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First Problem: Mott gap
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not electrons: G'(w = 0,p = pr) = 0




Fermi-liquid analogy







A Critique of Two Metals

R. B. Laughlin

idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes
gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the
interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.
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Beliefs:
Mott gap is heresy!?

HF is the way!
No UHB and LHB!
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Recall,
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M. M. Qazilbash, K. S. Burch, D. Whisler,
D. Shrekenhamer, B. G. Chae, H. T. Kim,

and D. N. Basov PRB 74, 205118 (2006)
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localisation criterion

C X )
free stuck

U

Mott Problem: what is the dynamical
degree of freedom
that makes this happen!?

new bound states

Kohn, Mott, No proof exists!?
Castellani, @ Mottness is ill-defined

others




Second Problem: spectral weight transfer

the weight of each band depends on the filling!
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(t-J with hard projection)
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L= 2(t/U)f(x)
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pseudogap




Interacting
system

UV-IR

mixing

anti-bonding states move down
In energy




UV-IR |[anti-bonding states move down
Interacting mixing N energy
system

dynamically
generated




composite excitation: bound state

N\

half-filling: SWTdOPini :
Mott gap , pseudogap!

charge 2e boson




identifying the propagating degrees of freedom




EffectiveTheories:

‘ S(¢) at half-filling

Integrate | emp . o
Out high ‘ b

Energy fields
G—Seff[¢L] _ /d¢H exp—5(¢La¢H)

™~
Low-energy theory of M T




Half-filling

/)

Integrate out both




Key idea: similar to Bohm/Pines

Extend the Hilbert space:
Associate with U-scale new

Fermionic oscillators




Impose Constraint:

How is this possible with
Fermions?
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V4 DN

one per site transforms as a boson
(fermionic)

‘supersymmetry’
Grassmann
<

5(Dz' - QCiTCu)

super field:| X*#(o0,0) = X*(0) #(o) (Ramond)
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I : T~ [] - -
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t t - - _
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charge |2e| boson
solve constraint

&

/d29 00 Liubh = C;;r,géz',a + Hygubb,

1.0




Exact low-energy Lagrangian

# Lpare(electrons) + #Lpare(bosons)

) f( ) lnt( 95)

N

composite excitations

dispersion
of propagating
modes
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S = WP [local SUQ)|

Boson breaks local
SU(2) symmetry
Of Heisenberg model!




Exact IR Lagrangian

bare fields have no dynamics

vt \|2‘/ A

L?ff{ — 2—|90w|2 | ‘90 w|2 _‘bw|2

LY and fermions
5 (W )Sp_w,l%’cl%’/2+ﬁ,w/2+wf,TCE/z—ﬁ,wm—w/,l the | gre strongly coupled

(k)
{ i )SO ROk 24P w /240 1Ok 2—pw /2w, | bosons
+§*ﬁ

U + tez(f) + 2w
- | turn-on of spectral

weight governed
4%:(:08 (k,a/2) cos(p,a) b)’ COmPOS|te
excitations (CEXONS)




L = #Lpac(electrons) + #Lpare(bosons)

quadratic form:
composite or bound
excitations of

SOTC@O'
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composite excitations
determine spectral density
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electron transform at low energies

L%fv > L%fv -+ /dQQJi,J {VJD;LCZ',_UH + VUH_CZ',_J[)Z} + h.c.

IR

L (cz,ybj@a) + V(,% (sgp/Tt 53:) ¢ivo
spin-fluctuations CEXON

UV-IR mixing: spectral
weight transfer




electron overlap with composite excitations?
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destructive interference at low
energy
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energy

Aelectron > Acomposites




H(p,p,c,ch)

|.) no derivative couplings with
respect to bosonic field
2.) spatially uniform
3.) spin-spin sub-dominant
(non-dispersive)

consistent
with exact argument

bosonic field
contains all
the Mott physics
(numerically verified
that spatial variation of
bosonic field does nothing)
spin part irrelevant




Strong-coupling antiferromagnet

No adiabatic connection
with weak-coupling AF




bound states of the boson
mediate the Mott gap:

mechanism of localization of double occupancy




hole-doping




Extend the Hilbert space:
Associate with U-scale a new

Fermionic oscillator

U

| UD) D;
: " . J
I >




Electron spectral function

t2/U~60meV




Graf, et al. PRL vol. 98, 67004 (2007).

