid phase.
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I. INTRODUCTION

The unique hallmark of high temperature superconductors
!HTSs" is a pseudogap phase characterized by the observa-
tion of a multiple pseudogap temperatures !T!’s" and
pseudogap energies !E!’s" by a large number of different
experimental probes. While the pseudogap phase precedes
the high temperature superconducting phase characterized by
the superconducting transition temperature !Tc" and super-
conducting gap energy !"c", it is not clear how T!, Tc, E!,
and "c are related to each other. Specifically, how are T! and
E! related to the occurrence of the high-Tc superconductivity
is still unclear. Is pseudogap a sufficient and/or necessary
condition for high Tc or is it just a complication of specific
material systems? Is it collaborating or competing with su-
perconductivity? For instance, it is argued that the pseudogap
is a competing order that may have nothing to do with high
Tc.1 On the other hand, it is also suggested that the
pseudogap is intimately related to high Tc.2,3 To distinguish
these, two contradictory pictures that are critical to the
mechanism of high-Tc superconductivity requires a compari-
son of various characteristic temperatures and energies in a
universal phase diagram for all HTSs. Any systematic behav-
ior derived from this kind of phase diagram will provide true
intrinsic properties of HTS that are free from material-
specific complications. However, up until now, there is no
such a comparison made and no such phase diagram is avail-
able. We have analyzed numerous published data in the lit-
erature. We carefully select 27 HTSs: 11 single-layer, 11
double-layer, and five triple-layer HTSs, as summarized in

Table I. The selection criteria will follow when we discuss
the construction of the figures. There are 16 different experi-
mental probes used for these 27 HTSs, which are summa-
rized in Table II. In this paper, we unify the characteristic
temperatures of all these data of 27 HTSs on one single
phase diagram entirely based on our proposed universal hole
concentration scale that itself is also based on experimental
results.

In the single-layer SrD-La214, where the hole-doping
concentration can be unambiguously determined from the Sr
content !x",4 Tc!x" exhibits a well-known symmetric bell-
shaped curve, i.e., the so-called superconducting dome, with
a maximum Tc !Tc

max" located at x#0.16.5 The symmetrical
dome-shaped Tc curve or the superconducting dome is ap-
proximately represented by the following parabola:

1 −
Tc

Tc
max = 82.6!x − 0.16"2. !1"

Assuming that all HTSs have the identical symmetric super-
conducting dome, x can be replaced with the hole-doping
concentration !PTc

". Then, this relation could be used to de-
termine the hole-doping concentration for many other
HTSs.5–23 Using this hole-scale based on the superconduct-
ing dome, the PTc

-scale, various phase diagrams have been
constructed.1 A distinct feature in one of such phase dia-
grams is that T! crosses the superconducting dome and
reaches zero at a quantum critical point !QCP" inside the
dome.1,6 On the other hand, without using the PTc

scale,
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Universal sign change of thermopowermining Ppl, Ppl is converted from PTc
by using the relation in

Fig. 2!c" discussed below. To clearly label how Ppl was de-
termined for each sample or data set used in this paper, we
use the following character to designate such that I to be the
second method if the cited data have no TEP but Tc and II to
be the third method if the cited data has only PTc

. This des-
ignation to indicate the origin of Ppl will be used in Tables
V–IX and in Figs. 3–6. We will use no designation whenever
Ppl is directly determined from the TEP. All the HTSs used in
the present analysis are summarized in Table I.

We examine various characteristic temperatures and ener-
gies of HTSs for constructing the phase diagram. The
pseudogap is generally observed as the characteristic tem-
perature derived by a scaling of the temperature dependence,
as a distinct change in the slope of the temperature depen-
dence or as a peak value in the energy dispersion at a fixed
temperature. Therefore, a reliable estimation can only be
achieved through using a wide temperature or energy range.
We only chose the characteristic temperatures and energies
obtained by direct observation or those obtained through
careful analysis of the data covering a wide temperature or
energy range. For example, when T! is derived by the scaling
of the temperature dependence observed below 300 K, T!’s
over 300 K is not used.

The pseudogap was first noticed as the temperature show-
ing a broad maximum in !T1T"−1 vs T curve.82 The charac-
teristic temperatures are observed as a broad maximum in the
temperature dependence of S vs T !Ref. 8" and ! vs T.65 S!T"
can be scaled by S!TS

!" and TS
!.24 The resistive pseudogap

temperature !T"
!" is defined as a temperature where the resis-

tivity bends downward from the linear temperature depen-
dence at the high temperature.60 The similar characteristic
temperatures are observed also in # vs T.61 The pseudogap
by the QPR is observed as the gaplike behavior in substantial
transient change of the optical transmission or reflection in-
duced by ultrashort laser pulse photoexcitation.66 The
ARPES and tunneling experiments provide us with the char-
acteristic energies and temperatures, such as the peak and

TABLE III. The Tc
max. and Ppl

opt. for single-layer HTSs plotted in
Figs. 1!a"–1!c".

HTS Tc
max. !K" Ppl

opt. Ref.

SrD-La214 39.4 0.16 27
SrD-La214 37 0.16 28
SrD-La214 36 0.16 29
SrD-La214 38 0.16 30
OD-Hg1201 97 0.235 31 and 32
CD-Bi2201 35.5 0.28 33
CD-Bi2201 33 0.28 34
OD-Tl2201 93a 0.25a 7, 35, and 36

aWe use the reported highest Tc=93 K as Tc
max. !Ref. 37". From the

plot of Tc vs Ppl in Fig. 1!a", the optimal Ppl is estimated to be
#0.25. The detail is in the text.