Two bandsl

SrCu02

0.3 I 0.3

Spin-charge
separation?
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Pseudogap




two types of charges




direct evidence




charge carrier density:




charge carrier density:
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exponentially suppressed: confinement




Our Theory

no model-dependent

exponential .
free parameters: just
T-dependence /U




Our Theory

&
)

A(x) (eV)

[ ]
[
wn

0.05 0.1 0.15 0.2 0.25 0.3
X

no model-dependent

exponential .
free parameters: just
T-dependence /U




Like Mott gap,
Pseudogap is a bound-state

problem with new IR modes
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strange metal: breakup (" deconfinement’) of
bound states

temperature

“strange”
metal

pseudo-gap .
conventional

metal?

superconduct

parent under optimally over  doping
doped doped doped
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Mottness: Strong Coupling
low-energy reduction

composite or bound states not in UV theory
Pseudogap=" confinement’




Third Problem:
Correlate of superconductivity!?




Universal sign change of thermopower
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Universal sign change of thermopower

90 _ ~
3 (P )=392exp(-19.7P )

(0.01<P, <021)

1[cap-Y1236

@ Honma

1| SrD-La214

<] Cooper
/\ Nakamura
O Nishikawa|
[0 Zhou

V Kakinuma
<> Johnston
O Xu

O Park

P =0.22
pl

| —— (P )= 40.47 - 163.4P
pl pl

(0.21<P <0.34)

sign —

change

1/ BaD-La214

© Zhou

|| oD-La214

% Yu
CeD-NdSr214
/\ Ambai

1 | SrD-LaNd214

V Takeda

|| co-Bi2201

M Smits
@ Devaux

1| op-Hg1212

% Fukuoka

1| OD-Hg1223

% Fukuoka

1| cp-HgFe1212
1! O Kandyel

@ single-layer HTS
® double-layer HTS
O triple-layer HTS

T
Tmcax =82.6(x - 0.16)".

Cc



Universal sign change of thermopower

| ; 1[cap-v1236 — T

@ Honma

—SMP: 2392 lo7py ]/sDLa I opt.
(P)=392exp(19.7P )| | °F oo - P = 0,22

L
3
/\ Nakamura B p
(0.01 < Ppl <0.21) 1/ O Nishikawa \
P P O Zhou -
] i 8

V Kakinuma
<> Johnston
O Xu
O Park

| i @ single-layer HTS
@ Zhou - ® double-layer HTS

OD-La214 B .
¥ Yu O triple-layer HTS
CeD-NdSr214 B
/\ Ambai
1 | SrD-LaNd214

| V Takeda
! || cD-Bi2201
| ——S7'(P ) =40.47 - 163.4P | ® smis

@ Devaux
(0.21<P <0.34) OD-Hg1212

. : ] % Fukuoka
S12n / 1| op-Hg1223
] % Fukuoka

change 1| CD-HgFel212
11 O Kandyel




Why?






G. Beni, Phys. Rev. B vol. 10, 2186

Exact calculation
of S for atomic (t=0)
limit of Hubbard model




G. Beni, Phys. Rev. B vol. 10, 2186

Exact calculation
of S for atomic (t=0)
limit of Hubbard model

band insulator
(free electrons)

X

In
2—x

vahishes at
half-filling




G. Beni, Phys. Rev. B vol. 10, 2186
(1973).

Exact calculation
of S for atomic (t=0)
limit of Hubbard model

Bln 2T

l What is so

special about

band msula’ror' S =
(free electrons)

vanlshes at
m S=0 when x= |/3 WHY?| | 2x and 1-x?




Thermopower Primer

kp ,L12
§ = B2
€ ﬁLll

| =5

/ __|spectra

24%(k.w)  |function
k,
1.) T must be symmetric about the
chemical potential for S=0
2.) but if A is momentum-independent,
5=0 by particle-hole symmetry
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2x=1-x —>




S must change sign before x=1/3

(atomic limit)

experiments: x_c=.24




Hubbard Model

T =0.1t , £t = 0.5 eV

- —(K/e)1n[2x/(1-x)] |
=4t
=8t

50

0_

_50_

=100

0.05 0.1 0.15

Hole doping
arXiv:0807.2854
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Signh change of S




7N\

Tgnax
Signh change of S|====D>

Is L>2x important
qualitatively?




summary

low-energy theory: non-electron
Quantum numbers emerge---
SC boson-fermion model

Thanks to R. G. Leigh and Ting-
Pong Choy, Shiladitya
Chakraborty
and DMR-NSF/ACIF
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Boson=normal state properties of cuprates

Thanks to R. G. Leigh and Ting-
Pong Choy, Shiladitya
Chakraborty
and DMR-NSF/ACIF