FIG. 2. !Color online" S290 as a function of the hole-doping content per CuO2 plane. !a" S290 !$7 %V /K" on the upper panel is plotted
on a logarithmic scale, while !b" S290 !&7 %V /K" on the lower panel is plotted on a linear scale. The plotted data are summarized in Table
IV. !c" Quantitative comparison between Ppl and PTc

. The dotted line shows Ppl= PTc
. We used this relation for the conversion from PTc

into
Ppl. The error of Ppl is below 0.04 for the CD-Bi2201 and below 0.01 for all other HTSs. The error bar for the other materials is not shown.
The shaded area represents a region with the Ppl error of '0.01 around the universal S290!Ppl" curve.
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We have analyzed various characteristic temperatures and energies of hole-doped high-Tc cuprates as a
function of a dimensionless hole-doping concentration !pu". Entirely based on the experimental grounds, we
construct a unified electronic phase diagram !UEPD", where three characteristic temperatures !T!’s" and their
corresponding energies !E!’s" converge as pu increases in the underdoped regime. T!’s and E!’s merge together
with the Tc curve and 3.5kBTc curve at pu#1.1 in the overdoped regime, respectively. They finally go to zero
at pu#1.3. The UEPD follows an asymmetric half-dome-shaped Tc curve, in which Tc appears at pu#0.4,
reaches a maximum at pu#1, and rapidly goes to zero at pu#1.3. The asymmetric half-dome-shaped Tc curve
is at odds with the well-known symmetric superconducting dome for La2−xSrxCuO4 !SrD-La214", in which two
characteristic temperatures and energies converge as pu increases and merge together at pu#1.6, where Tc goes
to zero. The UEPD clearly shows that pseudogap phase precedes and coexists with high temperature super-
conductivity in the underdoped and overdoped regimes, respectively. It is also clearly seen that the upper limit
of high-Tc cuprate physics ends at a hole concentration that equals to 1.3 times the optimal doping concentra-
tion for almost all high-Tc cuprate materials and 1.6 times the optimal doping concentration for the SrD-La214.
Our analysis strongly suggests that pseudogap is a precursor of high-Tc superconductivity, the observed quan-
tum critical point inside the superconducting dome may be related to the end point of UEPD, and the normal
state of the underdoped and overdoped high temperature superconductors cannot be regarded as a conventional
Fermi liquid phase.
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I. INTRODUCTION

The unique hallmark of high temperature superconductors
!HTSs" is a pseudogap phase characterized by the observa-
tion of a multiple pseudogap temperatures !T!’s" and
pseudogap energies !E!’s" by a large number of different
experimental probes. While the pseudogap phase precedes
the high temperature superconducting phase characterized by
the superconducting transition temperature !Tc" and super-
conducting gap energy !"c", it is not clear how T!, Tc, E!,
and "c are related to each other. Specifically, how are T! and
E! related to the occurrence of the high-Tc superconductivity
is still unclear. Is pseudogap a sufficient and/or necessary
condition for high Tc or is it just a complication of specific
material systems? Is it collaborating or competing with su-
perconductivity? For instance, it is argued that the pseudogap
is a competing order that may have nothing to do with high
Tc.1 On the other hand, it is also suggested that the
pseudogap is intimately related to high Tc.2,3 To distinguish
these, two contradictory pictures that are critical to the
mechanism of high-Tc superconductivity requires a compari-
son of various characteristic temperatures and energies in a
universal phase diagram for all HTSs. Any systematic behav-
ior derived from this kind of phase diagram will provide true
intrinsic properties of HTS that are free from material-
specific complications. However, up until now, there is no
such a comparison made and no such phase diagram is avail-
able. We have analyzed numerous published data in the lit-
erature. We carefully select 27 HTSs: 11 single-layer, 11
double-layer, and five triple-layer HTSs, as summarized in

Table I. The selection criteria will follow when we discuss
the construction of the figures. There are 16 different experi-
mental probes used for these 27 HTSs, which are summa-
rized in Table II. In this paper, we unify the characteristic
temperatures of all these data of 27 HTSs on one single
phase diagram entirely based on our proposed universal hole
concentration scale that itself is also based on experimental
results.

In the single-layer SrD-La214, where the hole-doping
concentration can be unambiguously determined from the Sr
content !x",4 Tc!x" exhibits a well-known symmetric bell-
shaped curve, i.e., the so-called superconducting dome, with
a maximum Tc !Tc

max" located at x#0.16.5 The symmetrical
dome-shaped Tc curve or the superconducting dome is ap-
proximately represented by the following parabola:

1 −
Tc

Tc
max = 82.6!x − 0.16"2. !1"

Assuming that all HTSs have the identical symmetric super-
conducting dome, x can be replaced with the hole-doping
concentration !PTc

". Then, this relation could be used to de-
termine the hole-doping concentration for many other
HTSs.5–23 Using this hole-scale based on the superconduct-
ing dome, the PTc

-scale, various phase diagrams have been
constructed.1 A distinct feature in one of such phase dia-
grams is that T! crosses the superconducting dome and
reaches zero at a quantum critical point !QCP" inside the
dome.1,6 On the other hand, without using the PTc

scale,
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Thermopower Primer
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2x=1-x x=1/3!



S must change sign before x=1/3 
(atomic limit)

experiments: x_c=.24

S ≈ −kB

e
ln

L
1− x



Hubbard Model
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Is L>2x important
 qualitatively?

L>2x

Sign change of S Tmax
c



summary

 low-energy theory: non-electron
Quantum numbers emerge--- 

 SC boson-fermion model

Thanks to R.  G. Leigh and Ting-
Pong Choy, Shiladitya 

Chakraborty
and DMR-NSF/ACIF
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summary

Boson=normal state properties of cuprates
Thanks to R.  G. Leigh and Ting-

Pong Choy, Shiladitya 
Chakraborty

and DMR-NSF/ACIF


